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The effectivity of pseudo-effective R-divisor is an important and difficult problem in

algebraic geometry. In the Arakelov geometry framework, this problem can be consid-

ered as a generalization of Dirichlet’s unit theorem for number fields. In this article,

we propose obstructions to the Dirichlet property by two approaches, that is, the dense-

ness of nonpositive points and functionals on adelic R-divisors. Applied to the algebraic

dynamical systems, these results provide examples of nef adelic arithmetic R-Cartier

divisor which does not have the Dirichlet property. We hope the obstructions obtained

in the article will give ways toward criteria of the Dirichlet property.

1 Introduction

Let X be a projective geometrically integral variety over a number field K and let

D̄ = (D, g) be an adelic arithmetic R-Cartier divisor of C 0-type on X (for details of adelic

arithmetic divisors, see [17]). We say that D̄ has the Dirichlet property if D̄ + (̂ψ) is effec-

tive for some ψ ∈ Rat(X)×R(:= Rat(X)× ⊗Z R). It is clear that, if D̄ has the Dirichlet prop-

erty, then it is pseudo-effective, namely for any big adelic arithmetic R-Cartier divisor
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13670 H. Chen and A. Moriwaki

Ē , the sum D̄ + Ē is also big. In [16], the following question has been proposed:

Assume that D̄ is pseudo-effective. Under which condition does it follow that

D̄ has the Dirichlet property?

In the case where X = SpecK, the pseudo-effectivity actually implies the Dirichlet prop-

erty. It can be considered as an Arakelov geometry interpretation of the classical

Dirichlet’s unit theorem. Therefore, the above problem could be seen as the study of

possible higher dimensional generalizations of the Dirichlet’s unit theorem. Note that

the analog of the above problem in the algebraic geometry setting asks for effectivity

criteria for pseudo-effective R-divisors. Few results have been known except some spe-

cial cases such as in [2, Lemma 6.1].

The Arakelov geometry approach is very suitable to study this effectivity prob-

lem. In fact, it is known that the above question has a positive answer in the following

cases:

(1) X = Spec(K) (the classical Dirichlet’s unit theorem).

(2) D is numerically trivial on X (cf. [16, 17]).

(3) X is a toric variety and D̄ is of toric type (cf. [4]).

Moreover, in the arithmetic setting, the positivity of adelic divisors can be considered

both horizontally and vertically. Thus, one has more flexibility in the study of the effec-

tivity problem. For example, in the case where D is a pseudo-effective R-Cartier divi-

sor on X, the arithmetic pseudo-effectivity of D̄ can be described by the positivity of

a numerical function μ̂
asy
max(.) on D̄ (see Proposition 8.2 infra). In the case where D is

big, then D̄ is arithmetically big if and only if this function valued on D̄ is > 0. If D̄ is

pseudo-effective and D is big, then any positive perturbation of the Green functions of

D̄ leads to a big adelic arithmetic R-Cartier divisor, which means that the multiples of

D̄ have many “almost small sections”. Heuristically, one can obtain the effectivity of D̄

by some limit procedure.

The aim of this paper is to discover the subtleties behind the above intu-

itive arguments and to study the obstructions to the Dirichlet property. We will con-

struct from an algebraic dynamical system over a number field a nef adelic arithmetic

Cartier divisor D̄ which does not have the Dirichlet property. We observe from this

construction that the obstruction comes from the denseness of the set of preperiodic

points with respect to the analytic topology. More precisely, let f : X → X be a sur-

jective endomorphism of X over K. Let D be an ample R-Cartier divisor on X such

that f∗(D)= dD + (ϕ) for some real number d> 1 and ϕ ∈ Rat(X)×R . Let D̄ = (D, g) be the
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13671

canonical compactification of D, that is, D̄ is an adelic arithmetic R-Cartier divisor of

C 0-type with f∗(D̄)= dD̄ + (̂ϕ) (cf. Section 4). Note that D̄ is nef (cf. Lemma 4.1). We

establish the following theorem.

Theorem 1.1 (cf. Theorem 4.5). If the set of all preperiodic points of f is dense on some

connected component of X(C) with respect to the analytic topology (the topology as an

analytic space), then the Dirichlet property of D̄ does not hold. �

The proof of the theorem relies on a necessary condition of the Dirichlet prop-

erty established in Lemma 2.1. We actually prove that the essential support (see (2.1)

for definition) of algebraic points with nonpositive heights should not meet the strictly

effective locus of an effective section of the adelic arithmetic R-Cartier divisor.

The concrete examples to apply the above theorem are discussed in Section 5.

Even for the algebraic dynamical system as treated in Theorem 1.1, it is a very inter-

esting and challenging problem to find a nontrivial sufficient condition to ensure the

Dirichlet property. Further, in [18], we introduce a geometric analog of the above ques-

tion. Namely, if D is a pseudo-effective Q-Cartier divisor on a normal projective variety

defined over a finite field, can we conclude that D is Q-effective? It actually holds on a

certain kind of abelian scheme over a curve, so that the situation of the geometric case

is different from the arithmetic case.

Note that the essential support of a family S of algebraic points is not empty

only if the family S is Zariski dense. Therefore, Lemma 2.1 provides nontrivial necessary

conditions for the Dirichlet property only when the set of nonpositive points is Zariski

dense. In order to obtain obstructions to the Dirichlet property for general adelic arith-

metic R-Cartier divisors, we propose the functional analysis approach. We introduce the

notion of asymptotic maximal slope μ̂asy
max(.) for any adelic arithmetic R-Cartier divisor

on X (see Sections 6.2 and 8), which is the threshold of the Dirichlet property where we

consider the twists of the adelic arithmetic R-Cartier divisor by the pull-back of adelic

arithmetic R-Cartier divisors on SpecK. We prove that this arithmetic invariant also

determines the pseudo-effectivity of the adelic arithmetic R-Cartier divisor (see Propo-

sition 8.2). Therefore, the Dirichlet property and the pseudo-effectivity are naturally

linked by this numerical invariant. We then obtain a necessary condition of the Dirichlet

property in terms of the directional derivative of the asymptotic maximal slope, which

is a functional on the space of all adelic arithmetic R-Cartier divisors (nonnecessarily

additive a priori).
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13672 H. Chen and A. Moriwaki

Theorem 1.2. Let D̄ be a pseudo-effective adelic arithmetic R-Cartier divisor on X such

that D is big. If D̄ has the Dirichlet property, then either D̄ is big, or μ̂asy
max(D̄)= 0 and

for any place v of the number field K, the support of the super-additive functional Ψv

on C 0(Xan
v )+ defined by the directional derivatives of μ̂asy

max(.) at D̄ cannot contain any

algebraic subvariety of dimension � 1 except those embedded in the augmented base

locus of Dv, where C 0(Xan
v )+ denotes the space of nonnegative continuous functions on

the analytification Xan
v (in the sense of Berkovich if v is a finite place). �

For this purpose, we establish a general analysis for functionals on the spaces

of adelic arithmetic R-Cartier divisors as in Theorem 6.2. This result can be applied to

not only the maximal asymptotic slope (see Corollary 6.7) but also other natural arith-

metic invariants such as the arithmetic volume function (see Corollary 6.11) and the

arithmetic self-intersection number (see Corollary 6.12). In Section 7, we compare these

specifications of Theorem 6.2. The comparisons show that the arithmetic maximal slope

is particularly adequate in the study of the Dirichlet property of pseudo-effective adelic

arithmetic R-Cartier divisors.

When D is a big R-Cartier divisor, D̄ is relatively nef and μ̂asy
max(D̄) coincides with

the normalized height of X with respect to D̄ (typically it is the case when D̄ arises

from an arithmetic dynamical system as the canonical polarization), the functional Ψv

identifies with the Monge–Ampère measure (in the sense of Chambert-Loir [5] when v

is a finite place). Surprisingly, the condition on the support of the functional in the

above theorem coincides with the key point in the Arakelov approach to the Bogomolov

problem (see [11, 20, 23]). It is interesting to know if there is a deeper relation between

Dirichlet and Bogomolov problems.

The article is organized as follows. After a description on the notation and ter-

minology that we will use in the article, a necessary condition of the Dirichlet property

is proved in the second section in the form of nondenseness for nonpositive algebraic

points, which leads to an obstruction of the Dirichlet property in the setting of arith-

metic dynamical systems (see Theorem 4.5) in Section 4, using the canonical Green func-

tion in algebraic dynamical systems discussed in Section 3. Concrete counter-examples

are provided in Section 5. The functional approach to the study of the Dirichlet property

is introduced in Section 6. The obstructions of the Dirichlet property are proposed in

terms of the properties of some possibly nonlinear functionals. Section 7 is devoted to

the comparison of these functionals, and also the comparison of the two approaches

proposed in the article. We conclude the article in Section 8 by a refined version of the

question above (see Question 8.4). We hope that our work will provide clues for the
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13673

further research on criteria of the Dirichlet property for higher dimension arithmetic

variety.

1.1 Conventions and terminology

In this paper, we frequently use the same notation as in [15, 17].

1.1.1

Let V be a variety over a field F and F̄ be an algebraic closure of F . Let x be an F̄ -valued

point of V , that is, a morphism

x : Spec(F̄ )→ V

over F . The residue field of V at the closed point given by the image of x is denoted

by F (x).

In the following, let X be a projective and geometrically integral scheme over a

number field K. Let d be its Krull dimension.

1.1.2

Let OK be the ring of integers in K and MK be the set of all maximal ideals of OK . Let

K(C) be the set of all embeddings K ↪→ C. For each v ∈ MK ∪ K(C), we define Kv to be

Kv :=
⎧⎨⎩K ⊗σ

K C with respect to σ if v = σ ∈ K(C),

the completion of K at p if v = p ∈ MK .

Moreover, let Xv denote the fiber product X ×Spec(K) Spec(Kv). Note that Kσ is natu-

rally isomorphic to C via a ⊗σ z �→ σ(a)z and Xσ is nothing more than the fiber product

X ×σ
Spec(K) Spec(C) with respect to σ .

Let x be a K̄-valued point of X. Let {φ1, . . . , φn} be the set of all Kv-algebra

homomorphisms K(x)⊗K Kv → K̄v, where K̄v is an algebraic closure of Kv. Note that

n= [K(x) : K]. For each i = 1, . . . ,n, let wi be the K̄v-valued point of Xv given by the com-

position of morphisms

Spec(K̄v)
φa

i−−−−→ Spec(K(x)⊗K Kv)
x×idKv−−−−→ Xv,

where φa
i is the morphism of Kv-schemes induced by φi. We denote {w1, . . . , wn} by Ov(x).
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13674 H. Chen and A. Moriwaki

1.1.3

For v ∈ MK ∪ K(C), the analytification Xan
v of Xv is defined by

Xan
v :=

⎧⎨⎩Xσ (Kσ ) if v = σ ∈ K(C),

Xan
p in the sense of Berkovich [1] if v = p ∈ MK .

As Kσ is naturally identified with C, Xan
σ = Xσ (Kσ )= Xσ (C). We equip the space Xan

σ

(respectively, Xan
p ) with the analytic topology, namely the topology as an analytic space

(respectively, as a Berkovich space). Let Xan
∞ denote the set of C-valued points of X over

Q. Note that Xan
∞ =∐

σ∈K(C) Xan
σ . We often denote Xan

∞ by X(C). Note that the complex con-

jugation induces an involution F∞ : X(C)→ X(C).

1.1.4

Let us fix v ∈ MK ∪ K(C). For a K̄v-valued point w of Xv, we define wan ∈ Xan
v to be

wan :=
⎧⎨⎩w if v= σ ∈ K(C),

the valuation of Kp(w) as an extension of vp if v= p ∈ MK ,

where vp is the valuation of Kp defined as vp( f)= #(OK/p)
−ordp( f). Note that

#{w′ ∈ Xv(K̄v) |w′an =wan} = [Kv(w) : Kv].

1.1.5

Let Div(X) be the group of Cartier divisors on X and denote by DivR(X) the R-vector

space Div(X)⊗Z R. If ϕ is an element in Rat(X)×, we denote by (ϕ) its divisor, which is an

element in Div(X). The Cartier divisors on X constructed in this way are called principal

divisors. The map ϕ �→ (ϕ) is a group homomorphism and extends by extension of scalar

to an R-linear map Rat(X)×R → DivR(X), where Rat(X)×R := Rat(X)× ⊗Z R.

By an adelic arithmetic R-Cartier divisor of C 0-type on X, we refer to a pair

D̄ = (D, g), where D ∈ DivR(X) and g = (gv)v∈MK∪K(C) is a family of Green functions, with

gv being a D-Green function of C 0-type on Xan
v . We also require that gp comes from an

integral model of D for all but a finite number of p ∈ MK , and that the family (gσ )σ∈K(C)

is invariant under the action of F∞. The family g = (gv)v∈MK∪K(C) is often denoted by∑
v∈MK∪K(C)

gv[v].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/24/13669/2363729 by U
PM

C
 user on 12 D

ecem
ber 2019



Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13675

If it is not specified, an adelic arithmetic R-Cartier divisor refers to an adelic arithmetic

R-Cartier divisor of C 0-type. We denote the vector space consisting of adelic arithmetic

R-Cartier divisors on X by D̂ivR(X). If ϕ is an element in Rat(X)×, we define an adelic

arithmetic R-Cartier divisor as follows:

(̂ϕ) :=
⎛⎝(ϕ), ∑

v∈MK∪K(C)

− log |ϕv|2v [v]

⎞⎠ ,
where ϕv is the rational function on Xan

v induced by ϕ. The map Rat(X)× → D̂ivR(X)

extends naturally to Rat(X)×R and defines an R-linear homomorphism of vector spaces.

Any element in the image of this R-linear map is called a principal adelic arithmetic

R-Cartier divisor.

For any v ∈ MK ∪ K(C), one has a natural embedding from the vector space

C 0(Xan
v ) into D̂ivR(X) which sends fv ∈ C 0(Xan

v ) to

⎧⎨⎩(0, fv[v]) if v ∈ MK ,

(0, 1
2 fv[v] + 1

2 F ∗
∞( fv)[v̄]) if v ∈ K(C).

We denote by Ō( fv) this adelic arithmetic R-Cartier divisor.

In the particular case where X = SpecK, an adelic arithmetic R-Cartier divisor ζ

on SpecK is a vector (ζv)v∈MK∪K(C) in RMK∪K(C) := Map(MK ∪ K(C),R) which we can write

into the form of a formal sum ∑
v∈MK∪K(C)

ζv[v],

where ζv = 0 for all but a finite number of indices v. The Arakelov degree of ζ is then

defined as

d̂eg(ζ )= 1

2

∑
v∈MK∪K(C)

ζv.

For more details of d̂eg(.), see [17, Section 4.2]

1.1.6

Let D̄ = (D, g) be an adelic arithmetic R-Cartier divisor of C 0-type on X. For any alge-

braic point x of X outside the support of D, the normalized height hD̄(x) of x with respect
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13676 H. Chen and A. Moriwaki

to D̄ is defined to be

hD̄(x) := d̂eg(D̄|x)
[K(x) : K]

= 1

[K(x) : K]

∑
v∈MK∪K(C)

∑
w∈Ov(x)

1

2
gv(w

an).

This function can be extended to the set of all points in X(K̄), see [17, Section 4.2] for

details. A K̄-valued point x of X is said to be nonpositive with respect to D̄ if hD̄(x)≤ 0.

Note that the height function hD̄(.) does not change if we replace D̄ by D̄ + (̂φ) with

φ ∈ Rat(X)×R . This is a consequence of the product formula for the number field K.

For any real number λ, we denote by X(K̄)D̄
≤λ the set of all K̄-valued points of X

whose height with respect to D̄ is bounded from above by λ, namely

X(K̄)D̄
≤λ := {x ∈ X(K̄) | hD̄(x)≤ λ}.

The essential minimum of the height function hD̄(·) is defined as

μ̂ess(D̄) := inf{λ ∈ R | X(K̄)D̄
≤λ is Zariski dense}.

The function μ̂ess(.) takes value in R ∪ {−∞}. Note that if D̄ verifies the Dirichlet property,

then the essential minimum of hD̄(.) is nonnegative.

1.1.7

We say that an adelic arithmetic R-Cartier divisor D̄ = (D, g) is relatively nef if D is a

nef R-Cartier divisor and gv is of (C 0 ∩ PSH)-type (for details, see [17, Section 2.1]). To

each family (D̄i)
d+1
i=1 of relatively nef adelic arithmetic R-Cartier divisor, one can asso-

ciate a real number d̂eg(D̄1 · · · D̄d+1) as in [17, Section 4.5] (the smoothness condition

for the scheme X in loc. cit. is actually not necessary). The intersection number func-

tion (D̄1, . . . , D̄d+1) �→ d̂eg(D̄1, . . . , D̄d+1) is symmetric, additive, and R+-homogeneous in

each coordinate and hence extends to a (d+ 1)-linear form on the vector space of inte-

grable adelic arithmetic R-Cartier divisors (recall that an adelic arithmetic R-Cartier

divisor is said to be integrable if it can be written as a difference of two relatively

nef adelic arithmetic R-Cartier divisors). The extended function is continuous in each

of its coordinates with respect to the topology on the vector space of all integrable

adelic arithmetic R-Cartier divisors defined by the usual convergence in each of its

finite-dimensional vector subspaces and the uniform convergence of Green functions.

Therefore, for fixed integrable adelic arithmetic R-Cartier divisors D̄1, . . . , D̄d, the func-

tion D̄d+1 �→ d̂eg(D̄1, . . . , D̄d+1) can be extended by continuity to the whole vector space

of adelic arithmetic R-Cartier divisors on X.
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13677

Let D̄1, . . . , D̄d be relatively nef adelic arithmetic R-Cartier divisors. The inter-

section product defines a (nonnegative) Radon measure (D̄1 · · · D̄d)v on Xan
v for each place

v ∈ MK ∪ K(C) such that, for any φ ∈ C 0(Xan
v ) one has

(D̄1 · · · D̄d)v(φ) := d̂eg(D̄1 · · · D̄d · Ō(φ)).

More generally, one can define a signed Borel measure (D̄1 · · · D̄d)v on Xan
v for integrable

adelic arithmetic R-Cartier divisors D̄1, . . . , D̄d. Moreover, this signed measure is multi-

linear in D̄1, . . . , D̄d. Note that in the case where D̄1, . . . , D̄d come from adelic line bun-

dles and v is a nonarchimedean place, the above measure has been constructed in [5]

(the archimedean case is more classical and relies on the theory of Monge–Ampère oper-

ators). See Section 7.2 infra. for the integrability of Green functions with respect to this

measure extending some results of [6, 14].

Let r be an integer in {0, . . . ,d} and D̄1, . . . , D̄r+1 be a family of integrable adelic

arithmetic R-Cartier divisors. If Z is an R-coefficient algebraic cycle of dimension r in

X, written into the linear combination of prime cycles as

Z = λ1 Z1 + · · · + λnZn,

then we define the height of Z with respect to D̄1, . . . , D̄r+1 as

h(D̄1, . . . , D̄r+1; Z) :=
n∑

i=1

λid̂eg(D̄1|Zi · · · D̄r+1|Zi ).

In the particular case where all D̄i are equal to the same adelic arithmetic R-Cartier

divisor D̄, we write h(D̄0, . . . , D̄r; Z) in abbreviation as h(D̄; Z). Note that when Z is the

algebraic cycle corresponding to a closed point x of X, the height h(D̄; Z) equals [K(x) :

K]hD̄(x).

We say that an adelic arithmetic R-Cartier divisor D̄ = (D, g) is nef if it is rela-

tively nef and if the function hD̄(·) is nonnegative. In the case where D̄ is nef, the function

h(D̄; ·) is nonnegative on effective cycles.

1.1.8

Let D̄ be an adelic arithmetic R-Cartier divisor on X. If s ∈ Rat(X)×R and D + (s)≥ 0, then

|s|gv := |s|v exp(−gv/2) is a continuous function on Xan
v , where v ∈ MK ∪ K(C); |s|gv ≤ 1 for

all v if and only if D̄ + (̂s)≥ 0.
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13678 H. Chen and A. Moriwaki

We denote by H0(X, D) the K-vector space

{φ ∈ Rat(X)× | D + (φ)≥ 0} ∪ {0}.

Assume that s is an element in H0(X, D). For each v ∈ MK ∪ K(C), the Green function gv

defines a continuous function |s|gv such that

|s|gv = |s|v exp(−gv/2).

This function vanishes on the locus of div(s)+ D. We also define

‖s‖v,sup := sup
x∈Xan

v

|s|v(x).

Denote by Ĥ0(X, D̄) the set of all s ∈ H0(X, D) such that ‖s‖v,sup ≤ 1 for any v ∈ MK ∪ K(C).

The arithmetic volume of D̄ is defined as

v̂ol(D̄) := lim sup
n→+∞

log #Ĥ0(X,nD̄)

nd+1/(d+ 1)!
.

1.1.9

Let V be an integral projective variety over a field F , and D be an R-Cartier divisor on

V . The augmented base locus of D is defined as the intersection of Zariski closed sets

⋂
D=A+E

Supp(E),

where the intersection is taken over all decompositions D = A+ E where A and E are,

respectively, ample and effective R-divisors on V . Note that if W is an integral closed

subscheme of V of dimension > 0 which is not contained in the augmented base locus of

D, then the restricted volume of D on X is strictly positive. We refer the readers to [10]

for more details.

2 Denseness of Nonpositive Points

This section is devoted to a nondenseness result for nonpositive points under the

Dirichlet property. This result will be useful in the following sections to construct

counter-examples to the Dirichlet property. We fix a projective and geometrically inte-

gral scheme X defined over a number field K.
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13679

Let S be a subset of X(K̄). For any closed subscheme Y of X such that Y � X and

v ∈ MK ∪ K(C), we set (see Sections 1.1.2 and 1.1.4)

Δ(S; Y)an
v :=

⋃
x∈S\Y(K̄)

{wan |w ∈ Ov(x)}.

The essential support Suppess(S)
an
v of S at v is defined to be

Suppess(S)
an
v :=

⋂
Y�X

Δ(S; Y)an
v , (2.1)

where Δ(S; Y)an
v is the closure of Δ(S; Y)an

v with respect to the analytic topology. Note

that if Δ(S; ∅)an
v is dense with respect to the analytic topology, then

Suppess(S)
an
v = Xan

v .

Moreover, if S is not Zariski dense, then Suppess(S)
an
v = ∅.

Lemma 2.1 (Nondenseness of nonpositive points). Let D̄ = (D, g) be an adelic arithmetic

R-Cartier divisor of C 0-type on X. If s is an element of Rat(X)×R with D̄ + (̂s)≥ 0, then

Suppess(X(K̄)
D̄
≤0)

an
v ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅

for all v ∈ MK ∪ K(C). In particular, if Supp(D + (s)) �= ∅, then Δ(X(K̄)D̄
≤0; ∅)an

v is not dense

with respect to the analytic topology. �

Proof. We set S := X(K̄)D̄
≤0, Y := Supp(D + (s)) and g′

v := − log |s|2gv . By our assumption,

g′
v ≥ 0 for all v ∈ MK ∪ K(C).

Claim 2.2. For all y∈Δ(S; Y)an
v , we have g′

v(y)= 0. �

Proof. For y∈Δ(S; Y)an
v , we choose x ∈ S \ Y(K̄) such that y=wan for some w ∈ Ov(x).

Then,

0 ≥ 2[K(x) : K]hD̄(x)= 2d̂eg(D̄ + (̂s)|x)=
∑

v′∈MK∪K(C)

∑
w′∈Ov′ (x)

g′
v′(w

′an
).

As g′
v′ ≥ 0 for all v′ ∈ MK ∪ K(C), the assertion follows. �
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13680 H. Chen and A. Moriwaki

We assume that Suppess(S)
an
v ∩ {x ∈ Xan

v | |s|gv (x) < 1} �= ∅. In particular,

Δ(S; Y)an
v ∩ {x ∈ Xan

v | |s|gv (x) < 1} �= ∅.

We can choose y∞ ∈ Xan
v and a sequence {ym} in Xan

v such that |s|gv (y∞) < 1, ym ∈Δ(S; Y)an
v

for all m, and limm→∞ ym = y∞. By the above claim, |s|gv (ym)= 1 for all m, and hence

|s|gv (y∞)= limm→∞ |s|gv (ym)= 1. This is a contradiction. �

Remark 2.3. Let f : P1
K → P1

K be a surjective endomorphism over K with deg( f)≥ 2. Let

S be the set of periodic points in P1(K̄). Fix σ ∈ K(C). By proposition 4.3 (which is also

valid for the periodic points), Δ(S; ∅)an
σ coincides with the set of periodic points of fσ in

(P1
K)

an
σ . The following are well known:

(1) The closure of the set of repelling periodic points is the Julia set Jσ of fσ [19,

Theorem 4.2.10].

(2) The set of nonrepelling periodic points is a finite set [19, Theorem 4.2.9].

(3) The Julia set Jσ is closed and perfect, that is, Jσ is closed and Jσ has no

isolated points in Jσ [19, Theorem 2.3.6].

Therefore, we can see that the essential support Suppess(S)
an
σ of S at σ is equal to the

Julia set Jσ . �

For a subset S of X(K̄) and v ∈ MK ∪ K(C), we set Sv =⋃
x∈S Ov(x). Let us consider

a way to give the essential support of S at v in terms of Sv and Xv.

Proposition 2.4. Suppess(S)
an
v =⋂

Z�Xv {wan |w ∈ Sv \ Z(K̄v)}, where Z runs over the set of

all closed subschemes of Xv such that Z � Xv. �

Proof. It is sufficient to show that, for a closed subscheme Z of Xv such that Z � Xv,

there is a closed subscheme Y of X such that Y � X and that

⋃
x∈S\Y(K̄)

Ov(x)⊆ Sv \ Z(K̄v),

that is, Sv ∩ Z(K̄v)⊆
⋃

x∈S∩Y(K̄) Ov(x).

Let π : Xv → X be the projection. For x ∈ X(K̄) and w ∈ Xv(K̄v), the natural induced

morphisms

Spec(K̄)→ XK̄ and Spec(K̄v)→ (Xv)K̄v
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13681

are denoted by x̃ and w̃, respectively, where

XK̄ = X ×Spec(K) Spec(K̄) and (Xv)K̄v
= Xv ×Spec(Kv) Spec(K̄v).

We fix an embedding K̄ ↪→ K̄v, which yields a morphism π̄ : (Xv)K̄v
→ XK̄ . In the case

where w ∈ Ov(x), there is a homomorphism ιw : K̄ → K̄v over K such that the following

diagram is commutative:

Spec(K̄v)
w̃−−−−→ (Xv)K̄v

ιaw

⏐⏐� ⏐⏐�π̄
Spec(K̄)

x̃−−−−→ XK̄

Let K̃ be the algebraic closure of K in K̄v. Note that ιw(K̄)= K̃.

Let D be a Cartier divisor on X such that X◦ := X \ Supp(D) is affine. Let A be a

finitely generated K-algebra with X◦ = Spec(A). Note that

Sv ∩ Supp(D)v(K̄v)=
⋃

x∈S∩Supp(D)(K̄)
Ov(x).

If Z ⊆ Supp(D)v, then the assertion is obvious, so that we may assume that Z �⊆ Supp(D)v.

We put T = Sv ∩ (Z(K̄v) \ Supp(D)v(K̄v)).

Claim 2.5. There is a nonzero h∈ A⊗K K̄ such that w̃∗(π̄∗(h))= 0 for all w ∈ T . �

Proof. Let Iv be the ideal of A⊗K Kv defining Z ∩ X◦
v . Choose a nonzero element h′ of Iv.

There are h1, . . . ,hr ∈ A⊗K K̄ and a1, . . . ,ar ∈ K̄v such that

h′ = a1π̄
∗(h1)+ · · · + arπ̄

∗(hr)

and a1, . . . ,ar are linearly independent over K̃. For w ∈ T and w ∈ Ov(x), by using the

above diagram,

0 = w̃∗(h′)= a1w̃
∗(π̄∗(h1))+ · · · + arw̃

∗(π̄∗(hr))= a1ιw(x̃
∗(h1))+ · · · + arιw(x̃

∗(hr)),

so that x̃∗(h1)= · · · = x̃∗(hr)= 0. Therefore, the assertion follows. �

We set h= c1h1 + · · · + clhl for some c1, . . . , cl ∈ K̄ and h1, . . . ,hl ∈ A. Let K ′ be a

finite Galois extension of K such that K(c1, . . . , cl)⊆ K ′. Here we put f =∏
σ∈Gal(K ′/K) σ (h).

Note that f ∈ A\ {0} and w∗(π∗( f))= 0 for all w ∈ T , so that T ⊆⋃
S∩Spec(A/ f A)(K̄) Ov(x).

Therefore, if we set Y = Supp(D) ∪ Spec(A/ f A), then the proposition follows. �
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13682 H. Chen and A. Moriwaki

3 Endomorphism and Green Function

This section consists of the construction of the canonical Green functions for a given

R-Cartier divisor in the algebraic dynamical system setting, which can be considered as

a generalization of the construction of the canonical metrics in [22]. Here we explain

them in terms of Green functions on either Berkovich spaces or complex varieties.

Throughout this section, we fix the following notation. Let X be a projective and geo-

metrically integral variety over a field K. Let f : X → X be a surjective endomorphism of

X over K. Let D be an R-Cartier divisor on X. We assume that there are a real number d

and ϕ ∈ Rat(X)×R such that d> 1 and f∗(D)= dD + (ϕ).

3.1 Nonarchimedean case

We assume that K is the quotient field of a complete discrete valuation ring R. Let Xan

be the analytification of X in the sense of Berkovich. Note that fan : Xan → Xan is also

surjective by [1, Proposition 3.4.7]. Let us begin with the following proposition.

Proposition 3.1. There exists a unique D-Green function g of C 0-type on Xan such that

( fan)∗(g)= dg − log |ϕ|2. �

Proof. Let us fix a D-Green function g0 of C 0-type on Xan. As

f∗(D)= dD + (ϕ),

( fan)∗(g0) is a (dD + (ϕ))-Green function of C 0-type, and hence, there is a continuous

function λ0 on Xan such that

( fan)∗(g0)= dg0 − log |ϕ|2 + λ0.

For each n∈ Z≥1, let us consider a continuous function hn on Xan given by

hn :=
n∑

i=0

1

di+1
(( fan)i)∗(λ0).

Claim 3.2.

(a) There is a continuous function h on Xan such that the sequence {hn} converges

uniformly to h.

(b) ( fan)∗(h)+ λ0 = dh. ��
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13683

Proof. (a) It is sufficient to show that ‖hn − hm‖sup → 0 as n,m → ∞. Indeed, if n>m,

then

‖hn − hm‖sup =
∥∥∥∥∥

n∑
i=m+1

1

di+1
(( fan)i)∗(λ0)

∥∥∥∥∥
sup

≤
n∑

i=m+1

1

di+1

∥∥(( fan)i)∗(λ0)
∥∥

sup

= ‖λ0‖sup

n∑
i=m+1

1

di+1
,

as required.

(b) Note that

( fan)∗(hn)+ λ0 =
n∑

i=0

1

di+1
(( fan)i+1)∗(λ0)+ λ0 = dhn+1,

and hence the assertion follows. �

If we set g = g0 + h, then g is a D-Green function of C 0-type and

( fan)∗(g)= ( fan)∗(g0)+ ( fan)∗(h)= (dg0 − log |ϕ|2 + λ0)+ (dh − λ0)= dg − log |ϕ|2,

as desired.

Next we consider the uniqueness of g. Let g′ be another D-Green function of

C 0-type such that ( fan)∗(g′)= dg′ − log |ϕ|2. Then, as g′ − g is a continuous function on

Xan and ( fan)∗(g′ − g)= d(g′ − g), we have

‖g′ − g‖sup = ‖( fan)∗(g′ − g)‖sup = ‖d(g′ − g)‖sup = d‖g′ − g‖sup,

and hence ‖g′ − g‖sup = 0. Thus, g′ = g.

Proposition 3.3. Let X → Spec(R) be a model of X over Spec(R), namely a projective and

flat R-scheme whose generic fiber identifies with X, and D be an R-Cartier divisor on X

such that D coincides with D on X. If there is an endomorphism f̃ : X → X over Spec(R)

such that f̃
∣∣∣
X

= f and f̃∗(D)= dD + (ϕ)X , then the D-Green function g(X ,D) arising from

the model (X ,D) is equal to g. �

Proof. The relation f̃∗(D)= dD + (ϕ)X yields

( fan)∗(g(X ,D))= dg(X ,D) − log |ϕ|2,

so that, by the uniqueness of g, we have g(X ,D) = g. �
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13684 H. Chen and A. Moriwaki

Using the identities

f∗(D)= dD + (ϕ) and ( fan)∗(g)= g − log |ϕ|2,

we can easily see that

( fn)∗(D)= dnD + (ϕn) and (( fan)n)∗(g)= dng − log |ϕn|2

for n≥ 1, where

ϕn :=
n−1∏
i=0

(( fn−1−i)∗(ϕ))d
i
.

Let X → Spec(R) be a model of X over Spec(R) and D be an R-Cartier divisor on X with

D |X = D. For each n≥ 1, we choose a model Xn → Spec(R) of X over Spec(R) together with

a morphism f̃n : Xn → X over Spec(R) such that f̃n

∣∣∣
X

= fn. Here we define an R-Cartier

divisor Dn on Xn to be

Dn := 1

dn
( f̃∗

n (D)− (ϕn)Xn).

Note that Dn|X = D. Then we have the following proposition.

Proposition 3.4. If we set θn = g − g(Xn,Dn), then limn→∞ ‖θn‖sup = 0. In particular, if D is

relatively nef, then g is of (C 0 ∩ PSH)-type. �

Proof. Since

f̃∗
n (D)= dnDn + (ϕn)Xn,

we have

(( fan)n)∗(g(X ,D))= dng(Xn,Dn) − log |ϕn|2,

so that if we set θ = g − g(X ,D), then (( fan)n)∗(θ)= dnθn. Therefore,

‖θ‖sup = ‖(( fan)n)∗(θ)‖sup = ‖dnθn‖sup = dn‖θn‖sup,

and hence limn→∞ ‖θn‖sup = 0.

For the last statement, note that if D is relatively nef, then Dn is also relatively

nef for n≥ 1. �

3.2 Complex case

We assume that K = C.
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13685

Proposition 3.5. There exists a unique D-Green function g of C 0-type on X such that

f∗(g)= dg − log |ϕ|2. Moreover, if there is a D-Green function of (C 0 ∩ PSH)-type, then g

is also of (C 0 ∩ PSH)-type. �

Proof. We can prove the unique existence of g in the same way as Proposition 3.1. Let

g0 be a D-Green function of (C 0 ∩ PSH)-type. As in the previous subsection, we can see

( fn)∗(D)= dnD + (ϕn) and ( fn)∗(g)= dng − log |ϕn|2

for n≥ 1, where

ϕn :=
n−1∏
i=0

(( fn−1−i)∗(ϕ))d
i
.

Here we define gn to be

gn := 1

dn
(( fn)∗(g0)+ log |ϕn|2),

that is,

( fn)∗(g0)= dngn − log |ϕn|2.

Then gn is a D-Green function of (C 0 ∩ PSH)-type. Moreover, if we set θ = g − g0 and

θn = g − gn, then ( fn)∗(θ)= dnθn. Thus,

‖θ‖sup = ‖( fn)∗(θ)‖sup = ‖dnθn‖sup = dn‖θn‖sup,

and hence limn→∞ ‖θn‖sup = 0. Therefore, g is of (C 0 ∩ PSH)-type by [13, Theorem 2.9.14,

(iii)]. �

Let c : Spec(C)→ Spec(C) be the morphism given by the complex conjugation map

z �→ z̄. Let X̃ denote the fiber product X ×c
Spec(C) Spec(C) in terms of c. Let F : X̃ → X be

the projection morphism and f̃ : X̃ → X̃ be the induced morphism by f . Note that the

following diagram is commutative:

X̃

f̃
��

F

��

X̃

F

��

X
f

�� X

If we set D̃ = F ∗(D) and ϕ̃ = F ∗(ϕ), then f̃∗(D̃)= dD̃ + (ϕ̃). For x ∈ X̃(C), the composi-

tion Spec(C)
c−→ Spec(C)

x−→ X̃
F−→ X yields a C-valued point of X, so that we define
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13686 H. Chen and A. Moriwaki

F∞ : X̃(C)→ X(C) to be F∞(x)= F ◦ x ◦ c. The above commutative diagram gives rise to

the following commutative diagram:

X̃(C)
f̃

��

F∞
��

X̃(C)

F∞
��

X(C)
f

�� X(C)

Proposition 3.6. Let g be a D-Green function of C 0-type on X with f∗(g)= dg − log |ϕ|2
as in Proposition 3.5. Then g̃ := F ∗

∞(g) is a D̃-Green function of C 0-type on X̃ with f̃∗(g̃)=
dg̃ − log |ϕ̃|2. Moreover, if g is of (C 0 ∩ PSH)-type, then g̃ is also of (C 0 ∩ PSH)-type. �

Proof. It is easy to see that g̃ is a D̃-Green function of C 0-type on X̃ because

F ∗(ψ)(x)= x∗(F ∗(ψ))= c∗(c∗(x∗(F ∗(ψ))))= (F∞(x))∗(ψ)=ψ(F∞(x))

for x ∈ X̃(C) and ψ ∈ Rat(X)×. In addition,

f̃∗(g̃)= F ∗
∞( f∗(g))= F ∗

∞(dg − log |ϕ|2)= dg̃ − log |ϕ̃|2.

The last assertion follows from the same argument of [15, Lemma 5.1.1]. �

4 Canonical Compactification

Let X be a projective and geometrically integral variety over a number field K. Let

f : X → X be a surjective endomorphism of X over K. Let D be an R-Cartier divisor on X.

We assume that there are a real number d and ϕ ∈ Rat(X)×R such that d> 1 and f∗(D)=
dD + (ϕ). We use the same notation as in Sections 1.1.1–1.1.4. In addition, for each

v ∈ MK ∪ K(C), let fan
v : Xan

v → Xan
v be the induced map by f . By Proposition 3.1, for

p ∈ MK , there is a unique D-Green function gp of C 0-type on Xan
p with

( fan
p )∗(gp)= dgp − log |ϕ|2p.

We can find a model XU of X over a nonempty Zariski open set U of Spec(OK), an

R-Cartier divisor DU on XU , and an endomorphism fU : XU → XU over U such that

fU |X = f and f∗
U (D)= dD + (ϕ) on XU , so that, by Proposition 3.3, for P ∈ U , gP comes

from the model (XU ,DU ). Further, by virtue of Propositions 3.5 and 3.6, let us take a
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13687

unique F∞-invariant D-Green function g∞ of C 0-type on Xan
∞ (for the definition of Xan

∞ ,

see Section 1.1.3) such that

( fan
∞ )∗(g∞)= dg∞ − log |ϕ|2∞,

where fan
∞ :=∐

σ∈K(C) fan
σ . Therefore,

D̄ :=
(

D,
∑

P∈MK

gP [P ] + g∞[∞]

)

forms an adelic arithmetic Cartier divisor of C 0-type on X. By our construction,

f∗(D̄)= dD̄ + (̂ϕ).

The adelic arithmetic Cartier divisor D̄ is called the canonical compactification of D

with respect to f .

Lemma 4.1. If D is ample, that is, there are ample Cartier divisors D1, . . . , Dr on X and

a1, . . . ,ar ∈ R>0 with D = a1 D1 + · · · + ar Dr, then D̄ is nef. �

Proof. First let us see the following claim.

Claim 4.2.

(a) There are a model π : X → Spec(OK) of X over Spec(OK) and a relatively nef

R-Cartier divisor D on X such that D |X = D.

(b) There is an F∞-invariant D-Green function h of C ∞-type on Xan
∞ such that

c1(D,h) is positive. ��

Proof. If D is an ample Cartier divisor, then the assertions (a) and (b) are well known.

Moreover, in this case, D in (a) can be taken as a Q-Cartier divisor.

(a) For each i = 1, . . . , r, there are a model Xi → Spec(OK) of X over Spec(OK) and

a relatively nef Q-Cartier divisor Di on Xi such that Di|X = Di. Let us take a model X →
Spec(OK) of X over Spec(OK) such that we have a birational morphism μi : X → Xi over

Spec(OK) for each i = 1, . . . , r. If we set D = a1μ
∗
1(D1)+ · · · + arμ

∗
r (Dr), then D is relatively

nef and D |X = D.

(b) For each i = 1, . . . , r, let hi be an F∞-invariant Di-Green function of

C ∞-type on Xan
∞ such that c1(Di,hi) is positive. Then a1h1 + · · · + arhr is our desired Green

function. �
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13688 H. Chen and A. Moriwaki

By the above claim together with Propositions 3.4 and 3.5, gP and g∞ are of

(C 0 ∩ PSH)-type on Xan
P and Xan

∞ , respectively. Therefore, D̄ is relatively nef. Let hD̄ be the

height function associated with D̄. Then

hD̄( f(x))= dhD̄(x)

for all x ∈ X(K̄). Indeed,

hD̄( f(x))= hf∗(D̄)(x)= hdD̄+(̂ϕ)(x)= hdD̄(x)= dhD̄(x).

As D is ample, there is a constant C such that hD̄ ≥ C . In particular,

hD̄(x)= hD̄( fn(x))/dn ≥ C/dn

for all n≥ 1, and hence hD̄(x)≥ 0 for x ∈ X(K̄). Therefore, D̄ is nef.

For v ∈ MK ∪ K(C), we set⎧⎨⎩Prep( f) := {x ∈ X(K̄) | fn(x)= fm(x) for some 0 ≤ n<m},
Prep( fv) := {x ∈ Xv(K̄v) | fn

v (x)= fm
v (x) for some 0 ≤ n<m}.

An element of Prep( f) (respectively, Prep( fv)) is called a preperiodic point of f (respec-

tively, fv). Moreover, for a subset T of Xv(K̄v), Tan is defined by

Tan := {wan |w ∈ T}

(for the definition of wan, see Section 1.1.4). Let us see the following proposition.

Proposition 4.3.
⋃

x∈Prep( f) Ov(x)= Prep( fv) (for the definition of Ov(x), see

Section 1.1.2). �

Proof. Clearly,
⋃

x∈Prep( f) Ov(x)⊆ Prep( fv). Conversely, we suppose that x ∈ Prep( fv),

that is, fm
v ◦ x = fn

v ◦ x for some m>n≥ 0. Let πv : Xv → X be the projection. Then

πv ◦ fm
v ◦ x = πv ◦ fn

v ◦ x. Note that the following diagram is commutative:

Xv
fv

��

πv

��

Xv

πv

��

X
f

�� X

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/24/13669/2363729 by U
PM

C
 user on 12 D

ecem
ber 2019



Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13689

so that we have fm ◦ πv ◦ x = fn ◦ πv ◦ x. Therefore, by Lemma 4.4, there are a closed point

ξ of X and a homomorphism K(ξ)→ K̄v such that πv ◦ x is given by the composition

Spec(K̄v)→ Spec(K(ξ))→ X, so that the assertion follows. �

Lemma 4.4. Let V be a projective variety over a field k. Let f : V → V and g : V → V be

surjective endomorphisms of V and let D be an R-Cartier divisor on V . We assume the

following:

(1) D is ample, that is, there are ample Cartier divisors D1, . . . , Dr on V and

a1, . . . ,ar ∈ R>0 with D = a1 D1 + · · · + ar Dr.

(2) There are φ,ψ ∈ Rat(V)×R and a,b ∈ R>0 such that f∗(D)= aD + (φ), g∗(D)=
bD + (ψ) and a �= b.

If Ω is a field over k, x ∈ V(Ω) and f(x)= g(x), then there are a closed point ξ of V and

a homomorphism k(ξ)→Ω such that x coincides with the composition of Spec(Ω)→
Spec(k(ξ))→ V . �

Proof. Let Z denote ( f × g)−1(Δ), where f × g : V → V × V is a morphism given by

x �→ ( f(x), g(x)) and Δ is the diagonal in V × V . It is sufficient to show that dim Z ≤ 0.

We assume the contrary, so that we can find a subvariety C of dimension one of V with

C ⊆ Z . Then f |C = g|C . In particular, f∗(C )= g∗(C ). As

f∗(D)− g∗(D)= (a − b)D + (φψ−1),

we have

(a − b)(D · C )= (( f∗(D)− g∗(D)) · C )= (D · f∗(C ))− (D · g∗(C ))= 0,

and hence (D · C )= 0. This is a contradiction because D is ample. �

The purpose of this section is to prove the following theorem.

Theorem 4.5. We assume that D is ample. If there are v ∈ MK ∪ K(C) and a subvariety

Yv ⊆ Xv such that dim Yv ≥ 1 and Yv ⊆ Suppess(Prep( f))an
v , then the Dirichlet property of

D̄ does not hold. In particular, if Prep( fv)an is dense in Xan
v with respect to the analytic

topology for some v ∈ MK ∪ K(C), then the Dirichlet property of D̄ does not hold. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/24/13669/2363729 by U
PM

C
 user on 12 D

ecem
ber 2019



13690 H. Chen and A. Moriwaki

Proof. We assume that D̄ + (̂s) is effective for some s ∈ Rat(X)×R . Here we set S := X(K̄)D̄
≤0

(for the definition of X(K̄)D̄
≤0, see Section 6). By Lemma 2.1,

Suppess(S)
an
v ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅.

Note that if x ∈ Prep( f) for x ∈ X(K̄), then hD̄(x)= 0. Therefore, Prep( f)⊆ S, and hence

Suppess(Prep( f))an
v ∩ Supp(D + (s))an

v = ∅

because Supp(D + (s))an
v ⊆ {x ∈ Xan

v | |s|gv (x) < 1}. As (D + (s))v is ample, we can see that

Yv ∩ Supp(D + (s))v �= ∅. In particular,

Yan
v ∩ Supp(D + (s))an

v �= ∅,

which is a contradiction because Yan
v ⊆ Suppess(Prep( f))an

v . �

5 Examples

In this section, we give several examples to apply Theorem 4.5.

Example 5.1 (Abelian variety). Let A be an abelian variety over a number field K. Let

D be an ample and symmetric R-Cartier divisor on A, that is, there are ample and sym-

metric Cartier divisors D1, . . . , Dr on A and a1, . . . ,ar ∈ R>0 with D = a1 D1 + · · · + ar Dr.

Then [2]∗(D)= 4D + (ϕ) for some ϕ ∈ Rat(A)×R . Let D̄ be the canonical compactification of

D with respect to [2]. Note that Prep([2]σ ) is dense in Aσ (C) with respect to the analytic

topology for σ ∈ K(C). Thus, by Lemma 4.1 and Theorem 4.5, D̄ is nef and D̄ does not

have the Dirichlet property. �

Example 5.2 (Lattès map). Let E be an elliptic curve over a number field K, X := E/[±1]

and ρ : E → X be the natural morphism. Note that X � P1
K and the endomorphism

[2] : E → E descends to an endomorphism f : X → X, that is, the following diagram is

commutative:

E
[2]

��

ρ

��

E

ρ

��

X
f

�� X

Clearly, ρ(Prep([2]))⊆ Prep( f). In particular, Prep([ f ]σ ) is dense in Xσ (C) with respect

to the analytic topology for σ ∈ K(C). Let D be an ample Cartier divisor on X. Note that
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13691

ρ∗(D) is symmetric because ρ ◦ [−1] = ρ, so that there is ϕ′ ∈ Rat(E)× with [2]∗(ρ∗(D))=
4ρ∗(D)+ (ϕ′), that is, ρ∗( f∗(D)− 4D)= (ϕ′). Therefore, if we set ϕ = N(ϕ′)1/2 ∈ Rat(X)×Q,

then f∗(D)= 4D + (ϕ), where N : Rat(E)× → Rat(X)× is the norm map. Let D̄ be the

canonical compactification of D with respect to f . By Lemma 4.1 and Theorem 4.5, D̄

is nef and the Dirichlet property of D̄ does not hold.

Here let us consider a special elliptic curve E due to Tate, that is,

E := Proj(K[X,Y, Z ]/(Y2 Z + XYZ + ε2YZ2 − X3)),

where ε = (5 + √
29)/2 and K = Q(ε). It has a smooth model

E = Proj(OK [X,Y, Z ]/(Y2 Z + XYZ + ε2YZ2 − X3))

over OK := Z[ε]. Let E ��� P1
OK

be a rational map induced by the homomorphism

OK [X, Z ] → OK [X,Y, Z ]/(Y2 Z + XYZ + ε2YZ2 − X3), that is, E ��� P1
OK

is the projection at

(0 : 1 : 0). Note that E ��� P1
OK

actually extends to a morphism ρ : E → P1
OK

because the

tangent line at (0 : 1 : 0) is given by {Z = 0}.

Claim 5.3. There is a morphism f : P1
OK

→ P1
OK

such that the following diagram is

commutative:

E
[2]

��

ρ

��

E

ρ

��

P1
OK

f
�� P1

OK �

Proof. The x-coordinate of [2](P ) for P = (x : y : 1) ∈ E is given by

x4 − ε2x2 − 2ε4x

4x3 + x2 + 2ε2x + ε4
.

Therefore, if we consider a rational map f : P1
OK

��� P1
OK

given by

f(x : z) := (x4 − ε2x2z2 − 2ε4xz3 : 4x3z + x2z2 + 2ε2xz3 + ε4z4),
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13692 H. Chen and A. Moriwaki

then the diagram

E
[2]

��

ρ

��

E

ρ

��

P1
OK

f
����� P1

OK

is commutative as rational maps, so that we need to see that f extends to a morphism

f : P1
OK

→ P1
OK

. Let F be either Q̄ or F̄p, where Fp = Z/pZ for a prime p. It is sufficient to

show that if (x, z) ∈ F 2 satisfies a system of equations⎧⎨⎩x4 − ε2x2z2 − 2ε4xz3 = 0,

4x3z + x2z2 + 2ε2xz3 + ε4z4 = 0,

then x = z= 0. We assume the contrary, that is, the above has a solution (x, z) ∈ F 2 \
{(0,0)}. As z �= 0, we may assume z= 1, so that x �= 0, and hence⎧⎨⎩x3 − ε2x − 2ε4 = 0,

4x3 + x2 + 2ε2x + ε4 = 0.

Therefore, 0 = (4x3 + x2 + 2ε2x + ε4)− 4(x3 − ε2x − 2ε4)= (x + 3ε2)2, that is, x = −3ε2.

Thus, as (−3ε2)3 − ε2(−3ε2)− 2ε4 = 0 and ε �= 0, we have 27ε2 = 1. On the other hand,

since ε2 − 5ε − 1 = 0, we obtain 27 · 5ε = −26, so that 27 · 25 = 27 · 25 · 27ε2 = (27 · 5ε)2 =
262 in F . Note that 262 − 27 · 25 = 1, and hence 1 = 0 in F , which is a contradiction. �

Since the norm map N : Rat(E )× → Rat(P1
OK
)× is a homomorphism, we have the

natural extension

NQ : Rat(E )×Q := Rat(E )× ⊗ Q −→ Rat(P1
OK
)×Q := Rat(P1

OK
)× ⊗ Q.

Let D be an ample Cartier divisor on P1
OK

. As the following diagram:

E
[−1]

��

ρ ���
��

��
��

�
E

ρ����
��

��
��

P1
OK
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13693

is commutative, ρ∗(D) is symmetric, so that [2]∗(ρ∗(D))− 4ρ∗(D)− (ϕ′) is vertical for

some ϕ′ ∈ Rat(E )×. As the class group of Q(ε) is finite, there is λ ∈ K× ⊗Z Q such that

ρ∗( f∗(D)− 4D)= [2]∗(ρ∗(D))− 4ρ∗(D)= (λϕ′),

and hence, if we set ϕ = NQ(λϕ
′)1/2 ∈ Rat(P1

OK
)×Q, then f∗(D)= 4D + (ϕ). Let g∞ be an

F∞-invariant D-Green function of (C 0 ∩ PSH)-type on P1
OK
(C) such that f∗(g)= 4g −

log |ϕ|2∞. By Lemma 4.1 and [17, Proposition 2.1.7], the arithmetic Cartier divisor D̄ :=
(D, g∞) on P1

OK
is nef and, by Theorem 4.5, D̄ + (̂ψ) is not effective for all ψ ∈ Rat(P1

OK
)×R .

Further, ρ∗(D̄) is nef and ρ∗(D̄)+ (̂φ) is not effective for all φ ∈ Rat(A )×R . �

Example 5.4. Here let us give an example due to Burgos i Gil, which shows that the

converse of Theorem 1.1 in Section 1 does not hold in general.

Let E be an elliptic curve over Q and P1
Q := Proj(Q[x, y]). Let D1 (respectively, D2)

be the Cartier divisor on E (respectively, P1
Q) given by the zero point (respectively, {x = 0}).

Then there is ϕ ∈ Rat(E)× with [2]∗(D1)= 4D1 + (ϕ). Let h : P1
Q → P1

Q be the endomorphism

given by (x : y) �→ (x4 : y4). Then h∗(D2)= 4D2. We set

X := E × P1
Q, f := [2] × h : X → X, and D := p∗

1(D1)+ p∗
2(D2),

where p1 : X → E and p2 : X → P1
Q are the projections to E and P1

Q, respectively. As the

following diagrams are commutative:

X
f−−−−→ X

p1

⏐⏐� ⏐⏐�p1

E −−−−→
[2]

E

X
f−−−−→ X

p2

⏐⏐� ⏐⏐�p2

P1
Q −−−−→

h
P1

Q

we have

f∗(D)= f∗(p∗
1(D1))+ f∗(p∗

2(D2))= p∗
1([2]∗(D1))+ p∗

2(h
∗(D2))

= p∗
1(4D1 + (ϕ))+ p∗

2(4D2)= 4D + (p∗
1(ϕ)).

Let D̄ be the canonical compactification of D with respect to f .

Claim 5.5.

(1) D̄ is nef.

(2) Prep( fv)an is not dense in Xan
v with respect to the analytic topology for all

v ∈ MQ ∪ {∞}, where ∞ is the unique embedding Q ↪→ C.
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13694 H. Chen and A. Moriwaki

(3) Suppess(Prep( f))an
∞ = E(C)× S1, where S1 = {(ζ : 1) ∈ P1(C) | |ζ | = 1}.

(4) The Dirichlet property of D̄ does not hold. �

Proof. Part (1) follows from Lemma 4.1.

(2) As (p2)
an
v : Xan

v → (P1
Q)

an
v is surjective and (p2)

an
v (Prep( fv)an)⊆ Prep(hv)an, it is

sufficient to show that Prep(hv)an is not dense in (P1
Q)

an
v . Note that

Prep(h)= {(0 : 1), (1 : 0)} ∪ {(ζ,1) | ζ ∈ Q̄ and ζm = 1 for some m ∈ Z>0},

so that the assertion is obvious if v= ∞. We assume that v = p for some prime p. Let

w ∈ Prep(hp)
an ∩ Uan

Qp
, where U is the Zariski open set of P1

Q given by U := {x �= 0, y �= 0}
and UQp := U ×Spec(Q) Spec(Qp). In the same way as Proposition 4.3, there is ξ ∈ Prep(h)

such that w is one of valuations arising from ξ , that is, if we set

Q(ξ)⊗ Qp = K1 ⊕ · · · ⊕ Kr (the sum of finite extension fields over Qp),

then w is the valuation of some Ki. Put z := X/Y. As z(ξ)m = 1 for some m ∈ Z>0, we obtain

zm = 1 at Ki, so that |z|w = 1. Therefore, we have

Prep(hp)
an ∩ Uan

Qp
⊆ {w ∈ Uan

Qp
| |z|w = 1},

and hence Prep(hp)
an is not dense.

(3) We need to see Prep( f) \ Y(C)= E(C)× S1 for any closed subscheme Y of

E × P1
Q which is strictly contained in E × P1

Q. Note that

Prep( f)= E(C)× S1 and Prep( f) \ Y(C)⊆ Prep( f) \ Y(C),

so that it is sufficient to check E(C)× S1 ⊆ (E(C)× S1) \ Y(C).

We set T = {ζ ∈ S1 | E(C)× {ζ } ⊆ Y(C)}. Let us see that T is finite. Otherwise, as

E(C)× T ⊆ Y(C) and E(C)× T is Zariski dense in E(C)× P1(C), we have Y(C)= E(C)×
P1(C), which is a contradiction.

Since (E(C)× {ζ }) \ Y(C)= E(C)× {ζ } for ζ ∈ S1 \ T , we obtain

E(C)× (S1 \ T)⊆ E(C)× S1 \ Y(C).

Thus, the assertion follows because S1 \ T = S1.

Part (4) follows from (3) and Theorem 4.5. ��
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13695

6 Functional Approach to the Study of Dirichlet Property

The purpose of the section is to study the Dirichlet property in a functional point of view.

Our method consists of introducing some (possible nonlinear) functionals on the spaces

of continuous functions on the analytic fibers of the arithmetic variety. The Dirichlet

property leads to conditions on the supports of these functionals.

We fix a geometrically integral projective scheme X of dimension d defined over

a number field K and denote by π : X → SpecK the structural morphism. In the following

subsection, we will establish an abstract framework to study the consequences of the

Dirichlet property by the functional approach. We then specify the theorem for different

choices of the functionals, notably those coming from the asymptotic maximal slope and

the volume function.

6.1 A formal functional analysis on Dirichlet property

Let V be a vector subspace of D̂ivR(X) containing all principal divisors and let V+ denote

the subset of all effective adelic arithmetic Cartier divisors in V . Let C◦ be a subset of V

verifying the following conditions:

(a) for any D̄ ∈ C◦ and λ> 0, one has λD̄ ∈ C◦;

(b) for any D̄0 ∈ C◦ and D̄ ∈ V+, there exists ε0 > 0 such that D̄0 + εD̄ ∈ C◦ for any

ε ∈ R with 0 ≤ ε≤ ε0;

(c) for any D̄ ∈ C◦ and φ ∈ Rat(X)×R , one has D̄ + (̂φ) ∈ C◦.

In other terms, C◦ is a cone in V which is open in the directions in V+ and invariant

under translations by a principal divisor.

Let μ : C◦ → R be a map which verifies the following properties:

(1) there exists a positive number a such that μ(tD̄)= taμ(D̄) for all adelic arith-

metic R-Cartier divisor D̄ ∈ C◦ and t> 0;

(2) for any D̄ ∈ C◦ and φ ∈ Rat(X)×R , one has μ(D̄ + (̂φ))=μ(D̄).

For D̄ ∈ C◦ and Ē ∈ V+, we define ∇+
Ē
μ(D̄) to be

∇+
Ē
μ(D̄)= lim sup

ε→0+

μ(D̄ + ε Ē)− μ(D̄)

ε
,

which might be ±∞. Note that, for any D̄ ∈ C◦, the function Ē �→ ∇+
Ē
μ(D̄) is positively

homogeneous, namely ∇+
tĒ
μ(D̄)= t∇+

Ē
μ(D̄) for any Ē and any t> 0. Moreover, for any

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/24/13669/2363729 by U
PM

C
 user on 12 D

ecem
ber 2019



13696 H. Chen and A. Moriwaki

Ē ∈ V and t> 0, one has ∇+
Ē
μ(tD̄)= ta−1∇+

Ē
(D̄). In addition to (1) and (2), assume the fol-

lowing property:

(3) there exists a map ∇μ : D̂ivR(X)+ × C◦ → R ∪ {±∞} such that

∇μ(Ē, D̄)= ∇+
Ē
μ(D̄) for Ē ∈ V+ and D̄ ∈ C◦,

where D̂ivR(X)+ denotes the set of all effective adelic arithmetic R-Cartier

divisors.

Denote by C◦◦ the subset of C◦ of adelic arithmetic R-Cartier divisor D̄ such that,

the map Ē �→ ∇μ(Ē, D̄) preserves the order, namely, for any couple (Ē1, Ē2) of elements

in D̂ivR(X)+ such that Ē1 ≤ Ē2, one has ∇μ(Ē1, D̄)≤ ∇μ(Ē2, D̄). If D̄ is an element in C◦◦,

then the map ∇μ defines, for any v ∈ MK ∪ K(C), a nonnecessarily additive functional

Ψ
μ

D̄,v
: C 0(Xan

v )+ −→ [0,+∞], Ψ
μ

D̄,v
( fv) := ∇μ(Ō( fv), D̄),

where C 0(Xan
v )+ denotes the cone of nonnegative continuous functions on Xan

v .

Definition 6.1. We define the support of Ψμ

D̄,v
to be the set Supp(Ψ μ

D̄,v
) of all x ∈ Xan

v such

that Ψμ

D̄,v
( fv) > 0 for any nonnegative continuous function fv on Xan

v verifying fv(x) > 0.

This is a closed subset of Xan
v . In fact, if x is a point of Xan

v which is outside Supp(Ψ μ

D̄,v
),

then there exists a nonnegative continuous function fv on Xan
v such that Ψμ

D̄,v
( fv)= 0

but fv(x) > 0. Therefore, {y∈ Xan
v | fv(y) > 0} is an open neighborhood of x which is con-

tained in Xan
v \ Supp(Ψ μ

D̄,v
). Note that F∞(Supp(Ψ μ

D̄,σ
))= Supp(Ψ μ

D̄,σ̄
) for σ ∈ K(C) because

Ψ
μ

D̄,σ
( fσ )=Ψ

μ

D̄,σ̄
(F ∗

∞( fσ )) for fσ ∈ C 0(Xan
σ )+. �

Theorem 6.2. Let D̄ be an element of C◦◦ with μ(D̄)= 0. If s is an element of Rat(X)×R
with D̄ + (̂s)≥ 0, then

Supp(Ψ μ

D̄,v
) ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅

for any v ∈ MK ∪ K(C). �

Proof. We set D̄′ = D̄ + (̂s)= (D′, g′) and fv = min{g′
v,1}. Thus, as

0 ≤ Ō( fv)≤ D̄′

and D̄ ∈ C◦◦, one has

0 = ∇μ((0,0), D̄)≤ΨD̄,v( fv)= ∇μ(Ō( fv), D̄)≤ ∇μ(D̄
′, D̄)= ∇+

D̄′μ(D̄).
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13697

On the other hand, by using the properties (1) and (2), one obtains

μ(D̄ + ε D̄′)− μ(D̄)=μ(D̄ + ε D̄)− μ(D̄)= ((1 + ε)a − 1)μ(D̄),

and hence ∇+
D̄′μ(D̄)= aμ(D̄)= 0. Therefore, ΨD̄,v( fv)= 0, so that

Supp(ΨD̄,v) ∩ {x ∈ Xan
v | fv(x) > 0} = ∅.

Note that g′
v = − log |s|2gv . Thus, we can see that

{x ∈ Xan
v | fv(x) > 0} = {x ∈ Xan

v | |s|gv (x) < 1},

as required. �

Under the assumptions of Theorem 6.2, we have the following corollaries.

Corollary 6.3. Assume that the Dirichlet property holds for D̄ and that D is big. For

any v ∈ MK ∪ K(C), if Z is a closed subvariety of Xv of dimension ≥ 1 such that Zan ⊆
Supp(Ψ μ

D̄,v
), then Z is contained in the augmented base locus (see Section 1.1.9) of Dv. �

Proof. Let s be an element of Rat(X)×R with D̄ + (̂s)≥ 0. We introduce D̄′ = D̄ + (̂s) as

in the proof of the theorem. Assume that Z is a closed subvariety of Xv which is not

contained in the augmented base locus of Dv (which identifies with the augmented base

locus of D′
v). Then the restriction of D′

v on Z is a big R-Cartier divisor since the restricted

volume of D′
v on Z is > 0 (cf. [10]). Hence, [D′

v] has nonempty intersection with Yv, which

implies that [D′
v]

an ∩ Zan �= ∅. Therefore, by the previous theorem, Zan cannot be con-

tained in the support of the functional Ψμ

D̄,v
. �

Corollary 6.4. Assume that (D · C ) > 0 for any curve C on X. If the Dirichlet property

holds for D̄, then, for any v ∈ MK ∪ K(C), there is no subvariety Z of Xv such that

dim Z ≥ 1 and Zan ⊆ Supp(Ψ μ

D̄,v
). �

Proof. It is sufficient to prove that (Dv · C ) > 0 for any curve C on Xv. Indeed, there

are a variety W over K and a subscheme C of X × W such that Rat(W) is a subfield of

Kv, C is flat over W and C ×W Spec(Kv)= C . Let p and q be the projections X × W → W

and X × W → X, respectively. By our assumption, (q∗(D) · C ∩ p−1(w)) > 0 for any closed

point w of W, so that (q∗(D) · Cη) > 0, where η is the generic point of W, as required. �
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13698 H. Chen and A. Moriwaki

6.2 Asymptotic maximal slope

In this subsection, let V = D̂ivR(X) and C◦ be the cone of all adelic arithmetic R-Cartier

divisors D̄ such that D is big.

Let D̄ be an adelic arithmetic R-Cartier divisor in C◦ and ζ be an adelic arith-

metic R-Cartier divisor on SpecK with d̂eg(ζ )= 1, we define μ̂asy,ζ
max (D̄) as

sup{t ∈ R | D̄ − tπ∗(ζ ) has the Dirichlet property}.

Note that for sufficiently negative number t, the adelic arithmetic R-Cartier divisor

D̄ − tπ∗(ζ ) is big (since D is a big R-divisor) and therefore has the Dirichlet property.

Moreover, one has μ̂asy,ζ
max (D̄)≤ μ̂ess(D̄) (see Section 1.1.6). Therefore, μ̂asy,ζ

max (.) is a real-

valued function on C◦. By definition, for any t ≥ 0 and any D̄ ∈ C◦ one has μ̂asy,ζ
max (tD̄)=

tμ̂asy,ζ
max (D̄).

The function μ̂asy,ζ
max (D̄) is actually independent of the choice of ζ . This is a conse-

quence of the following proposition.

Proposition 6.5. Let ζ1 and ζ2 be adelic arithmetic R-Cartier divisors on SpecK. Then

d̂eg(ζ1)= d̂eg(ζ2) if and only if ζ1 = ζ2 + (̂ϕ) for some ϕ ∈ K× ⊗Z R. �

Proof. It is sufficient to show that if d̂eg(ζ )= 0, then ζ = (̂ϕ) for some ϕ ∈ K× ⊗Z R. We

set ζ =∑
p∈MK

ap[p] +∑
σ∈K(C) aσ [σ ]. As the class group of K is finite, we may assume that

ap = 0 for all p ∈ MK . Therefore, Dirichlet’s unit theorem implies the assertion. �

We shall use the expression μ̂asy
max(.) to denote this function. By definition, for any

adelic arithmetic R-Cartier divisor ζ one has

μ̂asy
max(D̄ + π∗(ζ ))= μ̂asy

max(D̄)+ d̂eg(ζ ).

This function has been introduced in the adelic line bundle setting in [8] in an equivalent

form by using arithmetic graded linear series. We refer the readers to Section 7 infra for

more details.

If D̄ is an adelic arithmetic R-Cartier divisor verifying the Dirichlet property,

then for any ϕ ∈ Rat(X)×R , D̄ + (̂ϕ) also verifies the Dirichlet property. Moreover, for any

D̄′ ≥ D̄, the adelic arithmetic R-Cartier divisor D̄′ verifies the Dirichlet property. We

deduce from these facts the following properties of the function μ̂asy
max(.).

Proposition 6.6. (1) Let D̄ be an adelic arithmetic R-Cartier divisor in C◦. For any

ϕ ∈ Rat(X)×R , one has μ̂asy
max(D̄ + (̂ϕ))= μ̂

asy
max(D̄).
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13699

(2) The function μ̂
asy
max(.) preserves the order relation, namely for D̄1 ≤ D̄2 in C◦

one has μ̂asy
max(D̄1)≤ μ̂asy

max(D̄2).

(3) The function μ̂asy
max(.) is super-additive, namely

μ̂asy
max(D̄1 + D̄2)≥ μ̂asy

max(D̄1)+ μ̂asy
max(D̄2)

for D̄1 and D̄2 in C◦. �

Theorem 6.2 leads immediately to the following corollary.

Corollary 6.7. Let D̄ be an adelic arithmetic R-Cartier divisor such that D is big and

that μ̂asy
max(D̄)= 0. If s is an element of Rat(X)×R with D̄ + (̂s)≥ 0, then

Supp(Ψ μ̂
asy
max

D̄,v
) ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅

for any v ∈ MK ∪ K(C). �

The function μ̂asy
max(.) is important in the study of Dirichlet’s theorem. In fact, it

is not only the threshold of the Dirichlet property but also the pseudo-effectivity.

Lemma 6.8. Let (D̄i)
n
i=1 be a family of adelic arithmetic R-Cartier divisors on X, and D̄

be an adelic arithmetic R-Cartier divisor on X such that D is big. Then one has

lim
|t|→0

μ̂asy
max(D̄ + t1 D̄1 + · · · + tnD̄n)= μ̂asy

max(D̄),

where for t= (t1, . . . , tn) ∈ Rn, the expression |t| denotes max{|t1|, . . . , |tn|}. �

Proof. If we replace D̄ by D̄ + π∗(ζ ), where ζ is an adelic arithmetic Cartier R-divisor

on SpecK, both sides of the equality to be proved differ the initial value by d̂eg(ζ ). Hence,

one may assume that D̄ is big. Moreover, without loss of generality, one may assume that

(D̄i)
n
i=1 are adelic arithmetic Cartier divisors which are big and effective (by possibly

augmenting the number of adelic arithmetic Cartier divisors in the family). In fact, each

D̄i is R-linearly equivalent to an R-linear combination of big and effective arithmetic

Cartier divisors. Then by using the fact that the function μ̂asy
max(.) preserves the order, one

obtains

μ̂asy
max(D̄ − |t|(D̄1 + · · · + D̄n))≤ μ̂asy

max(D̄ + t1 D̄1 + · · · + tnD̄n)≤ μ̂asy
max(D̄ + |t|(D̄1 + · · · + D̄n)).

Therefore, we have reduced the problem to the case where n= 1 and D̄1 is a big and

effective adelic arithmetic Cartier divisor. Let a> 0 be a real number such that aD̄ − D̄1

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/24/13669/2363729 by U
PM

C
 user on 12 D

ecem
ber 2019



13700 H. Chen and A. Moriwaki

and aD̄ + D̄1 are both R-linearly equivalent to effective adelic arithmetic R-Cartier divi-

sors. By the positive homogenity of the function μ̂asy
max(.), for any t> 0 one has

μ̂asy
max(D̄)≥ μ̂asy

max(D̄ − tD̄1)≥ (1 − at)μ̂asy
max(D̄).

Hence, limt→0+ μ̂
asy
max(D̄ − tD̄1)= μ̂

asy
max(D̄). Similarly, one has limt→0+ μ̂

asy
max(D̄ + tD̄1)=

μ̂
asy
max(D̄). The result is thus proved. �

Proposition 6.9 (cf. Proposition 8.2). Let D̄ be an adelic arithmetic R-Cartier divisor

such that D is big. Then D̄ is big (respectively, pseudo-effective) if and only if μ̂asy
max(D̄) > 0

(respectively, μ̂asy
max(D̄)≥ 0). �

Proof. Assume that D̄ is big. Let ζ be an adelic arithmetic R-Cartier divisor on SpecK

such that d̂eg(ζ ) > 0. Since D̄ is big, for sufficiently small t> 0, the adelic arithmetic

R-Cartier divisor D̄ − tπ∗(ζ ) is big, and hence verifies the Dirichlet property. Therefore,

one has

μ̂asy
max(D̄)= td̂eg(ζ )+ μ̂asy

max(D̄ − tπ∗(ζ ))≥ td̂eg(ζ ) > 0.

Conversely, assume that μ̂asy
max(D̄) > 0. We write D̄ as an R-linear combination

D̄ = a1 D̄1 + · · · + anD̄n,

where (D̄i)
n
i=1 are big adelic arithmetic Q-Cartier divisors. For any ε > 0, we can choose

b1, . . . ,bn in Q such that ai − ε≤ bi < ai. Then D̄ε = b1 D̄1 + · · · + bnD̄n is an adelic arith-

metic Q-Cartier divisor and D − Dε is big. Moreover, if ε is sufficiently small, Dε is big

and μ̂asy
max(D̄ε) > 0. By [7, Proposition 3.11] (see also Proposition 7.1), one obtains that D̄ε

is big. Therefore, D̄ is also big.

Assume that D̄ is pseudo-effective. Let D̄′ be a big adelic arithmetic R-Cartier

divisor. For any t> 0, tD̄′ + D̄ is big. Therefore, μ̂asy
max(tD̄′ + D̄) > 0. By the continuity of

the function μ̂asy
max(.) (see Lemma 6.8), one obtains that μ̂asy

max(D̄)≥ 0.

Conversely, assume that μ̂asy
max(D̄)≥ 0. If D̄′ is a big adelic arithmetic R-Cartier

divisor, then D + D′ is big since D is pseudo-effective and D′ is big. Moreover, one has

μ̂asy
max(D̄ + D̄′)≥ μ̂asy

max(D̄)+ μ̂asy
max(D̄

′) > 0.

Hence, D̄ + D̄′ is big. Therefore, D̄ is pseudo-effective. �
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13701

Remark 6.10. Let D̄ be an adelic arithmetic R-Cartier divisor on X such that D is big.

The above proposition shows that

μ̂asy
max(D̄)= max{t ∈ R | D̄ − tπ∗(ζ ) is pseudo-effective},

where ζ is any adelic arithmetic R-Cartier divisor such that d̂eg(ζ )= 1. Note that big

adelic arithmetic R-Cartier divisors verify the Dirichlet property. Therefore, in order to

construct counter-examples to the Dirichlet property, one should examine adelic arith-

metic R-Cartier divisor of the form D̄ − μ̂
asy
max(D̄)π∗(ζ ), where d̂eg(ζ )= 1. Note that the

functionals Ψ μ̂
asy
max

D̄,v
remain invariant if one replaces D̄ by a translation of D̄ by the pull-

back of an adelic arithmetic R-Cartier divisor on SpecK. Therefore, the study of these

functionals will very possibly provide a large family of counter-examples to the Dirichlet

property and suggest a way to characterize it. �

6.3 Volume function

In this subsection, we still assume that V = D̂ivR(X) and C◦ is the cone of all adelic

arithmetic R-Cartier divisors D̄ such that D is big.

Let μ be the arithmetic volume function v̂ol (see Section 1.1.8). Note that one

has v̂ol(tD̄)= td+1v̂ol(D̄). Moreover, for any φ ∈ Rat(X)×R , one has v̂ol(D̄ + (̂φ))= v̂ol(D̄).

Therefore, the function μ= v̂ol(.) verifies the conditions (1)–(3) in Section 6.1. Moreover,

the volume function preserves the order relation. Namely for D̄1 ≤ D̄2 one has v̂ol(D̄1)≤
v̂ol(D̄2).

A direct consequence of Theorem 6.2 is the following corollary.

Corollary 6.11. Let D̄ be an adelic arithmetic R-Cartier divisor such that D is big and

that v̂ol(D̄)= 0. If s is an element of Rat(X)×R with D̄ + (̂s)≥ 0, then

Supp(Ψ v̂ol
D̄,v
) ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅

for any v ∈ MK ∪ K(C). �

6.4 Self-intersection number

In this subsection, let V be the subspace of D̂ivR(X) consisting of integrable adelic

arithmetic R-Cartier divisors. Let C◦ = V . We define the function μ : C◦ → R as μ(D̄) :=
d̂eg(D̄d+1). The function μ verifies the conditions (1) and (2) of Section 6.1. For D̄ ∈ C◦ and
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13702 H. Chen and A. Moriwaki

Ē ∈ V+, we define ∇+
Ē
μ(D̄) as follows:

∇+
Ē
μ(D̄)= lim

ε→0+
μ(D̄ + ε Ē)− μ(D̄)

ε
= (d+ 1)d̂eg(D̄d · Ē).

The function extends naturally to the whole space D̂ivR(X) of adelic arithmetic

R-Cartier divisors (see Section 1.1.7) and thus defines a map ∇μ : D̂ivR(X)× C◦ → R. Note

that the subset C◦◦ of D̄ ∈ C◦ such that ∇μ(·, D̄) preserves the order contains all nef

adelic arithmetic R-Cartier divisors. For D̄ ∈ C◦◦ and any place in v ∈ MK ∪ K(C), the

map ∇μ(·, D̄) defines a positive functional Ψ d̂eg
D̄,v

on C 0(Xan
v )+ which sends fv ∈ C 0(Xan

v )

to d̂eg(D̄d · Ō( fv)). It is an additive functional on C 0(Xan
v )+, which coincides with the

functional (D̄d)v defined in Section 1.1.7 when D̄ is nef. Therefore, from Theorem 6.2, we

obtain the following corollary.

Corollary 6.12. Let D̄ be an adelic arithmetic R-Cartier divisor on X. Assume that D̄ is

nef and d̂eg(D̄d+1)= 0. If s is an element of Rat(X)×R with D̄′ := D̄ + (̂s)≥ 0, then, for any

v ∈ MK ∪ K(C),

Supp(Ψ d̂eg
D̄,v
) ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅. �

7 Comparison of the Functionals

Let π : X → SpecK be a projective and geometrically integral scheme defined over a num-

ber field K and D̄ be an adelic arithmetic R-Cartier divisor on X such that D is big.

In view of the applications of Theorem 6.2 to different functionals, notably Corollar-

ies 6.7, 6.11, and 6.12, a natural question is the comparison between the functionals

Ψ
μ̂

asy
max

D̄,v
, Ψ v̂ol

D̄,v
, and Ψ d̂eg

D̄,v
. For this purpose, we relate the function μ̂asy

max(D̄) to the graded lin-

ear series of D̄ and show that it is always bounded from below by v̂ol(D̄)/(d+ 1)vol(D).

7.1 Asymptotic maximal slope and graded linear series

If D̄ = (D, g) is an adelic arithmetic R-Cartier divisor on X, we denote by V(D̄) the

K-vector subspace of Rat(X) generated by Ĥ0(X, D̄) (see Section 1.1.8). Let ζ be an adelic

arithmetic R-Cartier divisor on SpecK such that d̂eg(ζ )= 1. For any integer n� 1 and

any real number t, we denote by V ζ,t
n (D̄) the K-vector subspace of R(X) defined as

V ζ,t
n (D̄) := V(nD̄ − π∗(ntζ )).
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13703

The direct sum V ζ,t
• (D̄) forms a graded sub-K-algebra of V•(D) :=⊕

n≥0 H0(X,nD).

Moreover, (V ζ,t
• )t∈R forms a multiplicatively concave family of graded linear series of

the R-divisor D. Namely, for (t1, t2) ∈ R2 and (n,m) ∈ N2 one has

V ζ,t1
n (D̄)V ζ,t2

m (D̄)⊂ V ζ,t
n+m(D̄), (7.1)

where t = (nt1 + mt2)/(n+ m).

For any integer n≥ 1, let λζn(D̄) be the supremum of the set

{t ∈ R | V ζ,t
n (D̄) �= {0}}.

The function λ
ζ
n(.) preserves the order. Namely, if D̄ and D̄′ are two adelic arithmetic

R-Cartier divisors on X such that D̄ ≤ D̄′, then one has λζn(D̄)≤ λζn(D̄′). Therefore, by [3,

Lemma 2.6] (the Hermitian line bundle case), the sequence (λζn(D̄))n≥1 is bounded from

above. Moreover, the relation (7.1) shows that the sequence (nλζn(D̄))n≥1 is super-additive.

Therefore, the sequence (λζn(D̄))n≥1 converges in R. The following proposition relate the

limit of the sequence (λζn(D̄))n≥1 to the asymptotic maximal slope of D̄. In particular, the

function μ̂asy
max(.) coincides with the one defined in [7, Section 4.2] in the adelic line bundle

setting.

Proposition 7.1. Let D̄ be an adelic arithmetic R-Cartier divisor such that D is big, then

for any ζ ∈ D̂ivR(SpecK) with d̂eg(ζ )= 1 one has

μ̂asy
max(D̄)= lim

n→+∞ λ
ζ
n(D̄). �

Proof. We say that an adelic arithmetic R-Cartier divisor Ē satisfies to the Q-Dirichlet

property if there is ϕ ∈ Rat(X)×Q such that Ē + (̂ϕ)≥ 0. This condition is stronger than the

usual Dirichlet property. We define μ̂asy
max,Q(D̄) as

sup{t ∈ R | D̄ − tπ∗(ζ ) has the Q − Dirichlet property}.

(1) limn→+∞ λ
ζ
n(D̄)≤ μ̂asy

max,Q(D̄): If nD̄ − tnπ∗(ζ )+ (̂φ)≥ 0 for some φ ∈ Rat(X)×,

then D̄ − tπ∗(ζ ) has the Q-Dirichlet property, so that λζn(D̄)≤ μ̂asy
max,Q(D̄), and

hence the inequality follows.

(2) limn→+∞ λ
ζ
n(D̄)≥ μ̂asy

max,Q(D̄): Let ε be a positive number. Then there is t ∈ R

such that

μ̂
asy
max,Q(D̄)− ε ≤ t ≤ μ̂asy

max,Q(D̄)
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13704 H. Chen and A. Moriwaki

and D̄ − tπ∗(ζ ) has the Q-Dirichlet property. Therefore, nD̄ − tnπ∗(ζ )+ (φ)≥ 0

for some n∈ Z>0 and φ ∈ Rat(X)×. Thus,

μ̂
asy
max,Q(D̄)− ε ≤ t ≤ λζn(D̄)≤ μ̂asy

max(D̄),

as required.

(3) μ̂
asy
max,Q(D̄)≤ μ̂asy

max(D̄): This is obvious.

(4) μ̂
asy
max,Q(D̄)≥ μ̂asy

max(D̄): Let ε be a positive number. Let ζε be the adelic arith-

metic R-Cartier divisor on SpecK given by ζε :=∑
σ∈K(C) ε[σ ]. We assume that

D̄ − tπ∗(ζ ) has the Dirichlet property. In particular, D̄ − tπ∗(ζ ) is pseudo-

effective, so that D̄ + π∗(ζε)− tπ∗(ζ ) is big by [17, Proposition 4.4.2(3)], so

that D̄ + π∗(ζε)− tπ∗(ζ ) has the Q-Dirichlet property. Therefore, we have

μ̂asy
max(D̄)≤ μ̂asy

max,Q(D̄ + π∗(ζε))= μ̂
asy
max,Q(D̄)+ ε[K : Q]/2,

as desired. �

The following proposition compares the arithmetic maximal slope to a normal-

ized form of the arithmetic volume function.

Proposition 7.2. Let D̄ be an adelic arithmetic R-Cartier divisor such that D is big and

μ̂
asy
max(D̄)≥ 0. Then one has

μ̂asy
max(D̄)≥

v̂ol(D̄)

(d+ 1)vol(D)
. (7.2)

In particular, if μ̂asy
max(D̄)= v̂ol(D̄)= 0, then for any Ē ∈ D̂ivR(X)+ one has

∇+
Ē
μ̂asy

max(D̄)≥
1

(d+ 1)vol(D)
∇+

Ē
v̂ol(D̄), (7.3)

so that, for any v ∈ MK ∪ K(C), one has

Ψ
μ̂

asy
max

D̄,v
( fv)≥ 1

(d+ 1)vol(D)
Ψ v̂ol

D̄,v
( fv) (7.4)

for any nonnegative continuous function fv on Xan
v and hence

Supp(Ψ μ̂
asy
max

D̄,v
)⊇ Supp(Ψ v̂ol

D̄,v
). �
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13705

Proof. Let ζ be an adelic arithmetic R-Cartier divisor on SpecK such that d̂eg(ζ )= 1.

By [3, Corollary 1.13], one has

v̂ol(D̄)= (d+ 1)
∫+∞

0
vol(V ζ,t

• )dt.

Therefore,
v̂ol(D̄)

(d+ 1)vol(D)
=

∫+∞

0

vol(V ζ,t
• )

vol(V•(D))
dt.

Moreover, by Proposition 7.1 we obtain that V ζ,t
n = {0} once n≥ 1 and t> μ̂asy

max(D̄). There-

fore, (7.2) is proved. The equality (7.3) comes from (7.2) and the definition of ∇+
Ē

, and (7.4)

is a special case of (7.3). �

7.2 Poicaré–Lelong formula and integration of Green function

Let X be a geometrically integral projective scheme of dimension d defined over a num-

ber field K, and D̄1, . . . , D̄d be integrable adelic arithmetic R-Cartier divisors on X, and

D̄ = (D, g) be an arbitrary adelic arithmetic R-Cartier divisor of C 0-type on X. The pur-

pose of this section is to establish the following result.

Proposition 7.3. For each place v ∈ MK ∪ K(C), the Green function gv is integrable with

respect to the signed measure D̄1 · · · D̄d. Moreover, if [D] denotes the R-coefficient alge-

braic cycle of dimension d− 1 corresponding to D, then the following relation holds (see

Section 1.1.7)

h(D̄1, . . . , D̄d, D̄; X)= h(D̄1, . . . , D̄d; [D])+
∑

v∈MK∪K(C)

(D̄1 · · · D̄d)v(gv). (7.5)

�

Note that in the particular case where D1, . . . , Dd, D are Cartier divisors, this

result has been obtained in [14, Section 5] and [6], respectively, for Hermitian and adelic

cases.

Before proving the above proposition, we present several observations as fol-

lows. Let D̄1, . . . , D̄d be integrable adelic arithmetic R-Cartier divisors on X, and p be a

place in MK . In [17], the number d̂egp(D̄1 · · · D̄d;φ) was defined for an integrable contin-

uous function φ on Xan
p . Moreover, the set of integrable continuous functions is dense

in C 0(Xan
p ) with respect to the supremum norm. Therefore, one has a natural exten-

sion of the functional log #(OK/p)d̂egp(D̄1 · · · D̄d;φ) for any continuous function φ, which

defines a signed Borel measure on Xan
p which we denote by (D̄1 · · · D̄d)p. Similarly, for any

σ ∈ K(C), the product of currents 1
2 c1(D1, g1,σ ) ∧ · · · ∧ c1(Dd, gd,σ ) defines a signed Borel
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13706 H. Chen and A. Moriwaki

measure on Xan
σ which we denote by (D̄1 · · · D̄d)σ . See Section 1.1.7 for a presentation of

the construction of these measures in the language of arithmetic intersection product.

In particular, the proposition is true in the special case where D = 0.

Proof of Proposition 7.3. Note that both sides of the equality (7.5) are multilinear

with respect to the vector (D̄1, . . . , D̄d, D̄). Therefore, we may assume that D̄1, . . . , D̄d

are relatively nef and D is ample without loss of generality. Moreover, for any place

v ∈ MK ∪ K(C) two D-Green functions on Xan
v differ by a continuous function on Xan

v .

Therefore, it suffices to prove the proposition for an arbitrary choice of adelic D-Green

functions, and the general case follows by the linearity of the problem and the particu-

lar case where D = 0. In particular, we can assume without loss of generality that D̄ is

a relatively ample arithmetic Cartier divisor, namely D comes from an ample line bun-

dle L on X and the adelic structure on D comes from an ample integral model of (X, L)

equipped with semi-positive metrics at infinite places.

We shall prove the following claim by induction on k. Note that the case where

k= d+ 1 is just the result of the proposition itself.

Claim 7.4. Assume that D̄i is relatively nef for any i ∈ {1, . . . ,d} . Let k be an index in

{1, . . . ,d+ 1}. Then the assertion of the proposition holds provided that each D̄i (k≤ i ≤ d)

can be written as a positive linear combination of ample Cartier divisors equipped with

Green functions of C 0 ∩ PSH-type. �

The claim in the case where k= 1 is classical, which results from [6, Theorem

4.1] by multilinearity. In the following, we verify that the claim for k implies the same

claim for k + 1. We choose an R-Cartier divisor Ek such that Ek can be written as a pos-

itive linear combination of ample Cartier divisors and D′
k = Ek + Dk is an ample Cartier

divisor. We choose suitable Ek-Green functions such that Ēk can be written as a pos-

itive linear combination of ample Cartier divisors equipped with Green functions of

C 0 ∩ PSH-type. Then D̄′
k = Ēk + D̄k is an ample Cartier divisor equipped with Green func-

tions of C 0 ∩ PSH-type. The induction hypothesis then implies that the claim holds for

D̄1, . . . , D̄k−1, Ēk, D̄k+1, . . . , D̄d and for D̄1, . . . , D̄k−1, D̄′
k, D̄k+1, . . . , D̄d. We then conclude by

the multilinearity of the problem. �

7.3 Intersection measure and comparison with Ψ
μ̂

asy
max

D̄,v

Similarly to the results obtained in the previous subsection, in the case where D̄ is nef

and D is big, the linear functional ((d+ 1)vol(D))−1Ψ
d̂eg
D̄,v

is bounded from above by Ψ μ̂
asy
max

D̄,v
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Algebraic Dynamical Systems and Dirichlet’s Unit Theorem 13707

provided that d̂eg(D̄d+1)= μ̂
asy
max(D̄)= 0 (we can actually prove that they are equal). This

comparison uses a generalization of the positive intersection product to the framework

of adelic arithmetic R-Cartier divisors.

Let D̄ be a big adelic arithmetic R-Cartier divisor on X. We denote by Θ(D̄) the

set of couples (ν, N̄), where ν : X′ → X is a birational projective morphism and N̄ is a nef

adelic arithmetic R-Cartier divisor on X′ such that

Ĥ0(X′, t(ν∗(D̄)− N̄)) �= {0}

for some t> 0. We then define a functional 〈D̄d〉 on the cone N̂efR(X) of nef adelic arith-

metic R-Cartier divisors on X as

∀Ā∈ N̂efR(X), 〈D̄d〉 · Ā := sup
(ν,N̄)∈Θ

d̂eg(N̄d · ν∗(Ā)).

If the set Θ(D̄) is empty, then the value of 〈D̄d〉 · Ā is defined to be zero by convention.

The set Θ(D̄) is preordered in the following way:

(ν1 : X1 → X, N̄1)≥ (ν2 : X2 → X, N̄2)

if and only if there exists a birational modification ν ′ : X′ → X over both X1 and X2 such

that Ĥ0(X′, t(p∗
1 N̄1 − p∗

2 N̄2)) �= {0} for some t> 0, where pi : X′ → Xi (i = 1,2) are structural

morphisms (which are birational projective morphisms such that ν1 p1 = ν2 p2 = ν ′). By

the same method of [9, Proposition 3.3; 12, Section 3], one can prove that Θ(D̄) is filtered

with respect to this preorder and hence 〈D̄d〉 is an additive and positively homogeneous

functional on N̂efR(X) and hence extends to a linear form on the vector space ÎntR(X) of

integrable adelic arithmetic R-Cartier divisors. Finally, by [17, Theorem 3.3.7], one can

extend by continuity the functional 〈D̄d〉 to the whole space D̂ivR(X) of adelic arithmetic

R-Cartier divisors such that 〈D̄d〉 · Ē ≥ 0 if Ē ≥ 0.

The comparison between vol(D)−1Ψ
d̂eg
D̄,v

and Ψ μ̂
asy
max

D̄,v
comes from the following vari-

ant of the arithmetic analog of Siu’s inequality [21, Theorem 2.2] in the adelic arithmetic

R-Cartier divisor setting.

Theorem 7.5. Let D̄ = (D, g) and L̄ = (L ,h) be nef adelic arithmetic R-Cartier divisors.

Then

v̂ol(D̄ − L̄)≥ d̂eg(D̄d+1)− (d+ 1)d̂eg(D̄d · L̄). (7.6)

�
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Proof. By [17, Definition 2.1.6 and Proposition 2.1.7], there are sequences

{(Xn,Dn)}∞n=1 and {(Xn,Ln)}∞n=1

of models (X, D) and (X, L), respectively, with the following properties:

1. D̄n = (Dn,
∑

σ∈K(C) gσ ) and L̄n = (Ln,
∑

σ∈K(C) hσ ) are nef for each n.

2. If we set⎛⎝0,
∑

p∈MK

g′
n,p[p]

⎞⎠= D̄ − D̄a
n and

⎛⎝0,
∑

p∈MK

h′
n,p[p]

⎞⎠= L̄ − L̄ a
n ,

then limn→∞ ‖g′
n,p‖sup = 0 and limn→∞ ‖h′

n,p‖sup = 0.

Therefore, by [17, Theorem 5.2.1], it is sufficient to see the case where D̄ = D̄ and L̄ = L̄

for nef arithmetic R-Cartier divisors D̄ and L̄ on some arithmetic variety X .

Let ¯A be an ample arithmetic R-Cartier divisor on X . If the assertion of the

theorem holds for D̄ + ε ¯A and L̄ + ε ¯A (ε > 0), then, by using the continuity of the vol-

ume function, we have the assertion for our case, so that we may assume that D and L

are ample. Thus, we can set

D = a1D
′
1 + · · · + alD

′
l and L = b1L

′
1 + · · · + brL

′
r ,

where L ′
1, . . . ,L

′
l ,D

′
1, . . . ,D

′
r are ample Cartier divisors on X and

a1, . . . ,al ,b1, . . . ,br ∈ R>0.

Let g′
i (respectively, h′

j) be a D ′
i-Green function (respectively, L ′

j-Green function) such

that D̄ ′
i = (D ′

i , g
′
i) (respectively, L̄ ′

j = (L ′
j,h

′
j)) is ample. We set

D̄ = a1D̄
′
1 + · · · + alD̄ ′

l + (0, φ) and L̄ = b1L̄
′
1 + · · · + brL̄

′
r + (0, ψ).

Moreover, for a′
1, . . . ,a

′
l ,b

′
1, . . . ,b

′
r ∈ R, we set

D̄a′
1,...,a

′
l
= a′

1D̄
′
1 + · · · + a′

lD̄
′
l + (0, φ) and L̄b′

1,...,b
′
r
= b′

1L̄
′
1 + · · · + b′

rL̄
′

r + (0, ψ).

Note that if a′
1 ≥ a1, . . . ,a′

i ≥ al and b′
1 ≥ b1, . . . ,b′

r ≥ br, then D̄a′
1,...,a

′
l

and L̄b′
1,...,b

′
r

are nef,

so that, using the continuity of the volume function together with the arithmetic ana-

log of Siu’s inequality (cf. [21, Theorem 2.2]) for nef arithmetic Q-divisors, we have the

assertion. �
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Corollary 7.6. Let D̄ be a relatively nef adelic arithmetic R-Cartier divisor on X such

that D is big. If

μ̂asy
max(D̄)=

d̂eg(D̄d+1)

(d+ 1)vol(D)
, (7.7)

then one has

∀Ē ∈ D̂ivR(X), ∇+
Ē
μ̂asy

max(D̄)=
d̂eg(D̄d · Ē)

vol(D)
. (7.8)

In particular,

Ψ
μ̂

asy
max

D̄,v
= (D̄d)v

vol(D)
(7.9)

for any v ∈ MK ∪ K(C). �

Proof. Since the map Ē �→ ∇+
Ē
μ̂

asy
max(D̄) from D̂ivR(X) to R ∪ {+∞} is super-additive and

Ē �→ d̂eg(D̄d · Ē) is a linear functional, it suffices to establish the inequality (see [9,

Remark 4.3])

∀Ē ∈ D̂ivR(X), ∇+
Ē
μ̂asy

max(D̄)≥
d̂eg(D̄d · Ē)

vol(D)
.

Note that both the condition (7.7) and the assertion (7.9) remain equivalent if one

replaces D̄ by D̄ + π∗(ζ ) with ζ ∈ D̂ivR(SpecK). Therefore, we may assume that D̄ is nef

and big without loss of generality. In this case, one has

∀Ē ∈ D̂ivR(X), d̂eg(D̄d · Ē)= 〈D̄d〉 · Ē

since D̄ is nef. We shall actually establish the equality

∇+
Ē

v̂ol(D̄)= (d+ 1)〈D̄d〉 · Ē

for any Ē ∈ ÎntR(X). We choose M̄ ∈ N̂efR(X) such that M̄ − Ē and M̄ + Ē are nef and big

and M̄ − D̄ is big. Then for any (ν, N̄) ∈Θ(D̄), by (7.6) one has

v̂ol(D̄ + tĒ)≥ v̂ol(N̄ + tν∗(Ē))= v̂ol((N̄ + tν∗(M̄))− tν∗(M̄ − Ē))

≥ d̂eg((N̄ + tν∗(M̄)d+1)− (d+ 1)td̂eg((N̄ + tν∗(M̄))d · ν∗(M̄ − Ē))

= d̂eg(N̄d+1)+ t(d+ 1)d̂eg(N̄d · Ē)+ O(t2), (7.10)

where the implicit constant in O(t2) only depends on v̂ol(M̄)= d̂eg(ν∗(M̄)d+1). We then

deduce

v̂ol(D̄ + tĒ)≥ v̂ol(D̄)+ t(d+ 1)〈D̄d〉 · Ē + O(t2),
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which implies that

∇+
Ē

v̂ol(D̄)≥ (d+ 1)〈D̄d〉 · Ē .

By the continuity of the linear functional Ē �→ 〈D̄d〉 · Ē , we obtain that this inequality

holds for general Ē ∈ D̂ivR(X). Finally, by the log-concavity of the arithmetic volume

function, the functional Ē �→ ∇+
Ē

v̂ol(D̄) is super-additive (see [9, Remark 4.2]). There-

fore, one obtains ∇+
Ē

v̂ol(D̄)= (d+ 1)〈D̄d〉 · Ē . The result is thus proved by using the rela-

tion (7.3). �

7.4 Comparison with the distribution of nonpositive points

In this subsection, we compare the functional approach and the distribution of nonpos-

itive points in the particular case where the set of nonpositive points is Zariski dense.

The main point is an equidistribution argument. Let X be a projective and geometrically

integral variety over a number field K. Let D̄ be an adelic arithmetic R-Cartier divisor

on X. We assume that D̄ is nef and D is big.

Proposition 7.7. Assume that the set X(K̄)D̄
≤0 is Zariski dense, then for any place

v ∈ MK ∪ K(C) one has

Ψ
μ̂

asy
max

D̄,v
= (D̄d)v

vol(D)

and

Suppess(X(K̄)
D̄
≤0)

an
v ⊇ SuppΨ μ̂

asy
max

D̄,v
. �

Proof. Since the set X(K̄)D̄
≤0 is Zariski dense, we obtain that the essential minimum of

the height function hD̄(.) is nonpositive. However, since D̄ is nef one has d̂eg(D̄d+1)=
v̂ol(D̄) and therefore

0 = μ̂ess(D̄)≥ μ̂asy
max(D̄)≥

v̂ol(D̄)

(d+ 1)vol(D)
≥ 0,

which implies that d̂eg(D̄d+1)= v̂ol(D̄)= 0.

Let S = (xn)n≥1 be a generic sequence in X(K̄)D̄
≤0. For any adelic arithmetic

R-Cartier divisor Ē on X, we define

ΦS(Ē) := lim inf
n→+∞ hĒ (xn).
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This function takes value in R ∪ {+∞} on the cone Θ of adelic arithmetic R-Cartier divi-

sors Ē such that E is big. The functionΦS(.) :Θ → R ∪ {+∞} is also super-additive. More-

over, one has ΦS(Ē)≥ μ̂asy
max(Ē) for any Ē ∈Θ and ΦS(D̄)= μ̂

asy
max(D̄)= 0. Therefore, one has

∀Ē ∈ D̂ivR(X), ∇+
Ē
ΦS(D̄)≥ ∇+

Ē
μ̂asy

max(D̄).

By (7.8) and [9, Proposition 4.3], one obtains

∀Ē ∈ D̂ivR(X), ∇+
Ē
ΦS(D̄)= ∇+

Ē
μ̂asy

max(D̄)=
d̂eg(D̄d · Ē)

vol(D)
.

This relation implies that, for any Ē ∈ D̂ivR(X), the sequence (hĒ (xn))n≥1 actually con-

verges to vol(D)−1d̂eg(D̄d · Ē). In fact, one has hD̄(xn)= 0 for any n∈ N, n≥ 1. Therefore,

∇+
Ē
ΦS(D̄)=ΦS(Ē). In particular, one has ΦS(−Ē)= −ΦS(Ē), which implies the conver-

gence of the sequence (hĒ (xn))n≥1.

Suppose Suppess(X(K̄)
D̄
≤0)

an
v �⊇ SuppΨ μ̂

asy
max

D̄,v
, that is, there is wv ∈ SuppΨ μ̂

asy
max

D̄,v
\

Suppess(X(K̄)
D̄
≤0)

an
v . As wv �∈ Suppess(X(K̄)

D̄
≤0)

an
v , there is a closed subscheme Y of X such

that Y � X and wv �∈Δ(X(K̄)D̄
≤0; Y)an

v . Let fv be a nonnegative continuous function on Xan
v

such that fv(wv)= 1 and fv ≡ 0 on Δ(X(K̄)D̄
≤0; Y)an

v .

Claim 7.8. For x ∈ X(K̄)D̄
≤0 \ Y(K̄), we have hŌ( fv)(x)= 0. �

Proof. If v ∈ MK , the assertion is obvious, so that assume v ∈ K(C). By the definition of

Ō( fv) (cf. Section 1.1.5),

4[K(x) : K]hŌ( fv)(x)=
∑

w∈Ov(x)

fv(w)+
∑

w′∈Ov̄ (x)

fv(F∞(w′)).

Note that F∞(Ov̄(x))= Ov(x), and hence the assertion follows. �

By the previous observation,

lim
n→∞ hŌ( fv)(xn)=ΦS(Ō( fv))= (D̄d)v( fv)

vol(D)
> 0.

On the other hand, as S = (xn)n≥1 is generic, there is a subsequence S′ = (xni ) such that

xni �∈ Y(K̄) for all i, so that, by the above claim, limi→∞ hŌ( fv)(xni )= 0. This is a contradic-

tion. �

8 Extension of the Asymptotic Maximal Slope

In this section, we extend the function of the asymptotic maximal slope to the whole

space D̂ivR(X) of adelic arithmetic R-Cartier divisors. Let D̄ be an adelic arithmetic
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13712 H. Chen and A. Moriwaki

R-Cartier divisor on X. We define μ̂asy
max(D̄) to be

inf
D̄0∈Θ

lim
t→+∞(μ̂

asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0)) ∈ R ∪ {−∞}, (8.1)

where Θ denotes the set of all adelic arithmetic R-Cartier divisors Ē such that E is big.

Note that if D is big, then the value (8.1) coincides with the maximal asymptotic maximal

slope of D̄. In fact, for any D̄0 ∈Θ one has

μ̂asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0)≥ μ̂asy
max(tD̄0)+ μ̂asy

max(D̄)− tμ̂asy
max(D̄0)= μ̂asy

max(D̄).

Therefore, the infimum is attained at D̄0 = D̄ and coincides with μ̂asy
max(D̄).

The extended function also verifies the good properties such as positive

homogenity, super-additivity etc. We resume these properties in the following propo-

sition.

Proposition 8.1.

(1) Let D̄ be an adelic arithmetic R-Cartier divisor on X. For any λ≥ 0, one has

μ̂
asy
max(λD̄)= λμ̂

asy
max(D̄).

(2) Let D̄1 and D̄2 be two adelic arithmetic R-Cartier divisors on X. One has

μ̂asy
max(D̄1 + D̄2)≥ μ̂asy

max(D̄1)+ μ̂asy
max(D̄2).

(3) Let D̄1 and D̄2 be two adelic arithmetic R-Cartier divisors on X. If D̄1 ≥ D̄2,

then μ̂asy
max(D̄1)≥ μ̂asy

max(D̄2).

(4) If D̄ is an adelic arithmetic R-Cartier divisor on X and ζ is an adelic arith-

metic R-Cartier divisor on SpecK, one has

μ̂asy
max(D̄ + π∗(ζ ))= μ̂asy

max(D̄)+ d̂eg(ζ ).

(5) For any adelic arithmetic R-Cartier divisor D̄ on X and any ϕ ∈ Rat(X)×R , one

has

μ̂asy
max(D̄ + (̂ϕ))= μ̂asy

max(D̄). �
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Proof. (1) The equality is trivial when λ= 0. In the following, we assume that λ> 0. For

any D̄0 ∈Θ, one has

lim
t→+∞(μ̂

asy
max(tD̄0 + λD̄)− tμ̂asy

max(D̄0))

= lim
t→+∞(μ̂

asy
max(λtD̄0 + λD̄)− λtμ̂asy

max(D̄0))

= λ lim
t→+∞(μ̂

asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0)).

By taking the infimum with respect to D̄0, one obtains the result.

(2) Let D̄0 be an element in Θ. For sufficiently positive t, one has

lim
t→+∞ μ̂

asy
max(2tD̄0 + D̄1 + D̄2)− 2tμ̂asy

max(D̄0)

≥ lim
t→+∞ μ̂

asy
max(tD̄0 + D̄1)− tμ̂asy

max(D̄0)+ lim
t→+∞ μ̂

asy
max(tD̄0 + D̄1)− tμ̂asy

max(D̄0)

≥ μ̂asy
max(D̄1)+ μ̂asy

max(D̄2).

Since D̄0 is arbitrary, one obtains the result.

(3) Let D̄0 be an element in Θ. For sufficiently positive number t, one has

lim
t→+∞ μ̂

asy
max(tD̄0 + D̄1)− tμ̂asy

max(D̄0)≥ lim
t→+∞ μ̂

asy
max(tD̄0 + D̄2)− tμ̂asy

max(D̄0)≥ μ̂asy
max(D̄2).

Since D̄0 is arbitrary, one obtains μ̂asy
max(D̄1)≥ μ̂asy

max(D̄2).

(4) For any D̄0 ∈Θ and any sufficiently positive number t, one has

μ̂asy
max(tD̄0 + D̄ + π∗(ζ ))− tμ̂asy

max(D̄0)= μ̂asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0)+ d̂eg(ζ ).

Passing to limit when t tends to the infinity and then by taking the infimum with respect

to D̄0, one obtains μ̂asy
max(D̄ + π∗(ζ ))= μ̂

asy
max(D̄)+ d̂eg(ζ ).

(5) Let D̄0 be an element in Θ. For sufficiently positive number t, one has

μ̂asy
max(tD̄0 + D̄ + (̂ϕ))− tμ̂asy

max(D̄0)= μ̂asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0).

Therefore, μ̂asy
max(D̄ + (̂ϕ))= μ̂

asy
max(D̄). �

The following is a criterion for the pseudo-effectivity of adelic arithmetic

R-Cartier divisors, which is a generalization of Proposition 6.9.

Proposition 8.2. Let D̄ be an adelic arithmetic R-Cartier divisor. Then D̄ is pseudo-

effective if and only if D is pseudo-effective and μ̂asy
max(D̄)≥ 0. �
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Proof. Assume that D̄ is pseudo-effective, then D is a pseudo-effective R-divisor.

Moreover, for any D̄0 ∈Θ, there exists ζ ∈ D̂ivR(SpecK) such that D̄1 = D̄0 + π∗(ζ ) is big.

Therefore, for any ε > 0, the adelic arithmetic R-Cartier divisor ε(D̄0 + π∗(ζ ))+ D̄ is big.

Hence, for t> ε one has

μ̂asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0)= μ̂asy
max(tD̄1 + D̄)− tμ̂asy

max(D̄1)≥ (t − ε)μ̂asy
max(D̄1)− tμ̂asy

max(D̄1)

= −εμ̂asy
max(D̄1).

Since ε is arbitrary, we obtain that

lim
t→+∞(μ̂

asy
max(tD̄0 + D̄)− tμ̂asy

max(D̄0))≥ 0.

Conversely, assume that D is pseudo-effective and μ̂
asy
max(D̄)≥ 0. If D̄′ is a big

adelic arithmetic R-Cartier divisor, then D + D′ is big since D is pseudo-effective and D′

is big. Moreover, one has

μ̂asy
max(D̄ + D̄′)≥ μ̂asy

max(D̄)+ μ̂asy
max(D̄

′) > 0.

Hence, D̄ + D̄′ is big by Proposition 6.9. Therefore, D̄ is pseudo-effective. �

The results which we have obtained in Section 6.1 can be applied to the extended

function μ̂
asy
max(.). Let C◦ be the cone of all pseudo-effective adelic arithmetic R-Cartier

divisors and V = D̂ivR(X). Then the cone C◦ satisfies the conditions (a)–(c) of Section 6.1.

Moreover, Proposition 8.2 shows that the restriction of μ̂asy
max on C◦ is a real-valued func-

tion. By Proposition 8.1, this function verifies the conditions (1)–(3) of Section 6.1. Thus,

we obtain the following corollary of Theorem 6.2.

Corollary 8.3. Let D̄ be an adelic arithmetic R-Cartier divisor such that D is pseudo-

effective and that μ̂asy
max(D̄)= 0. If s is an element of Rat(X)×R with D̄ + (̂s)≥ 0, then

Supp(Ψ μ̂
asy
max

D̄,v
) ∩ {x ∈ Xan

v | |s|gv (x) < 1} = ∅

for any v ∈ MK ∪ K(C). �

We conclude the article by the following question.

Question 8.4. Let D̄ be an adelic arithmetic R-Cartier divisor such that D is big and

that μ̂asy
max(D̄)= 0. Assume that, for any place v ∈ MK ∪ K(C), the union of all algebraic

curves lying in Supp(Ψ μ̂
asy
max

D̄,v
) is contained in the augmented base locus of Dv, does the

Dirichlet property always hold for D̄? �
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