
HARDER-NARASIMHAN GAMES

Huayi Chen & Marion Jeannin

Abstract. — In this article, we study the notion of semi-stability and the
Harder-Narasimhan filtration from a game-theoretic point of view. This al-
lows us to provide a unified proof for the existence and uniqueness of the
Harder-Narasimhan filtration in various settings and offer a conceptual inter-
pretation for semi-stability conditions. As an application, we establish the
existence and uniqueness of a coprimary filtration for modules of finite type
over a commutative Nœtherian ring and interpret it as a Harder-Narasimhan
filtration.
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1. Introduction

Harder-Narasimhan filtration is a classic construction in algebraic geometry.
It originates from the notion of stability introduced by Mumford [27] and
Takemoto [35] in the study of moduli spaces of vector bundles. Let C be a
regular projective curve over a field k. For any non-zero vector bundle E on
C, the slope of E is defined as the quotient of deg(E) by the rank of E and is
denoted by µ(E). The vector bundle E is said to be semi-stable if the slope of
any non-zero vector subbundle of E is bounded from above by µ(E). Harder
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and Narasimhan [16] have shown that any non-zero vector bundle E has a
unique filtration by vector subbundles

0 = E0 ⊊ E1 ⊊ . . . ⊊ En = E

such that all subquotient sheaves Ei/Ei−1 are semi-stable vector bundles over
C and that the successive slopes satisfy the following inequalities:

µ(E1/E0) > . . . > µ(En/En−1).

This result has then been generalized to higher-dimensional projective vari-
eties by Shatz [33] and Maruyama [26]. Moreover, in the context of com-
plex analytic geometry, Bruasse [6, 7] has established an analogue of Harder-
Narasimhan filtration for Hermitian vector bundles equipped with a semi-
connection.

The notion of semi-stability and the construction of Harder-Narasimhan
filtration have analogues in various branches of mathematics, which often ex-
hibit quite different natures. Examples include quiver representations [17] in
representation theory, flat vector bundles on an affine manifold [3] in differ-
ential geometry, quasi-coherent sheaves of finite rank on a non-commutative
torus [29] in non-commutative geometry, finite and flat group schemes over
a valuation ring of mixed characteristic [14] in arithmetic geometry, filtered
isocrystals [19] in p-adic Hodge theory, and linear codes [30] in the theory of
error correction codes.

Motivated by the similarity of Harder-Narasimhan filtrations in various
contexts, several formalisms have been proposed in the literature, either from
a categorical point of view (see for example [31, 5, 9, 1]), or from an order
theory point of view [11]. Most of these works begin with a small category
C with a zero object, on which Grothendieck’s group is defined. Given two
morphisms deg(.) and rk(.) from the Grothendieck group of C to R, such that
rk(.) takes non-zero values on classes of non-zero objects, one defines the slope
function µ(.) on the set of non-zero objects as(

X ∈ obj(C)
)
7−→ deg(X)

rk(X)
,

where, by abuse of notation we still denote by X the class in the Grothendieck
group that it represents, see for example [21, §II.2.a)], [5, §1.2], [1, §1.3.1], [9,
§4.1]. In the approach of modular lattice, the slope function is also defined in
a similar way, see [11, §2.4].

In the work [10], an analogue of Harder-Narasimhan theory has been pro-
posed in the framework of adelic vector bundles, which is not included in the
formalisms mentioned above. For convenience of readers, we recall this con-
struction in the particular case of normed lattices. By normed lattice, we mean
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a free abelian group of finite type E, equipped with a norm ∥.∥ on the finite-
dimensional real vector space ER = E ⊗Z R. We often use the expression E
to denote the pair (E, ∥.∥). The rank of the normed lattice (E, ∥.∥) is defined
as that of E over Z, which also identifies with the dimension of the real vector
space ER. Clearly, a subgroup F of E equipped with the restriction of ∥.∥
to FR also forms a normed lattice. Similarly, a free quotient group G of E
equipped with quotient norm of ∥.∥ on GR also forms a normed lattice.

Given a normed lattice (E, ∥.∥) of rank r, we define the Arakelov degree of
(E, ∥.∥) as

d̂eg(E, ∥.∥) = − ln ∥e1 ∧ · · · ∧ er∥det,
where (ei)

r
i=1 is a basis of E over Z, and ∥.∥det is the determinant norm

associated with ∥.∥, which is the norm on det(ER) defined as

∀ η ∈ det(ER), ∥η∥det = inf
(xi)

r
i=1∈Er

η=x1∧···∧xr

∥x1∥ · · · ∥xr∥.

In the case where E is non-zero, the slope of (E, ∥.∥) is defined as the ratio

µ̂(E, ∥.∥) := d̂eg(E, ∥.∥)
rkZ(E)

,

and the minimal slope of (E, ∥.∥) is defined as

µ̂min(E, ∥.∥) := inf
E↠G ̸=0

µ̂(G),

where G runs over the set of free quotient groups of E equipped with quotient
norms. It has been shown in [10, Theorem 4.3.58] that, for any non-zero
normed lattice (E, ∥.∥), there exists a unique filtration

0 = E0 ⊊ E1 . . . ⊊ En = E

of subgroups of E such that each subquotient Ei/Ei−1 is a free Abelian group
and forms a semi-stable normed lattice if we equip it with the subquotient
norm, and that the following inequalities are satisfied:

µ̂min(E1/E0) > . . . > µ̂min(En/En−1).

In the case where the norm ∥.∥ is induced by an inner product, this result is
due to Stuhler [34] (see also [15] for the link with reduction theory) and is quite
similar with the classic Harder-Narasimhan theory of vector bundles. However,
in the case of a general norm, the existence and uniqueness of a flag with semi-
stable subquotient and decreasing minimal slopes is rather unexpected. In fact,
the Arakelov degree function d̂eg(.) here is not additive with respect to short
exact sequences, which goes beyond the existing Harder-Narasimhan theory.
Moreover, the semi-stability condition is also slightly different from the classic
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formulation: a non-zero normed lattice F is said to be semi-stable if for any
non-zero subgroup F ′ of F one has

µ̂min(F ′) ⩽ µ̂min(F ).

Note that, in the case where the norm of F is induced by an inner product,
this condition is actually equivalent to

∀F ′ ⊆ F, F ′ ̸= 0, µ̂(F ′) ⩽ µ̂(F ),

which is similar to the semi-stability condition of vector bundles. However, in
general, these two conditions are not equivalent and the latter is not adequate
for establishing the Harder-Narasimhan theory.

The result [10, Theorem 4.3.58] was obtained via an interpretation using
R-filtrations of Harder-Narasimhan theory developed in [8]. Not only the
semi-stability condition is mysterious, but also the proof is rather different
from the classic ones. The first attempt to include this result in a categorical
formalism is due to Li [23], where a Harder-Narasimhan theory is developed
in the framework of a proto-abelian category. The new feature of [23] is to
consider slope functions valued in a totally ordered set, while most formalisms
require the slope function to be real-valued and often the quotient of two
additive functions. However, the conditions imposed to the slope function
in [23] seem to be satisfied rather by the maximal slope function in most
situations, and the category considered should satisfy strong chain conditions.
Therefore, the application of this theory to diverse concrete cases demands an
extra effort of adaptation.

Let us go back to the semi-stability condition in the above example. Let E
be a non-zero normed lattice. Its semi-stability condition could be interpreted
as an equality

sup
F⊆E

inf
F ′⊊F

µ̂(F/F ′) = µ̂min(E),

where F runs over the set of all subgroups of E, and F ′ runs over the set of
strict subgroups of F such that F/F ′ is free. Moreover, a key argument in the
proof of [10, Theorem 4.3.58] shows that, for any non-zero normed lattice E,
the following equality holds (see [10, §4.3.7]):

µ̂min(E) = inf
F ′⊊E

sup
F⊆E,F⊋F ′

µ̂(F/F ′),

where F ′ runs over the set of strict subgroups of E, and F runs over the set of
subgroups of E that contain F ′ strictly and such that F/F ′ is free. If we com-
bine this equality with the above interpretation of the semi-stability condition,
we can write the latter as an equality between minimax and maximin:

sup
F⊆E

inf
F ′⊊F

µ̂(F/F ′) = inf
F ′⊊E

sup
F⊆E,F⊋F ′

µ̂(F/F ′).
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This is a typical situation considered in game theory.
Inspired by this observation, we construct a zero-sum game with two players,

Alice and Bob. They pick successively (either Alice or Bob goes first) two
elements a and b respectively in a partially ordered set (L ,⩽) with supremum
and infimum of finite subsets (i.e., a bounded lattice), under the constraint
a < b. Note that this constraint prevents Alice from taking the greatest element
⊤ and Bob from taking the least element ⊥. Let

P<(L ) = {(a, b) ∈ L 2 | a < b}
be the set of strictly ordered pairs of L . If (S,⩽) is a complete partially
ordered set and if µ : P<(L ) → S is a map, then µ determines a pay-off
function of the above game: Alice aims to minimize the pay-off µ(a, b) while
Bob aims to maximize it. We call this game a Harder-Narasimhan game.

If Alice goes first and picks a, then all possible pay-offs are given by

µ(a, b), where b ∈ L , b > a,

and hence supb>a µ(a, b) delimits from above the possible pay-offs. Therefore
the optimal pay-off threshold when Alice goes first is

µ∗
A := inf

a∈L \{⊤}
sup
b>a

µ(a, b),

where ⊤ denotes the greatest element of L . We say that the Harder-
Narasimhan game is semi-stable if, for any y ∈ L which is not the least
element of L , it is not less favorable for Alice when considering the restriction
of the Harder-Narasimhan game to the subset of L of elements ⩽ y.

If (x, y) is a pair in P<(L ), we denote by L[x,y] the subset

{z ∈ L |x ⩽ z ⩽ y}
of L . Note that P<(L[x,y]) is a subset of P<(L ), and the restriction of µ
to P<(L[x,y]) defines the pay-off function of a Harder-Narasimhan game on
L[x,y]. We denote by µ[x,y] the restriction of µ to P<(L[x,y]) and we denote
by µA(x, y) the value µ∗

[x,y],A. Then the semi-stability the Harder-Narasimhan
game with pay-off function µ can be expressed as

∀ y ∈ L \ ⊥, µA(⊥, y) ̸> µA(⊥,⊤).

The main result of the article is as follows (the total order condition for
(S,⩽) could be relaxed if only the existence part is needed), see Definition 3.9
and Theorem 3.10.

Theorem 1.1. — Let (L ,⩽) be a bounded lattice, (S,⩽) be a complete totally
ordered set, and µ : P<(L ) → S be a map. Assume the following conditions:
(a) The pay-off function µ is convex, namely, for any (x, y) ∈ L 2 such that

x ̸⩽ y, one has µ(x ∧ y, x) ⩽ µ(y, x ∨ y).
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(b) The bounded lattice (L ,⩽) satisfies the ascending chain condition,
namely, there does not exist any family (xn)n∈N of elements of L such
that x0 < x1 < . . . < xn < xn+1 < . . ..

(c) The bounded lattice (L ,⩽) satisfies the µA-descending chain condition,
namely, for any a ∈ L , there does not exist any family (xn)n∈N of
elements of L such that xn > a for any n and x0 > x1 > . . . > xn >
xn+1 > . . ., that satisfies the following slope inequalities:

µA(a, x0) < µA(a, x1) < . . . < µA(a, xn) < µA(a, xn+1) < . . . .

Then there exists a unique increasing sequence

⊥ = a0 < a1 < . . . < an = ⊤
such that:
(1) For any i ∈ {1, . . . , n}, the Harder-Narasimhan game on L[ai−1,ai] with

pay-off function µ[ai−1,ai] is semi-stable.

(2) The following inequalities hold:

µA(a0, a1) > . . . > µA(an−1, an).

In the example of a non-zero normed lattice E, we take L = L (E) to be
the set of all subgroups of E, ordered by the relation of inclusion ⊆. The
pay-off function

µ : P<(L (E)) −→ [−∞,+∞]

is defined as follows: if F ′ and F are two subgroups of E such that F ′ ⊊ F , in
the case where rkZ(F

′) = rkZ(F ), we set µ(F ′, F ) = +∞; otherwise we define

µ(F ′, F ) = µ̂
(
(F/F ′)/(F/F ′)tor

)
+

ln(card((F/F ′)tor))

rkZ(F/F ′)
.

The function µ then defines the pay-off function of a Harder-Narasimhan game
on L (E), which satisfies the conditions of Theorem 1.1. Moreover, if (F ′, F )
is a pair of subgroups of E such that F/F ′ is a free group of positive rank,
then we have

µA(F
′, F ) = µ̂min(F/F ′).

By applying Theorem 1.1, we recover the existence and uniqueness of Harder-
Narasimhan filtration, as proven in [10, Theorem 4.3.58].

In the above theorem, the conditions (b) and (c) can be compared with
the finite length condition of modular lattices in [11, 30]. Additionally, the
work [23] proposes the ascending chain condition and the (usual) descending
chain condition in a categorical setting. Although the ascending chain condi-
tion is natural (one often considers Nœtherian modules), the descending chain
condition is rather restrictive in most algebraic geometry applications of the
Harder-Narasimhan theory. Extra technical efforts are needed to adapt the
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formalism to include classic examples. However, condition (c), which takes
into account the pay-off function µ and is much weaker than the classic de-
scending chain condition, can be easily verified in most concrete situations.
The flexibility of the theorem allows for its applications in various contexts.
Let us mention an application in commutative algebra.

Consider a commutative unitary Nœtherian ring R and a non-zero R-module
M of finite type. Let L be the set of all sub-R-modules of M , which is equipped
with the order of inclusion. This forms a bounded lattice. We equip the prime
spectrum Spec(R) with an arbitrary total order ⩽ that extends the order of
inclusion. Let S0 be the collection of all finite subsets of Spec(R). We equip
it with an arbitrary total order ⩽ that extends the order of inclusion and such
that, for (p, q) ∈ Spec(R)2, {p} ⩽ {q} in S0 if and only if p ⊆ q in Spec(R).
Let (S,⩽) be the Dedekind-MacNeille completion of (S0,⩽).

For any pair (N ′, N) of sub-R-modules of M such that N ′ ⊊ N , we define
µ(N ′, N) = Ass(N/N ′) as the set of all associated prime ideals of the quotient
module N/N ′. This map µ : P<(L ) → S defines the pay-off function of a
Harder-Narasimhan game. It is worth noting that µA(N

′, N) is equal to the
least element of Ass(N/N ′) (see Proposition 3.12), and the Harder-Narasimhan
game with pay-off function µ is semi-stable if and only if Ass(M) has cardinal
1, namely M is a coprimary R-module. Furthermore, the bounded lattice
(L ,⊆) satisfies the ascending chain condition and the µA-descending chain
condition. Hence we obtain the following result.

Theorem 1.2. — There exists a unique sequence

0 = M0 ⊊ M1 ⊊ . . . ⊊ Mn = M

of sub-R-modules of M , along with a strictly decreasing sequence

p1 > . . . > pn

in (Spec(R),⩽) such that, for any i ∈ {1, . . . , n}, the subquotient R-module
Mi/Mi−1 is pi-coprimary.

Note that this result is related to the coprimary decomposition (or secondary
representation) of R-modules introduced in [24, 28, 20]. We say that M ad-
mits a coprimary decomposition if it can be written in the form of a finite
sum of coprimary submodules. It can be shown that, if M admits a coprimary
decomposition M = N1 + · · · + Np, then it admits a minimal decomposition,
where the R-modules N1, . . . , Np are coprimary with respect to distinct prime
ideals (attached prime ideals) and none of the summands is redundant. From
such a decomposition, one can deduce a coprimary filtration predicted by The-
orem 1.2 (since R is Nœtherian, it can be shown that attached prime ideals are
exactly associated prime ideals, see [13, Theorem 1]). It is worth noting that
only a restrictive family of modules are coprimary decomposable. It is known
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for Artinian modules [20] and injective modules [32]. In fact, it has been
proven by [36, Corollary 1.6] that, in the case where M is reduced, it is copri-
mary decomposable if and only if R/ ann(M) is an Artinian ring. Therefore,
Theorem 1.2 provides a good alternative to coprimary decomposition.

If one applies the theory of Harder-Narasimhan game to the classic case of
a non-zero vector bundle E over a regular projective curve C, one would take
L to be the set of all vector subbundles of E and the pay-off function would
be defined as follows:

∀ (F ′, F ) ∈ P⊊(L ), µ(F ′, F ) :=

{
deg(F )−deg(F ′)
rk(F )−rk(F ′) , if rk(F ) > rk(F ′),

+∞, if rk(F ) = rk(F ′).

Note that the semi-stability condition of the Harder-Narasimhan game appears
different from the slope semi-stability of E, which is given by

deg(F )

rk(F )
⩽

deg(E)

rk(E)

for any non-zero vector subbundle F of E. In our article, we prove that this
slope semi-stability condition of E is actually equivalent to the semi-stability
condition of the corresponding Harder-Narasimhan game. We introduce a con-
cept called slope-like condition for the pay-off function, which is closely related
to the see-saw principle discussed in [31]. Under this condition, we establish a
connection between the semi-stability of the Harder-Narasimhan game to the
semi-stability condition in its usual form. Moreover, we also establish a con-
nection between the semi-stability of the game and the Nash equilibrium. This
result demonstrates that the game-theoretical framework is well-suited for un-
derstanding the Harder-Narasimhan filtration and generalizing its construction
in various settings.

Theorem 1.3. — Assume that the following conditions are satisfied:
(i) For any ascending chain x0 < x1 < . . . < xn < xn+1 < . . . of elements of

L , there exists N ∈ N such that µ(xN , xN+1) ⩽ µ(xN ,⊤).
(ii) For any descending chain x0 > x1 > . . . > xn > xn+1 > . . . of elements

of L , there exists N ∈ N such that µ(⊥, xN ) ⩽ µ(xN+1, xN ).
(iii) The complete lattice is totally ordered, and the pay-off function µ is

slope-like (i.e., for x < y < z, one has µ(x, y) < µ(x, z) < µ(y, z) or
µ(x, y) > µ(x, z) > µ(y, z) or µ(x, y) = µ(x, z) = µ(y, z)).

Then the following statements are equivalent:
(a) µmax(⊤) := sup

x∈L \{⊥}
µ(⊥, x) = µ(⊥,⊤).

(b) µmin(⊤) := inf
x∈L \{⊤}

µ(x,⊤) = µ(⊥,⊤).

(c) µmin(⊤) = µmax(⊤).
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(d) The Harder-Narasimhan game with pay-off function µ has Nash equilib-
rium.

(e) The Harder-Narasimhan game with pay-off function µ is semi-stable.

The article is organised as follows: In the second section, we introduce
the notion of Harder-Narasimhan game and prove some basic properties of
the optimal pay-off threshold function. In the third section, we consider the
semi-stability condition of Harder-Narasimhan games and prove the existence
and uniqueness of Harder-Narasimhan filtration. In the fourth section, we
discuss the slope-like pay-off function and establish the link between the semi-
stability of the Harder-Narasimhan game and the classic slope semi-stability.
Additionally, we discuss Jordan-Hölder filtrations of a semi-stable Harder-
Narasimhan game.

2. Harder-Narasimhan games

In this section, we consider a partially ordered set (L ,⩽), which has a
greatest element denoted as ⊤ and a least element denoted as ⊥, with ⊥ ≠ ⊤.
In the language of order theory, (L ,⩽) is referred to as a bounded poset. We
use the notation P<(L ) to represent the set of strictly ordered pairs of elements
in L . This set can be defined as follows:

P<(L ) := {(x, y) ∈ L 2 |x < y},

where x < y signifies the relation x ⩽ y and x ̸= y.

2.1. Description of the game. — Let (S,⩽) be a complete lattice, namely
a partially ordered where every subset of S admits a supremum (least up-
per bound) and an infimum (greatest lower bound). The assumption of com-
pleteness here is unproblematic since we can consider the Dedekind-MacNeille
completion (see [25, §11]). Let µ : P<(L ) → S be a map. We call Harder-
Narasimhan game on (L ,⩽) with pay-off function µ a non-cooperative se-
quential game of two steps described as follows:

Two players, Alice and Bob, pick successively (either Alice or
Bob goes first) two elements xA and xB from the set L , with the
constraint xA < xB. The objective of Alice is to minimize the pay-
off µ(xA, xB) while that Bob aims to maximize it.

If Alice goes first, she selects an element of L \ {⊤} (as the constraint
prevents her from choosing ⊤). Bob then selects an element from L that is
strictly greater than Alice’s choice. Similarly, if Bob goes first, he chooses an
element of L other than ⊥, and then Alice selects an element from L that
is strictly less than what Bob has chosen. Note that this game is asymmetric:
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depending on whether Alice or Bob starts, the strategy sets differ after the
first step of the game.

Definition 2.1. — Let x be an element of L \{⊤}. We denote by VA(x) the
set of all possible pay-offs in the game if Alice goes first and picks x. It can be
defined as:

VA(x) = {µ(x, y) | y ∈ L , x < y}.

Moreover, sup(VA(x)) delimits from above possible pay-offs in the case where
Alice goes first and picks x. We define

µ∗
A := inf

x∈L \{⊤}
sup(VA(x)) = inf

x∈L \{⊤}
sup
y∈L
x<y

µ(x, y).

This value represents the optimal pay-off threshold when Alice goes first.

Definition 2.2. — Let (x, y) be an element of P<(L ). We denote by L[x,y]

the interval in L delimited by x and y, defined as

L[x,y] := {w ∈ L |x ⩽ w ⩽ y}.

Note that L[x,y] forms a bounded poset under the restriction of the order ⩽.
Its greatest element is y, its least element is x. Moreover, P<(L[x,y]) is a subset
of P<(L ), and the restriction of µ to P<(L[x,y]) gives the pay-off function of
a Harder-Narasimhan game, denoted by µ[x,y]. This Harder-Narasimhan game
is called the restriction of the initial game to L[x,y].

We denote by µA(x, y) the optimal pay-off threshold for the Harder-
Narasimhan game restricted to L[x,y] when Alice goes first. By definition, one
has

(2.1) µA(x, y) := µ∗
[x,y],A = inf

a∈L
x⩽a<y

sup
b∈L
a<b⩽y

µ(a, b).

In the case where x = ⊥, the value of µA(⊥, y) is denoted by µA(y) for
simplicity.

To simplify the notation, for any (a, y) ∈ P<(L ), we denote µmax(a, y) as
the element

sup
b∈L
a<b⩽y

µ(a, b).

With this notation, the optimal pay-off threshold µA(x, y) can also be written
as

µA(x, y) = inf
a∈L
x⩽a<y

µmax(a, y).
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2.2. Convexity condition. — In this subsection, we assume that any finite
subset of L has a supremum and an infimum in (L ,⩽). In the language of
order theory, (L ,⩽) is referred to as a bounded lattice. If x and y are two
elements of L , we denote the supremum of {x, y} as x ∨ y, and the infimum
as x ∧ y. We also consider a complete lattice (S,⩽) together with a map
µ : P<(L ) → S, which enables the study of a Harder-Narasimhan game as
described in §2.1.

Definition 2.3. — We say that the pay-off function µ is convex if, for any
(x, y) ∈ L 2 such that x ̸⩽ y, the following inequality holds:

µ(x ∧ y, x) ⩽ µ(y, x ∨ y).

(Note that the condition x ̸⩽ y implies that x ∧ y < x and y < x ∨ y). It
is worth mentioning that, if µ is convex, the function µ[x,y] is also convex
for any (x, y) ∈ P<(L ). The choice of this terminology is motivated by
the observation that a convex function in the usual sense has monotonically
increasing difference. The convexity condition for the pay-off function µ is
automatically satisfied when (L ,⩽) is a totally ordered set.

Lemma 2.4. — Assume that the function µ : P<(L ) → S is convex. Let w
and x be two elements of L \ {⊥} such that x ̸⩽ w. For any (u, t) ∈ L 2 such
that u ⩽ x ∧ w and x ∨ w ⩽ t, the following inequalities hold:

(2.2) µA(u, x) ⩽ µmax(x ∧ w, x) ⩽ µmax(w, t).

Moreover, one has

(2.3) µA(u, x) ⩽ µA(w, x ∨ w).

Proof. — The condition x ̸⩽ w implies that x∧w < x. The first inequality of
(2.2) follows directly from the definition of

µA(u, x) := inf
a∈L

u⩽a<x

sup
b∈L
a<b⩽y

µ(a, b).

For any b ∈ L such that x ∧ w < b ⩽ x, one has

x ∧ w = (x ∧ w) ∧ w ⩽ b ∧ w ⩽ x ∧ w.

Therefore, b ∧ w = x ∧ w < b, and hence, b ̸⩽ w. Moreover, the assumption
b ⩽ x implies b ∨ w ⩽ x ∨ w ⩽ t. By the convexity of µ, we obtain:

µ(x ∧ w, b) = µ(b ∧ w, b) ⩽ µ(w, b ∨ w) ⩽ µmax(w, t).

Taking the supremum with respect to b, we obtain the second inequality of
(2.2).

Next, we prove the inequality (2.3). Let y be an element of L such that
w ⩽ y < x ∨ w. We claim that x ̸⩽ y since otherwise

x ∨ w ⩽ y ∨ w = y < x ∨ w,
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which leads to a contradiction. Moreover, one has

x ∨ w ⩽ x ∨ y ⩽ x ∨ (x ∨ w) = x ∨ w,

so that x ∨ w = x ∨ y. By replacing w with y and t with x ∨ w in (2.2), we
obtain:

µA(u, x) ⩽ µmax(y, x ∨ w).

Taking the infimum with respect to y, we obtain (2.3).

Remark 2.5. — Note that the function µmax : P<(L ) → S is also the pay-off
function of a Harder-Narasimhan game. Lemma 2.4 implies that, if µ is convex
then so is µmax. Moreover, for any (a, y) ∈ P<(L ), one has

sup
b∈L
a<b⩽y

µ(a, b) = sup
b∈L
a<b⩽y

µmax(a, b).

This equality implies that µmax,A(x, y) = µA(x, y) for any (x, y) ∈ P<(L ).

Proposition 2.6. — Let x, y and z be elements of L such that x < y < z.
Then the following inequality holds:

(2.4) µA(y, z) ⩾ µA(x, z).

If the function µ is convex the following statements hold:
(a) One has

µA(x, z) ⩾ inf{µA(x, y), µA(y, z)}.
(b) If µA(x, y) ⩾ µA(y, z), then µA(y, z) = µA(x, z); if µA(x, y) < µA(y, z),

then
µA(x, y) ⩽ µA(x, z) ⩽ µA(y, z).

(c) If µA(x, y) and µA(y, z) are comparable (this is true notably when (S,⩽)
is totally ordered), or if the infimum

µA(x, z) = inf
a∈L
x⩽a<z

µmax(a, z)

is attained, then,

either µA(y, z) = µA(x, z), or µA(x, y) ⩽ µA(x, z) < µA(y, z).

Proof. — By definition one has

µA(y, z) := inf
a∈L
y⩽a<z

µmax(a, z) ⩾ inf
a∈L
x⩽a<z

µmax(a, z) =: µA(x, z),

which proves (2.4). In the rest of the proof, we assume that the pay-off function
µ is convex.

(a) Let a ∈ L such that x ⩽ a < z. If y ⩽ a, then by definition

µA(y, z) ⩽ µmax(a, z).
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If y ̸⩽ a, then by Lemma 2.4, as a ∨ y ⩽ z one has

µA(x, y) ⩽ µmax(a, z).

So in all cases the following inequality holds:

inf{µA(x, y), µA(y, z)} ⩽ µmax(a, z).

Taking the infimum with respect to a, we obtain

inf{µA(x, y), µA(y, z)} ⩽ µA(x, z).

(b) If µA(x, y) ⩾ µA(y, z), then

inf{µA(x, y), µA(y, z)} = µA(y, z),

thus (2.4) and the result of (a) lead to µA(y, z) = µA(x, z). If µA(x, y) <
µA(y, z), then one has

inf{µA(x, y), µA(y, z)} = µA(x, y).

Hence (2.4) and (a) imply

µA(x, y) ⩽ µA(x, z) ⩽ µA(y, z).

(c) We first assume that µA(x, y) and µA(y, z) are comparable. By (b), we
obtain that either the equality µA(y, z) = µA(x, z) holds or one has µA(x, y) <
µA(y, z), and hence

µA(x, y) ⩽ µA(x, z) ⩽ µA(y, z).

Note that the last inequality is strict since µA(x, z) ̸= µA(y, z).
In the following, we suppose that there exists a ∈ L such that x ⩽ a < z

and that µA(x, z) = µmax(a, z). If y ⩽ a, then by definition

µA(y, z) ⩽ µmax(a, z) = µA(x, z).

Thus equality µA(y, z) = µA(x, z) holds, thanks to (2.4) (this is the same
argument as for the proof of (a)). In particular, if µA(y, z) ̸= µA(x, z), then
y ̸⩽ a and thus, by Lemma 2.4, one has

µA(x, y) ⩽ µmax(a, z) = µA(x, z).

Combining this with (2.4) and the condition µA(y, z) ̸= µA(x, z), we obtain

µA(x, y) ⩽ µA(x, z) < µA(y, z).

Remark 2.7. — Assume that (S,⩽) is a totally ordered set and that the
pay-off function µ is convex. Let x be an element of L \ {⊥,⊤} such that
µA(x) > µA(⊤). By Proposition 2.6 (c), we obtain µA(x,⊤) = µA(⊤). This
equality shows that, in the case where Alice goes first, it is not less favorable
for her to consider elements of L[x,⊤] \ {⊤} than to consider all elements of
L \ {⊤}.
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Proposition 2.8. — Assume that the function µ is convex. Let u, x and y
be elements of L such that u < x and u < y.
(a) The following inequality holds:

µA(u, x ∨ y) ⩾ inf{µA(u, x), µA(u, y)}.

(b) If µA(u, x) and µA(u, y) are comparable, or if the infimum

µA(u, x ∨ y) = inf
a∈L

u⩽a<x∨y

µmax(a, x ∨ y)

is attained, then, either µA(u, x∨y) ⩾ µA(u, x) or µA(u, x∨y) ⩾ µA(u, y).

Proof. — Let w be an element of L such that u ⩽ w < x∨y. Since w < x∨y,
either x ̸⩽ w, or y ̸⩽ w. In the case where x ̸⩽ w, since x ∨ w ⩽ x ∨ y and
u ⩽ x ∧ w, by Lemma 2.4 we obtain

µA(u, x) ⩽ µmax(w, x ∨ y).

Similarly, in the case where y ̸⩽ w, one has

µA(u, y) ⩽ µmax(w, x ∨ y).

(a) The above argument shows that, either µA(u, x) ≤ µmax(w, x ∨ y) or
µA(u, y) ≤ µmax(w, x ∨ y). Hence the inequality

µmax(w, x ∨ y) ⩾ inf{µA(u, x), µA(u, y)}
holds, which leads to

µA(u, x ∨ y) ⩾ inf{µA(u, x), µA(u, y)}
by taking the infimum with respect to w.

(b) If µA(u, x) and µA(u, y) are comparable, then inf{µA(u, x), µA(u, y)}
is either equal to µA(u, x) or equal to µA(u, y). Hence the statement of (a)
implies that, either µA(u, x ∨ y) ⩾ µA(u, x) or µA(u, x ∨ y) ⩾ µA(u, y).

In the following, we assume that there exists a ∈ L such that u ⩽ a < x∨y
and that µA(u, x ∨ y) = µmax(a, x ∨ y). By the argument in the beginning of
the proof, we obtain that, either µA(u, x) ⩽ µmax(a, x ∨ y) = µA(u, x ∨ y), or
µA(u, y) ⩽ µmax(a, x ∨ y) = µA(u, x ∨ y). The statement is thus proved.

3. Semi-stability and Harder-Narasimhan filtration

In this section, we introduce the notion of semi-stability and define the
Harder-Narasimhan filtration of Harder-Narasimhan games. As in the previous
section, we assume that (L ,⩽) is a bounded lattice, and we fix a complete
lattice (S,⩽) together with a map µ : P<(L ) → S which is assumed to be
convex (see Definition 2.3).
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3.1. Semi-stability. —

Definition 3.1. — We say that the ordered set (L ,⩽) satisfies the ascending
chain condition if every non-empty subset of L admits a maximal element with
respect to ⩽, or equivalently, any strictly ascending chain of elements of L is
finite.

We say that (L ,⩽) satisfies the µA-descending chain condition if, for any
a ∈ L , there does not exist any infinite descending chain

x0 > x1 > . . . > xn > xn+1 > . . .

of elements of L that are > a, such that

µA(a, x0) < µA(a, x1) < . . . < µA(a, xn) < µA(a, xn+1) < . . . .

Clearly, if (L ,⩽) satisfies the µA-descending chain condition, then, for any
x ∈ L \ {⊤}, (L[x,⊤],⩽) satisfies the µ[x,⊤],A-descending chain condition.

The following proposition helps to describe a typical situation where the
µA-descending chain condition is satisfied (compare with Remark 4.4). We
denote the greatest element of (S,⩽) as +∞.

Proposition 3.2. — Let (x, z) be a pair in P<(L ). If µA(x, z) = +∞, or
equivalently, for any w ∈ L such that x ⩽ w < z one has µmax(w, z) = +∞,
then, for any a ∈ L such that a < x, one has µA(a, x) ⩽ µA(a, z).

Proof. — Since µA(x, z) = +∞, for any a ∈ L such that a < x, one has

inf{µA(a, x), µA(x, z)} = µA(a, x).

By Proposition 2.6 (a), we obtain µA(a, z) ⩾ µA(a, x).

Corollary 3.3. — If, for any descending chain

x0 > x1 > . . . > xn > xn+1 > . . .

of elements of L , there exists N ∈ N such that µA(xN+1, xN ) = +∞, then
(L ,⩽) satisfies the µA-descending chain condition.

Proof. — This is a direct consequence of Proposition 3.2.

Proposition 3.4. — Assume that (L ,⩽) satisfies the ascending chain con-
dition and the µA-descending chain condition. There exists an element x ∈
L \ {⊥} that satisfies the following conditions:

(S1) For any y ∈ L \ {⊥}, µA(y) ̸> µA(x).

(S2) For any y ∈ L \ {⊥}, if µA(y) = µA(x), then y ⩽ x.
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Proof. — We first construct a strictly decreasing sequence

⊤ = x0 > x1 > . . . > xn= ⊥, n ∈ N⩾1

in a recursive way, which satisfies the following conditions (where the second
condition is ensured by the ascending chain condition):
(1) For any i ∈ N such that 1 ⩽ i < n one has µA(xi) > µA(xi−1).
(2) For any i ∈ N such that 1 ⩽ i < n and any yi ∈ L such that xi < yi ⩽

xi−1, one has µA(yi) ̸⩾ µA(xi).
(3) For any y ∈ L such that ⊥ < y ⩽ xn−1, one has µA(y) ̸> µA(xn−1).

We proceed as follows: first, we consider the subset

L1 := {y ∈ L \ {⊥} | µA(y) > µA(⊤)},
which is either empty or admits a maximal element (as (L ,⩽) satisfies the
ascending chain condition).

— If L1 is empty, then one has x1 = ⊥ in the aforementioned sequence
(which is therefore of trivial shape ⊤ = x0 > ⊥ = x1), so that only the
condition (3) makes sense here and is indeed satisfied (by construction);

— If L1 is not empty, let x1 be one of its maximal elements. One has ⊤ =
x0 > x1 > ⊥, and by the definition of x1, the inequality µA(x1) > µA(x0)
is satisfied. The condition (2) is also satisfied for i = 1, by the maximality
of x1. Then one considers

L2 := {y ∈ L \ {⊥} | µA(y) > µA(x1)}
and iterates the above reasoning. Note that the process terminates as
(L ,⩽) satisfies the µA-descending chain condition.

We can now show, by induction on the length of the above sequence, the
existence of an element x ∈ L that satisfies conditions (S1) and (S2). In the
case where n = 1, by the point (3) above, one has

∀ y ∈ L \ {⊥}, µA(y) ̸> µA(⊤).

Hence x0 = ⊤ satisfies the condition (S1), while the condition (S2) is trivially
satisfied.

Suppose that n > 1. Let y be an element of L \ {⊥}. We first show by
contradiction that, for any i ∈ {1, . . . , n−1}, if y < xi−1 and if µA(y) ⩾ µA(xi),
then y ⩽ xi. In fact, if y ̸⩽ xi, then one has

xi < y ∨ xi ⩽ xi−1.

By Proposition 2.8, we obtain

µA(y ∨ xi) ⩾ inf{µA(y), µA(xi)} = µA(xi),

which contradicts the point (2) above. Now, if y is an element of L \ {⊥}
such that µA(y) ⩾ µA(xn−1), then by the above statement, we can show by
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induction on i that y ⩽ xi for any i ∈ {0, . . . , n− 1}. The case where i = 0 is
trivial. Assume that y ⩽ xi−1 with i ∈ {1, . . . , n− 1}. Since

µA(y) ⩾ µA(xn−1) > µA(xi−1),

one has y < xi−1. Hence the condition

µA(y) ⩾ µA(xn−1) ⩾ µA(xi)

leads to y ⩽ xi.
The above induction argument shows that y ⩽ xn−1. By the condition (3)

one has µA(y) ̸> µA(xn−1). Therefore, xn−1 satisfies the conditions (S1) and
(S2).

Remark 3.5. — Assume that (S,⩽) is a totally ordered set. Then there
is at most one element element x ∈ L \ {⊥} which satisfies the conditions
(S1) and (S2) in the above proposition. In fact, if x and x′ are two elements
of L that satisfy the conditions (S1) and (S2), then by the condition (S1)
we obtains µA(x) ⩽ µA(x

′) and µA(x
′) ⩽ µA(x). This implies the equality

µA(x) = µA(x
′). Thus by the condition (S2) we obtain x = x′.

Definition 3.6. — We denote by St(µ) the set of elements x ∈ L \ {⊥}
that satisfy the conditions (S1) and (S2) of Proposition 3.4. If ⊤ ∈ St(µ),
or equivalently, if for any x ∈ L , µA(x) ̸> µA(⊤), we say that the Harder-
Narasimhan game with pay-off function µ is semi-stable, or simply that the
pay-off function µ is semi-stable. By Remark 3.5, in the case where (S,⩽) is a
totally ordered set, this is equivalent to requiring that St(µ) = {⊤}.

If the Harder-Narasimhan game with pay-off function µ is semi-stable and,
moreover, for any x ∈ L , µA(x) ̸= µA(⊤), then we say that the Harder-
Narasimhan game with pay-off function µ is stable, or simply that the pay-off
function µ is stable.

Proposition 3.7. — Let x be an element of St(µ) \ {⊤}. Then the following
assertions hold.
(1) The function µ[⊥,x] is semi-stable.

(2) For any y ∈ L such that y > x, one has µA(x) ̸⩽ µA(x, y).

Proof. — (1) Let ν = µ[⊥,x]. For any z ∈ L \ {⊥} such that z ⩽ x, one
has νA(z) = µA(z). Hence, for any z ∈ L[⊥,x], one has νA(z) ̸> νA(x), and
νA(z) = νA(x) implies that z ⩽ x. Therefore x ∈ St(ν).

(2) If µA(x) ⩽ µA(x, y), then by Proposition 2.6, one obtains µA(y) ⩾ µA(x),
which leads to y ⩽ x since x ∈ St(µ). This contradicts the condition y > x.

Proposition 3.8. — If (S,⩽) is a totally ordered set, or if the infimum

µA(z) = inf
a∈L

⊥⩽a<z

µmax(a, z)
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is attained for any z ∈ L \ {⊥}, then the following statements hold.
(1) The subset St(µ) of (L ,⩽) is totally ordered, and hence admits a greatest

element if (L ,⩽) satisfies the ascending chain condition.
(2) If x is an element of St(µ) and y is an element of L such that x < y,

then µA(y) = µA(x, y).

Proof. — (1) Let x and x′ be two elements of St(µ). By Proposition 2.8 (b), we
obtain that, either µA(x∨x′) ⩾ µA(x), or µA(x∨x′) ⩾ µA(x

′). By the condition
(S1) we deduce that, either µA(x∨x′) = µA(x), or µA(x∨x′) = µA(x

′). Hence
the condition (S2) leads to, either x ∨ x′ ⩽ x, or x ∨ x′ ⩽ x′, that is, x′ ⩽ x or
x ⩽ x′.

(2) By Proposition 2.6 (c), either µA(x, y) = µA(y), or µA(x) ⩽ µA(y) <
µA(x, y). However, the latter condition cannot hold since otherwise, µA(y) =
µA(x) by the condition (S1), and further, y ⩽ x by the condition (S2). There-
fore µA(x, y) = µA(y).

3.2. Illustration by weighted directed graphs. — One can illustrate the
pay-off function of a Harder-Narasimhan game as an edge-weighted directed
graph. Let (L ,⩽) be a bounded poset, (S,⩽) a complete lattice, and µ :
P<(L ) → S be a map. We can construct a weighted directed graph G(L , µ)
as follows. The vertices of G(L , µ) are elements of L . For any (x, y) ∈ P<(L ),
one connects x to y by a directed edge with weight µ(x, y). For (a, b) ∈ S2, we
denote by a ∨ b the supremum of {a, b} and by a ∧ b the infimum of {a, b}.

The simplest non-trivial Harder-Narasimhan game can be illustrated by the
following weighted directed graph, where a, b and c are elements of S.

⊥
c

77
a // x

b // ⊤

Note that

µ∗
A := inf

x∈L \{⊤}
sup
y∈L
x<y

µ(x, y) = (a ∨ c) ∧ b = µA(⊤),

µA(x) = a, µA(x,⊤) = b.

Therefore, the Harder-Narasimhan game is semi-stable if and only if

µA(x) := inf
x∈L \{⊤}

sup
y∈L
x<y

µ(x, y) = a ̸> (a ∨ c) ∧ b = µA(⊤).

Note that, if a ⩽ b, then
a ⩽ (a ∨ c) ∧ b

and hence the Harder-Narasimhan game is semi-stable. If a > b, then

(a ∨ c) ∧ b = b
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and hence the Harder-Narasimhan game is not semi-stable and St(µ) = {x}.
Assume that a and b are not comparable, but a ∨ c ⩾ b (this happens for

example when c ⩾ b). In this case one has (a ∨ c) ∧ b = b. Therefore, µA(⊤)
and µA(x) are not comparable, and hence St(µ) = {x,⊤}. In this case the
Harder-Narasimhan game is still semi-stable.

3.3. Harder-Narasimhan filtration. — In this subsection, we consider
the Harder-Narasimhan filtration of a Harder-Narasimhan game, which is a
canonical filtration (in a certain sense) that measures the potential default of
semi-stability of a Harder-Narasimhan game. We fix a bounded lattice (L ,⩽)
and a pay-off function µ on P<(L ) which takes value in a complete lattice
(S,⩽). We assume the following:
(a) The pay-off function µ is convex.
(b) The bounded lattice (L ,⩽) satisfies the ascending chain condition and

the µA-descending chain condition.
(c) Either (S,⩽) is totally ordered, or the infimum

µA(x, y) = inf
a∈L
x⩽a<y

µmax(a, y)

is attained for any (x, y) ∈ P<(L ).

Definition 3.9. — We construct an increasing sequence

⊥ = a0 < a1 < . . . < an = ⊤
in a recursive way, so that ai is the greatest element of the set St(µ[ai−1,⊤]) for
any i ∈ {1, . . . , n} (the existence of ai is ensured by Proposition 3.8). Note
that, by the ascending chain condition, this sequence has a finite length. We
call it the Harder-Narasimhan filtration of µ. By Proposition 3.7, we obtain
that each µ[ai−1,ai] is semi-stable, and

µA(a0, a1) ̸⩽ µA(a1, a2) ̸⩽ . . . ̸⩽ µA(an−1, an).

Moreover, by Proposition 3.8, for any i ∈ {0, . . . , n − 1} and any y ∈ L such
that xi < y, one has

µA(⊥, y) = µA(x1, y) = · · · = µA(xi, y).

Theorem 3.10. — Suppose that (S,⩽) is totally ordered. Let

⊥ = b0 < b1 < . . . < bm = ⊤
be a strictly increasing sequence in L such that, for any j ∈ {1, . . . ,m}, the
restriction µ[bj−1,bj ] is semi-stable, and that

µA(b0, b1) > . . . > µA(bm−1, bm).

Then this sequence identifies with the Harder-Narasimhan filtration of µ.
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Proof. — We denote by ⊥ = a0 < a1 < . . . < an = ⊤ the Harder-Narasimhan
filtration of µ, and we proceed by induction on n. Let i ∈ {1, . . . ,m} be the
smallest index such that a1 ⩽ bi. Since a1 ̸⩽ bi−1, by Lemma 2.4 one has

µA(a1) ⩽ µA(bi−1, a1 ∨ bi−1).

By the semi-stability of µ[bi−1,bi] and the hypothesis that (S,⩽) is totally
ordered, we deduce that

µA(a1) ⩽ µA(bi−1, bi).

If i > 1, then one has µA(a1) < µA(b1), which leads to a contradiction (as by
construction a1 is the greatest element of St(µ)). Therefore we obtain a1 ⩽ b1
and hence µA(a1) ⩽ µA(b1) since µ[⊥,b1] is semi-stable. As St(µ) = {a1}, we
obtain b1 ⩽ a1 and hence a1 = b1. If n ⩾ 2, we can iterate the above argument
to µ[ai,⊤] successively for i ∈ {2, . . . , n} to show that n = m and ai = bi for
any i ∈ {1, . . . , n}. The theorem is thus proved.

3.4. Coprimary filtration. — Let R be a Nœtherian ring and M be a non-
zero R-module of finite type. Let L be the set of all sub-R-modules of M .
The set L , equipped with the order of inclusion ⊆, forms a bounded lattice.
Its least element is the zero R-module 0, and its greatest element is M . If N1

and N2 are two elements of L , the least upper bound of {N1, N2} is their sum,
the greatest lower bound of {N1, N2} is their intersection.

We equip Spec(R) with an arbitrary total order ⩽ which extends the partial
order of inclusion ⊆. Let S0 be the set of finite subsets of Spec(R). We equip
S0 with a total order ⩽ which extends the order of inclusion and such that,
for any (p, q) ∈ Spec(R)× Spec(R), the relation {p} ⩽ {q} holds if and only if
p ⩽ q in (Spec(R),⩽). Note that the lexicographic order is an example of such
a total order on S0. Denote by (S,⩽) be the Dedekind-MacNeille completion
of (S0,⩽).

For any pair (N ′, N) of sub-R-modules of M such that N ′ ⊊ N , we define

µ(N ′, N) := Ass(N/N ′)

as the set of associated prime ideals of the quotient module N/N ′. Recall that
a prime ideal p of R is said to be an associated prime ideal of N/N ′ if there
exists s ∈ N such that

p = {a ∈ R : as ∈ N ′}.
Clearly, if N ′′ is a sub-R-module of N that strictly contains N ′, then any

associated prime ideal of N ′′/N ′ is also an associated prime ideal of N/N ′.
Thus one has

µmax(N
′, N) = µ(N ′, N).

Proposition 3.11. — The above map µ is convex as a pay-off function of a
Harder-Narasimhan game.
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Proof. — Let N1 and N2 be two sub-R-modules of M such that N1 ̸⊆ N2.
One has

N1/(N1 ∩N2) ∼= (N1 +N2)/N2

as R-modules. Therefore we obtain

µ(N1 ∩N2, N1) = µ(N2, N1 +N2).

Proposition 3.12. — Let N ′ and N be two sub-R-modules of M such that
N ′ ⊊ N , and p be the least element of µ(N ′, N) in the totally ordered set
(Spec(R),⩽). Then the equality µA(N

′, N) = {p} holds.

Proof. — Recall that the support of an R-module N is the set

Supp(N) := {q ∈ Spec(R) | Nq ̸= 0},

where Nq is the localisation at q. Let N ′′ be a sub-R-module of N such that
N ′ ⊆ N ′′ ⊊ N . Note that the support of N/N ′′ is contained in the support
of N/N ′. If q is an associated prime ideal of N/N ′′, then it belongs to the
support of N/N ′ since

Ass(N/N ′′) ⊆ Supp(N/N ′′) ⊆ Supp(N/N ′).

This follows from the fact that R is Nœtherian (see [4, chap. IV, §1, no.3
Corollary 1]). In particular, there exists a minimal (under the relation of
inclusion) prime ideal of Supp(N/N ′) which is contained in q. Hence, in the
totally ordered set (SpecR,⩽), q is greater or equal to p. Moreover, by [4,
chap. IV, §1, no.2 Proposition 6], if we take N ′′ as the kernel of the canonical
R-module homomorphism

N −→ N/N ′ −→ (N/N ′)p,

then p is the only associated prime ideal of N/N ′′. Therefore, we obtain that

µA(N
′, N) = µmax(N

′′, N) = µ(N ′′, N) = {p}.

Proposition 3.13. — The bounded lattice (L ,⊆) satisfies the ascending
chain condition and the µA-descending chain condition.

Proof. — The first statement comes from the hypotheses that R is a Nœtherian
ring and M is an R-module of finite type (and hence a Nœtherian R-module).
In the following, we prove the second statement. Let N be a sub-R-module of
M such that N ⊊ M . Assume that

M0 ⊋ M1 ⊋ . . . ⊋ Mn ⊋ Mn+1 ⊋ . . .
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is a decreasing sequence of sub-R-modules of M such that N ⊊ Mn for any n ∈
N. Since each µA(N,Mi) is a one point subset of Ass(Mi/N) ⊆ Ass(M0/N),
it only has finitely many possible values. Therefore the inequalities

µA(N,M0) < µA(N,M1) < . . . < µA(N,Mn) < µA(N,Mn+1) < . . .

cannot hold simultaneously.

Remark 3.14. — We consider the semi-stability of this Harder-Narasimhan
game. Let p be the least element of the set µ(0,M) in (Spec(R),⩽). The
Harder-Narasimhan game of pay-off function µ is semi-stable if and only if, for
any N ∈ L \ {0}, one has µA(0, N) = {p}, or equivalently, p is an associated
prime ideal of N . Therefore, we obtain that the semi-stability of the Harder-
Narasimhan game is equivalent to the condition that M has only one associated
prime ideal (namely M is coprimary).

Theorem 3.15. — Let M be a non-zero R-module of finite type. There exists
a unique sequence

0 = M0 ⊊ M1 ⊊ M2 ⊊ . . . ⊊ Mn = M

of sub-R-modules of M and a sequence

p1 > . . . > pn

of prime ideals in Spec(R) such that each subquotient Mi/Mi−1 is pi-coprimary.

Proof. — This is a direct consequence of Theorem 3.10.

Remark 3.16. — In the above theorem, the set {p1, . . . , pn} identifies with
the set Ass(M) of associated prime ideals of M . In fact, by [4, chap. IV, §1,
no.4 Théorème 2], one has

Ass(M) = µ(0,M) ⊆ {p1, . . . , pn}.
To show the reverse inclusions, remember that by Definition 3.9, for any
i ∈ {1, . . . , n} one has µA(Mi) = µA(Mi−1,Mi) = {pi}, where pi is the least
element of Ass(Mi−1,Mi) according to Proposition 3.12.

Note that the existence of filtrations of M with pi-coprimary quotients is
well-known in the literature (see for instance [4, chap. IV, §1, no.4 Théorème
1 and Théorème 2]). However, as noticed after the corollary that follows [4,
chap. IV, §1, no.4 Théorème 2] the pi’s are not necessarily uniquely determined
by M . Nevertheless, the choice of a total order on Spec(R) allows one to get a
more canonical filtration: while for the aforementioned well-known filtrations
one only had the inclusion Ass(M) ⊆ {p1, . . . , pn}, the choice of a total order
allows to obtain the Harder-Narasimhan filtration of Theorem 3.15 by ordering
Ass(M) ⊆ {p1, . . . , pn} and choosing these ordered elements as the pi’s, in
decreasing order. This is [4, chap. IV, Exercises, §2, Exercise 7]. This also
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clarify the impact the choice of a total order on Spec(R) has: it will permute
the pi’s, but the number of factors in the filtration will remain the same.

3.5. Reductive group schemes over a curve. — Let C be a regular
projective curve defined over a field k, and let K be the function field of C.
For any smooth affine algebraic group scheme with connected fibers H over
C, one defines the degree of H to be that of its Lie algebra seen as a vector
bundle over C.

Let G be a reductive group scheme over C, then deg(G) = 0 (see [2, Note
4.2]), and the degrees of parabolic subgroups P ⊆ G are bounded from above
by a non-negative integer (this is a consequence of Riemann-Roch Theorem,
see [2, Lemma 4.3]). A reductive group is semi-stable if deg(P ) ≤ 0 for every
parabolic subgroup P ⊆ G (see [2, Definition 4.4]). The largest integer d for
which there exists a parabolic subgroup P ⊆ G of degree d is the degree of
instability of G, denoted di.

Fix a Borel subgroup B̃ ⊆ G as well as an adapted pinning for B. We
consider the set L of parabolic subgroups of G and endow L with the order
induced by the type of the parabolic (see for instance [12, XXVI 3.2 and
3.7]). For this order L has a greatest element, namely G, and a least element,
namely B̃. Note that here, any pair of elements indeed has a maximal and
a minimal element to any parabolic couple (P,Q) corresponds a pair (P ′, Q′)

of parabolic subgroups of same type of P , respectively Q, that contain B̃ and
the minimal, respectively maximal element of (P,Q) is that (P ′, Q′). For any
couple of parabolic subgroups (P,Q) ∈ L we let µ(P,Q) = deg(Q). Hence

µA(P,Q) = inf
P⊆P ′⊊Q

sup
P ′⊊Q′⊆Q

deg(Q′),

so in particular

µA(G0, G) = inf
G0⊆P ′⊊G

sup
P ′⊊Q′⊆G

deg(Q′) = 0,

because
sup

P ′⊊Q′⊆G
deg(Q′) ⩾ 0

since deg(G) = 0. Therefore G is semi-stable if and only if deg(P ) ⩽ 0 for
every parabolic subgroup P ⊆ G. Indeed if G is semi-stable then

µA(P ) := µA(B̃, P ) ≤ µA(B̃,G) = 0.

Hence
inf

B̃⊆P ′⊊P
sup

P ′⊊Q′⊆P
deg(Q′) ≤ 0,

which means, in particular, that deg(P ) ≤ 0. The reverse implication is clear
as deg(G) is always considered in µA(B̃,G). In particular, µ is semi-stable as
in Definition 3.6 if and only if G is semi-stable in the sense of [2]. Moreover,
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according to Proposition 3.4, there exists a maximal destabilising element in
L : the restriction of the group structure to a parabolic subgroup Pi of G of
degree di such that P is maximal for the inclusion. Hence the machinery of
Harder–Narasimhan games provides another proof of [2, Theorem 7.3].

With the same notations as in the above example, let E be a G-torsor with
respect to the fppf-topology. Any parabolic subgroup P ⊂ G together with
a section σ : C → E(G/P ) defines a reduction of the structure group of E
to P , denoted as EP . In particular EG := E. The degree of a reduction
of the structure group of E to P is that of the corresponding vector bundle
σ∗E×Ad Lie(P ). This degree satisfies the same properties as the degree of the
parabolic subgroups of G introduced so far. In particular it is bounded by a
positive integer, and the degree of E is 0. We set

di(E) := max{deg(σ∗E×AdLie(P )) | P ⊆ G is parabolic and σ : X → E(G/P ).}

As above we fix a Borel subgroup B̃ and we consider the set of reductions of
the structure group of E to a parabolic subgroup of G containing B̃, denoted
as LE . We endow LE with the order induced by that on L for parabolic
subgroups of G. For any couple (EP , EQ) of reductions of the structure group
of E to parabolic subgroups P ⊂ Q of G, we let µ(EP , EQ) = deg(EQ). Hence

µA(EP , EQ) = inf
P⊆P ′⊊Q

sup
P ′⊊Q′⊆Q

deg(EQ′),

so in particular

µA(EB̃, EG) = inf
B̃⊆P ′⊊G

sup
P ′⊊Q′⊂′sG

deg(EQ′) = 0,

because supP ′⊊Q′⊆G deg(EQ′ ⩾ 0 as deg(EG) = 0. Therefore EG is semi-stable
if and only if deg(EP ) ⩽ 0 for every reduction of group structure (P, β) of E.
Indeed, if EG is semi-stable then

µA(EP ) := µA(EB̃, EP ) ≤ µA(EB̃, EG) = 0.

Hence
inf

B̃⊆P ′⊊P
sup

P ′⊊Q′⊆P
deg(EQ′) ≤ 0,

which means, in particular, that

deg(EP ) := deg(σ∗E ×Ad Lie(P )) ≤ 0.

The reverse implication is clear as deg(EG) is always considered in µA(EB̃, EG).
In particular, µ is semi-stable as defined in Definition 3.6 if and only if EP is
semi-stable in the sense of [22, Proposition 4.2] (note that the degrees there
are positive because the author’s chose a different convention). Moreover,
according to 3.4, there exists a maximal destabilising element in L : the
reduction of the group structure of E to a parabolic subgroup Pi of G of
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degree di such that P is maximal for the inclusion, hence we find back [22,
Theorem 4.3].

4. Comparison with classic Harder-Narasimhan theory

Classic Harder-Narasimhan theory deals with the semi-stability and canon-
ical filtration of vector bundles on a regular projective curve C. Let E be a
non-zero vector bundle on C, that is, a locally free OC-module of finite rank.
We denote by LE the set of all vector subbundles of E. This set, equipped
with the relation of inclusion, forms a bounded lattice. Note that the greatest
element of LE is E, the least element of LE is the zero vector bundle 0. If F1

and F2 are two vector subbundles of E, then the infimum of {F1, F2} is equal
to the intersection of F1 and F2, and the supremum of {F1, F2} is equal to the
sum of F1 and F2.

For any vector subbundle F of E, we denote by

deg(F ) := deg(c1(F ) ∩ [C])

the degree of F , where c1 is the first Chern class of F and [C] is the fundamental
class of C. If (F ′, F ) is an element of P⊊(LE), in the case where rk(F ′) <
rk(F ), we let

µ(F ′, F ) :=
deg(F )− deg(F ′)

rk(F )− rk(F ′)
,

otherwise let µ(F ′, F ) = +∞. We thus obtain a function µ on P⊂(LE) valued
in the extended real number line [−∞,+∞], which gives the pay-off function
of a Harder-Narasimhan game.

Recall that the vector bundle E is said to be semi-stable if, for any non-zero
vector subbundle F ⊆ E, one has

µ(0, F ) =
deg(F )

rk(F )
⩽

deg(E)

rk(E)
= µ(0, E).

In this section, we compare the semi-stability of Harder-Narasimhan game with
this semi-stability condition by placing the problem in a general context, before
addressing this specific situation in example 4.22. In what follows, we fix a
bounded poset (L ,⩽), a complete lattice (S,⩽) and a map µ : P<(L ) → S.

4.1. Conditions for first-mover advantage. — Recall that

µ∗
A = inf

x∈L \{⊤}
sup
y∈L
x<y

µ(x, y)
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delimits the optimal pay-off of the Harder-Narasimhan game under the hy-
pothesis that Alice goes first. Similarly,

µ∗
B = sup

y∈L \{⊥}
inf
x∈L
x<y

µ(x, y)

delimits the optimal pay-off of the Harder-Narasimhan game under the hy-
pothesis that Bob goes first. Since the purpose of Alice is to minimize the
pay-off and that of Bob is to maximize it, we obtain that the game favors the
first mover if and only if µ∗

A ⩽ µ∗
B. In fact, if Alice goes first, then the optimal

pay-off µ∗
A is not greater than that in the case where she goes second. So she

has an advantage to go first since her purpose is to minimize the pay-off. For
the same reason, if Bob goes first, then the optimal pay-off is not less than
that in the case where he goes second, and thus he also has an advantage to go
first since his aim is to maximize the pay-off. The following proposition gives
a criterion of first-mover advantage.

Proposition 4.1. — Assume that the following conditions are satisfied:
(1) For any ascending chain

x0 < x1 < . . . < xn < xn+1 < . . .

of elements of L , there exists N ∈ N such that µ(xN , xN+1) ⩽ µ(xN ,⊤).
(2) For any (x, y) ∈ L 2 such that x < y < ⊤, either µ(x, y) ⩽ µ(x,⊤) or

µ(y,⊤) ⩽ µ(x,⊤).
Then the following equality holds

(4.1) µ∗
A := inf

x∈L \{⊤}
sup
y∈L
x<y

µ(x, y) = inf
x∈L \{⊤}

µ(x,⊤).

In particular, one has µ∗
A ⩽ µ∗

B, namely the game favors the player who makes
the first choice.

Proof. — We show that, if Bob goes first and chooses the element ⊤, whatever
choice yA that Alice makes in the second step, there exists an element xA of
L \ {⊤} such that

∀xB ∈ L , xA < xB =⇒ µ(xA, xB) ⩽ µ(yA,⊤).

This statement signifies that Alice would be able to match or even beat the
pay-off result µ(yA,⊤) if she went first. In particular, we have

µ∗
A = inf

x∈L \{⊤}
sup
y∈L
x<y

µ(x, y) ⩽ inf
x∈L \{⊤}

µ(x,⊤).

Since
∀x ∈ L \ {⊤}, µ(x,⊤) ⩽ sup

y∈L , x<y
µ(x, y),
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this leads to the equality (4.1).
We reason by contradiction in assuming that yA is an element of L \ {⊤}

such that, for any xA ∈ L \ {⊤}, there exists xB ∈ L satisfying

xA < xB and µ(xA, xB) ̸⩽ µ(yA,⊤).

In the particular case where xA = yA, we obtain that there exists yB ∈ L such
that

(4.2) yA < yB and µ(yA, yB) ̸⩽ µ(yA,⊤).

By the condition (1), we may assume that yA is maximal among{
y′A ∈ L \ {⊤}

∣∣∣∣ ∀xA ∈ L \ {⊤}, ∃xB ∈ L such that
xA < xB and µ(xA, xB) ̸⩽ µ(y′A,⊤)

}
.

Therefore, if y′A ∈ L \ {⊤} is such that yA < y′A and µ(yA, y
′
A) ̸⩽ µ(yA,⊤),

there exists x′A ∈ L \ {⊤} such that

(4.3) ∀w ∈ L , x′A < w =⇒ µ(x′A, w) ⩽ µ(y′A,⊤).

By the condition (2), one then has µ(y′A,⊤) ⩽ µ(yA,⊤). However, by the
hypothesis on yA, for any x′A ∈ L \⊤ there exists x′B ∈ L such that x′A < x′B
and µ(x′A, x

′
B) ̸⩽ µ(yA,⊤). But then the inequality µ(y′A,⊤) ⩽ µ(yA,⊤)

cannot hold true since otherwise (4.3) applied to w = x′B would give

µ(x′A, x
′
B) ⩽ µ(y′A,⊤) ⩽ µ(yA,⊤),

which leads to a contradiction. Thus, we obtain µ(yA, y
′
A) ⩽ µ(yA,⊤) for any

y′A ∈ L such that yA < y′A ⩽ ⊤, which contradicts the condition (4.2) for yA.
Therefore, the equality (4.1) holds.

Finally, since

µ∗
B = sup

y∈L \{⊥}
inf
x∈L
x<y

µ(x, y),

the equality (4.1) leads to

µ∗
A = inf

x∈L \{⊤}
µ(x,⊤) ⩽ µ∗

B.

Remark 4.2. — Note that the condition (1) of Proposition 4.1 is a weak
version of the ascending chain condition, which is clearly satisfied by the
bounded lattice of vector subbundles of a vector bundle on a regular projective
curve.
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4.2. Dual Harder-Narasimhan game. — We consider the converse order
on the sets L and S. Note that (L ,⩾) still forms a bounded poset, and
(S,⩾) is a complete lattice. Let µ̃ : P>(L ) → S be the map that sends a pair
(y, x) ∈ P>(L ) to µ̃(y, x) := µ(x, y). This map defines the pay-off function
of a Harder-Narasimhan game on (L ,⩾). We call this game the dual of the
Harder-Narasimhan game on (L ,⩽) with pay-off function µ. By definition,
one has

µ̃∗
B = inf

b∈L \{⊤}
sup
a∈L
a>b

µ(b, a) = µ∗
A,

µ̃∗
A = sup

a∈L \{⊥}
inf
b∈L
a>b

µ(b, a) = µ∗
B

where the infima and the suprema are taken in the initial complete lattice
(S,⩽) in order to avoid confusions.

Proposition 4.3. — Assume that the following conditions are satisfied:
(1̃) For any descending chain x0 > x1 > . . . > xn > xn+1 > . . . of elements

of L , there exists N ∈ N such that µ(⊥, xN ) ⩽ µ(xN+1, xN ).

(2̃) For any triple (x, y) ∈ L 2 such that ⊥< x < y, either µ(⊥, x) ⩽ µ(x, y)
or µ(⊥, y) ⩽ µ(⊥, x).

Then the following equality holds:

(4.4) µ∗
B := sup

y∈L \{⊥}
inf
x∈L
x<y

µ(x, y) = sup
y∈L \{⊥}

µ(⊥, y).

In particular, one has µ∗
A ⩽ µ∗

B, namely the dual game favors the player who
makes the first choice.

Proof. — This is a consequence of Proposition 4.1 by passing to the dual
Harder-Narasimhan game.

Remark 4.4. — The condition (1̃) of Proposition 4.3, which is the dual of
the condition (1) of Proposition 4.1) and appears as a strong version of a
descending chain condition, is notably satisfied in the following situation. Let
r : L → R be an increasing map whose image is a well-ordered subset of R. If
µ : P<(L ) → S is a map such that µ(x, y) = +∞ whenever r(x) = r(y), then
it satisfies the condition (1̃) of Proposition 4.3. In fact, if

x0 > x1 > . . . > xn > xn+1 > . . .

is a descending chain of elements of L , then there exists N ∈ N such that

r(xN ) = min{r(xn) : n ∈ N}.
Thus, r(xN+1) = r(xN ), and hence

µ(xN+1, xN ) = +∞ ⩾ µ(⊥, xN ).
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4.3. Slope-like pay-off function. — Remarks 4.2 and 4.4 investigate cer-
tain conditions under which the condition (1) of Proposition 4.1 and the con-
dition (1̃) of Proposition 4.3. In this subsection, we show that, if the pay-off
function µ can be expressed as the quotient of two additive functions satisfy-
ing certain mild properties (encoding a locally concave or convex behaviour),
then it satisfies the condition (2) of Proposition 4.1 and the condition (2̃) of
Proposition 4.3.

Definition 4.5. — We say that the pay-off function µ is slope-like if, for any
(x, y, z) ∈ L 3 such that x < y < z, the following four statements hold:

(1) Either µ(x, y) ⩽ µ(x, z), or µ(y, z) < µ(x, z).

(2) Either µ(x, y) < µ(x, z), or µ(y, z) ⩽ µ(x, z).

(3) Either µ(x, z) < µ(x, y), or µ(x, z) ⩽ µ(y, z).

(4) Either µ(x, z) ⩽ µ(x, y), or µ(x, z) < µ(y, z).

It is not hard to check that, if µ is slope-like, then µ[a,b] is also slope-like for
any (a, b) ∈ P<(L ). Moreover, the condition (2) of Proposition 4.1 and the
condition (2̃) of Proposition 4.3 can be derived respectively from conditions (1)
and (4) if µ is slope-like. The following Proposition establishes a link between
the slope-like condition with the seesaw property introduced by Rudakov [31,
Definition 1.1].

Proposition 4.6. — The pay-off function µ is slope-like if and only if, for
any (x, y, z) ∈ L 3 such that x < y < z, one (and only one) of the statements
below is true

(a) µ(x, y) < µ(x, z) < µ(y, z),

(b) µ(x, y) > µ(x, z) > µ(y, z),

(c) µ(x, y) = µ(x, z) = µ(y, z).

Proof. — “⇐=”: Let (x, y, z) ∈ L 3 such that x < y < z. If µ(y, z) ̸< µ(x, z),
then the statement (b) is not true. Thus (a) or (c) is true, which shows that
µ(x, y) ⩽ µ(x, z) holds. Hence the statement (1) in Definition 4.5 holds. The
proof of other statements are similar.

“=⇒”: Let (x, y, z) ∈ L 3 such that x < y < z. There are two possibilities:

— either µ(x, y) < µ(x, z), one has µ(x, y) ̸⩾ µ(x, z). Hence by (4) we
obtain µ(x, z) < µ(y, z);

— or µ(x, y) ̸< µ(x, z), by (2) we obtain µ(y, z) ⩽ µ(x, z). Hence µ(y, z) ̸>
µ(x, z). Furthermore, by (4) one has µ(x, z) ⩽ µ(x, y):

— if µ(x, z) < µ(x, y), one has µ(x, z) ̸⩾ µ(x, y) and hence by (1) we
obtain µ(y, z) < µ(x, z);
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— if µ(x, z) = µ(x, y), then µ(x, z) ̸< µ(x, y), and by (3) we obtain
µ(x, z) ⩽ µ(y, z), which leads to the equality µ(x, z) = µ(y, z).

Definition 4.7. — We call a totally ordered vector space over R any real
vector space V equipped with a total order ⩽ that satisfies the following
condition: if y and z are two elements of V such that y ⩽ z, then,

(1) for any x ∈ V one has x+ y ⩽ x+ z,

(2) for any λ ∈ R⩾0 one has λy ⩽ λz.

The following proposition shows that the pay-off function µ is slope-like if
it is induced by a degree function valued in an ordered vector space.

Proposition 4.8. — Let (V,⩽) be a totally ordered vector space over R and
(S,⩽) be the Dedekind–MacNeille completion of (V,⩽) (namely the smallest
complete lattice containing (V,⩽)). Let

r : P<(L ) −→ R⩾0 and d : P<(L ) −→ V

be two maps that satisfy the following conditions:

(i) For any (x, y, z) ∈ L 3 with x < y < z, one has

d(x, z) = d(x, y) + d(y, z), r(x, z) = r(x, y) + r(y, z).

(ii) For any (x, y) ∈ L 2 such that x < y, if r(x, y) = 0 then d(x, y) > 0.

Suppose that µ : P<(L ) → S is given by

µ(x, y) =

{
r(x, y)−1d(x, y), if r(x, y) > 0,

+∞, if r(x, y) = 0.

Then the function µ is slope-like.

Proof. — Let x, y and z be three elements of L 3 such that x < y < z. By
(i), one has

(4.5) d(x, z) = d(x, y) + d(y, z).

We proceed case by case:

— In the case where r(x, z) > 0:

— if r(x, y) > 0 and r(y, z) > 0, then using that r(x, z) = r(x, y) +
r(y, z) we can write 4.5 as

r(x, y)µ(x, z) + r(y, z)µ(x, z) = r(x, y)µ(x, y) + r(y, z)µ(y, z),

which shows that one of the statements (a), (b) and (c) defined in
Proposition 4.6 is true.
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— If r(x, y) = 0 and r(y, z) > 0, by (ii) we have d(x, y) > 0 and
µ(x, y) = +∞. Hence, the inequality µ(x, z) < µ(x, y) holds.
Moreover, one has r(x, z) = r(y, z) and therefore (4.5) leads to

µ(x, z) =
d(x, z)

r(x, z)
>

d(y, z)

r(x, z)
=

d(y, z)

r(y, z)
= µ(y, z).

— If r(y, z) = 0 and r(x, y) > 0, we have d(y, z) > 0 and µ(y, z) =
+∞. Hence the inequality µ(x, z) < µ(y, z) holds. Moreover, one
has r(x, z) = r(x, y) and hence (4.5) leads to

µ(x, z) =
d(x, z)

r(x, z)
>

d(x, y)

r(x, z)
=

d(x, y)

r(x, y)
= µ(x, y).

— In the case where r(x, z) = 0 then r(x, y) = r(y, z) = 0 and one has:

µ(x, z) = µ(x, y) = µ(y, z) = +∞.

4.4. Nash equilibrium and semi-stability. — We say that the Harder-
Narasimhan game with pay-off function µ has Nash equilibrium if µ∗

A = µ∗
B. In

other words, it is equally beneficial for Alice or Bob to go first in the game. The
value of µ∗

A = µ∗
B is called the equilibrium pay-off of the Harder-Narasimhan

game.
In order to facilitate the comparison with the classic Harder-Narasimhan

theory, we introduce the following notation.

Notation 4.9. — For any (x, y) ∈ P<(L ), we denote by

µmax(x, y) := sup
w∈L
x<w⩽y

µ(x,w), µmin(x, y) := inf
w∈L
x⩽w<y

µ(w, y)

By definition, the following inequalities holds:

µmin(x, y) ⩽ µ(x, y) ⩽ µmax(x, y).

For simplicity, µmax(⊥, y) is also denoted by µmax(y), and similarly µmin(⊥, y)
is also denoted by µmin(y).

Remark 4.10. — With the above notation, one can rewrite the optimal pay-
offs µ∗

A and µ∗
B as

µ∗
A = inf

x∈L \{⊤}
µmax(x,⊤), µ∗

B = sup
y∈L \{⊥}

µmin(y).

In particular, the inequality µ∗
B ⩽ µ∗

A is equivalent to

∀x ∈ L \ {⊤}, ∀ y ∈ L \ {⊥}, µmin(y) ⩽ µmax(x,⊤).



32 HUAYI CHEN & MARION JEANNIN

If µ satisfies the conditions of Proposition 4.1, then one has µ∗
A = µmin(⊤),

and Nash equilibrium condition can be rewritten as

∀ y ∈ L \ {⊥}, µmin(y) ⩽ µmin(⊤).

Similarly, if µ satisfies the conditions of Proposition 4.3, then one has µ∗
B =

µmax(⊤), and Nash equilibrium condition can be rewritten as

∀x ∈ L \ {⊤}, µmax(⊤) ⩽ µmax(x,⊤).

Proposition 4.11. — If µmin(⊤) = µmax(⊤), then the inequality µ∗
B ⩽ µ∗

A
holds. The converse is true if µ satisfies all conditions of Propositions 4.1 and
4.3.

Proof. — Since

µmax(⊤) := sup
y∈L \{⊥}

µ(⊥, y), µmin(⊤) := inf
x∈L \{⊤}

µ(x,⊤).

The equality µmin(⊤) = µmax(⊤) is equivalent to

∀x ∈ L \ {⊤}, ∀ y ∈ L \ {⊥}, µ(⊥, y) ⩽ µ(x,⊤).

Joint with the inequalities µmin(y) ⩽ µ(⊥, y) and µ(x,⊤) ⩽ µmax(x,⊤), by
Remark 4.10, we obtain µ∗

B ⩽ µ∗
A.

In the case where µ satisfies the conditions of Propositions 4.1 and 4.3, then
one has

µmin(⊤) = µ∗
A ⩽ µ∗

B = µmax(⊤).

Hence, if µ∗
B ⩽ µ∗

A, then the equality µmin(⊤) = µmax(⊤) holds to be true.

Proposition 4.12. — Suppose that, for any x ∈ L \ {⊥,⊤},
either µ(⊥, x) ̸⩽ µ(⊥,⊤), or µ(⊥,⊤) ⩽ µ(x,⊤).

If µmax(⊤) = µ(⊥,⊤), then µmin(⊤) = µmax(⊤).

Proof. — Let x be an element of L \ {⊥,⊤}. Since µmax(⊤) = µ(⊥,⊤),
one has µ(⊥, x) ⩽ µ(⊥,⊤), and hence, by the hypothesis of the proposition,
µ(⊥,⊤) ⩽ µ(x,⊤). Hence µmin(⊤) = µ(⊥,⊤).

Remark 4.13. — When µ is slope-like, for any x ∈ L \{⊥,⊤} the condition

either µ(⊥, x) ̸⩽ µ(⊥,⊤), or µ(⊥,⊤) ⩽ µ(x,⊤)

can be deduced from the point (3) of Definition 4.5 applied to ⊥ ⩽ x ⩽ ⊤.

Proposition 4.14. — Suppose that, for any x ∈ L \ {⊥,⊤},
either µ(⊥, x) ⩽ µ(⊥,⊤), or µ(⊥,⊤) ̸⩽ µ(x,⊤).

If µmin(⊤) = µ(⊥,⊤), then µmax(⊤) = µmin(⊤).

Proof. — The statement follows from Proposition 4.12 by passing to the dual
Harder-Narasimhan game.
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Remark 4.15. — When µ is slope-like, for any x ∈ L \{⊥,⊤} the condition

either µ(⊥, x) ⩽ µ(⊥,⊤), or µ(⊥,⊤) ̸⩽ µ(x,⊤).

can be deduced from the point (1) of Definition 4.5 applied to ⊥ ⩽ x ⩽ ⊤.

Proposition 4.16. — Suppose that the pay-off function µ is slope-like.

(1) The following statements are equivalent:

(a) µmax(⊤) = µ(⊥,⊤),

(b) µmin(⊤) = µ(⊥,⊤),

(c) µmin(⊤) = µmax(⊤).

(2) If in addition (L ,⩽) satisfies the conditions (1) and (1̃) of Propositions
4.1 and 4.3, then these conditions are also equivalent to

(d) the Harder-Narasimhan game of pay-off function µ has Nash equi-
librium.

Proof. — The implications (a) =⇒ (c) and (b) =⇒ (c) are consequences re-
spectively of Propositions 4.12 and 4.14. The reverse implications (c) =⇒ (b)
and (c) =⇒ (a) come from Proposition 4.6 because µ is slope-like. The equiv-
alence to (d) under the conditions (1) and (1̃) of Propositions 4.1 and 4.3 is a
consequence of Proposition 4.11.

Example 4.17. — Consider the Harder-Narasimhan game described in §3.2
and illustrated by the following edge-weighted oriented graph.

⊥
c

77
a // x

b // ⊤

We assume that (S,⩽) is totally ordered. As explained in §3.2, the Harder-
Narasimhan game is semi-stable if and only if a ⩽ b. Note that

(1) µmin(⊤) = b ∧ c is equal to µ(⊥,⊤) = c if and only if c ⩽ b,

(2) µmax(⊤) = a ∨ c is equal to µ(⊥,⊤) = c if and only if a ⩽ c,

(3) µmin(⊤) = b ∧ c is equal to µmax(⊤) = a ∨ c if and only if a ⩽ c ⩽ b.

(4) the inequality µ∗
A ⩽ µ∗

B always holds (1), and the Harder-Narasimhan
game has Nash equilibrium if and only if a ⩽ b (2).

1. In fact, if a ⩽ c, then µ∗
A = c∧ b ⩽ µ∗

B = a∨ (b∧ c). If c ⩽ a, then b∧ c ⩽ a and hence
µ∗
A = a ∧ b ⩽ a = µ∗

B .
2. Clearly the inequality µ∗

B ⩽ µ∗
A implies a ⩽ b. Conversely, if a ⩽ b, then a ⩽ a ∨ c,

b ∧ c ⩽ b and b ∧ c ⩽ a ∨ c. Hence the inequality µ∗
B ⩽ µ∗

A holds.
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Proposition 4.18. — Assume that (S,⩽) is a totally ordered set. If the
Harder-Narasimhan game is semi-stable, then one has µ∗

B ⩽ µ∗
A. In partic-

ular, in the case where the conditions of Proposition 4.1 are satisfied or the
conditions of Proposition 4.3 are satisfied, the Harder-Narasimhan game has
Nash equilibrium.

Proof. — For any x ∈ L \ {⊥}, one has

µA(x) = inf
a∈L
a<x

sup
b∈L
a<b⩽x

µ(a, b) ⩾ inf
a∈L
a<x

µ(a, x) = µmin(x).

Taking the supremum with respect to x one therefore has

µ∗
B = sup

x∈L \{⊥}
µmin(x) ⩽ sup

x∈L \{⊥}
µA(x).

If the Harder-Narasimhan game is semi-stable, then

sup
x∈L \{⊥}

µA(x) ⩽ µ∗
A.

The proposition is thus proved.

The following simple example shows that even when the pay-off function of
the Harder-Narasimhan game has values in a totally ordered set (S,⩽), the
semi-stability of the game is not equivalent to have the inequality µ∗

A ⩽ µ∗
B.In

other words the inequality µ∗
A ⩽ µ∗

B may fail without presuming anything
about the semi-stability of the game.

Example 4.19. — Consider the following weighted and directed graph

⊥ a //

d

77

f

>>x
b //

e

##
y

c // ⊤

where a, b, c, d, e and f take value in a totally ordered set (S,⩽). By definition,
one has

µ∗
A = (a ∨ d ∨ f) ∧ (b ∨ e) ∧ c, µ∗

B = a ∨ (b ∧ d) ∨ (c ∧ e ∧ f).

In the case where a, b, c, d, e and f satisfy

(4.6) b < a < e < c, f < a < d,

one has
µ∗
A = d ∧ e ∧ c = d ∧ e, µ∗

B = a ∨ b ∨ f = a.

Hence µ∗
B < µ∗

A.
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Let us consider the semi-stability of this Harder-Narasimhan game. By
definition,

µA(⊤) = (a ∨ d ∨ f) ∧ (b ∨ e) ∧ c,

µA(y) = (a ∨ d) ∧ b, µA(x) = a.

Under the assumption (4.6), one has

µA(⊤) = d ∧ e, µA(y) = b < µA(⊤), µA(x) = a < µA(⊤).

Hence the Harder-Narasimhan game is semi-stable.

Proposition 4.20. — Assume that, for any x ∈ L \ {⊥}, the function µ[⊥,x]

satisfies the conditions of Proposition 4.1. If the Harder-Narasimhan game has
Nash equilibrium, then it is semi-stable.

Proof. — By Proposition 4.1, one has

∀x ∈ L \ {⊥}, µA(x) = µmin(x).

Taking the supremum with respect to x, we obtain

sup
x∈L \{⊥}

µA(x) = µ∗
B.

Therefore, if µ∗
B = µ∗

A = µA(⊤), then, for any x ∈ L \ {⊥}, one has
µA(x) ⩽ µA(⊤). Hence the Harder-Narasimhan game is semi-stable.

If we combine the statements of Propositions 4.16, 4.18 and 4.20, we obtain
the following result.

Theorem 4.21. — Assume that the following conditions are satisfied:
(i) for any ascending chain x0 < x1 < . . . < xn < xn+1 < . . . of elements of

L , there exists N ∈ N such that µ(xN , xN+1) ⩽ µ(xN ,⊤) (condition (1)
of Proposition 4.1);

(ii) for any descending chain x0 > x1 > . . . > xn > xn+1 > . . . of elements
of L , there exists N ∈ N such that µ(⊥, xN ) ⩽ µ(xN+1, xN ) (condition
(1̃) of Proposition 4.3);

(iii) the complete lattice is totally ordered and the pay-off function µ is slope-
like (in particular, the conditions (2) and (2̃) of Propositions 4.1 and 4.3
are satisfied by µ and also by its restrictions).

Then the following statements are equivalent:
(a) µmax(⊤) = µ(⊥,⊤);
(b) µmin(⊤) = µ(⊥,⊤);
(c) µmin(⊤) = µmax(⊤);
(d) the Harder-Narasimhan game of pay-off function µ has Nash equilibrium;
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(e) the Harder-Narasimhan game of pay-off function µ is semi-stable.

Example 4.22. — Consider the Harder-Narasimhan game associated with a
non-zero vector bundle E on a regular projective curve C, as described in
the beginning of the section. Note that the pay-off function of this Harder-
Narasimhan game is slope-like, as shown by Proposition 4.8. Moreover, the
bounded lattice LE satisfies the ascending chain condition. Therefore, the
conditions (1) and (2) of Proposition 4.1 are satisfied. In particular, one has
µA(E) = µmin(E). By Remark 4.4, the condition (1̃) of Proposition 4.3 is also
satisfied. Therefore, by Theorem 4.21, we obtain that the following statements
are equivalent:
(a) The vector bundle E is semi-stable in the usual sense, namely

µ(E) = µmax(E) := sup
0 ̸=F⊆E

µ(F );

(b) µ(E) = µmin(E);
(c) µmax(E) = µmin(E);
(d) The Harder-Narasimhan game has Nash equilibrium;
(e) The Harder-Narasimhan game is semi-stable, namely, for any non-zero

vector subbundle F of E, one has µmin(F ) ⩽ µmin(E).

Example 4.23. — Let R[T ] be the real vector space of polynomials of one
variable T . We equip R[T ] with the order ⩽ defined as follows:

P ⩽ Q ⇐⇒ ∃N ∈ N, ∀n ∈ N⩾N , P (n) ⩽ Q(n).

Note that P < Q if and only if the leading coefficient of the polynomial Q−P is
positive. Hence it is a total order on R[T ]. Moreover, R[T ] is a totally ordered
vector space over R. We denote by (S,⩽) the Dedekind-MacNeille completion
of (R[T ],⩽).

Let k be a field, X be a projective scheme over Spec k and d be the Krull
dimension of X. We fix an ample line bundle OX(1) on X. If E is a coher-
ent OX -module, we denote by HE the Hilbert polynomial of E, which is a
polynomial in R[T ] such that

∀n ∈ N⩾1, PE(n) = χ(E ⊗OX(n)).

We denote by rE the coefficient of T d in the polynomial HE . Note that rE
is always non-negative (it is positive precisely when the support of E is of
dimension d). If

0 // E′ // E // E′′ // 0

is a short exact sequence of coherent OX -modules, then the following equalities
hold:

rE = rE′ + rE′′ , HE = HE′ +HE′′ .
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We fix a non-zero coherent OX -module E and denote by LE the set of
coherent sub-OX -module of E equipped with the order of inclusion. Then
(LE ,⊆) forms a bounded lattice. Moreover, the map

µ : P⊆(LE) −→ S, µ(F,E) :=

{
r−1
E/FQE/F , rE/F > 0,

+∞, else,

defines a pay-off function of a Harder-Narasimhan game. By Proposition
4.8, the function µ is slope-like. By Theorem 4.21, we obtain that the Nash
equilibrium of this Harder-Narasimhan game is equivalent to the Gieseker semi-
stability of the coherent sheaf E with respect to the polarisation OX(1) (see
[18, §1.2]).

Example 4.24. — Let G be a reductive group scheme over a regular projec-
tive curve C. Note that the pay-off function of the game defined in section
3.5 is not slope-like. One could therefore seek for a Harder-Narasimhan game
with slope-like pay-off function that would better take into account the fact the
underlying vector bundle setting (as all this discussion is possible because the
Lie algebra of an algebraic group over a curve is in particular a vector bundle).
One can therefore consider the Harder-Narasimhan game associated with the
Lie algebra g of G on the regular projective curve C, as described in the begin-
ning of the section. Note that if this game is semi-stable then by Theorem 4.21
for any vector subbundle F ⊆ g one has µ(F ) ≤ sup0⊊F⊆g µ(F ) = µ(g) = 0. In
particular, any parabolic subgroup of G has negative degree, so if this slope-like
game is semistable so is the game defined in Section 3.5.

If now this slope-like game is not semi-stable, let

0 = E0 ⊆ E1 ⊆ · · · ⊆ En−1 ⊆ g

be the Harder-Narasimhan filtration associated to the game. Then from the
properties of the Harder-Narasimhan filtration together with the example 4.22
one deduces that µA(g) ⩽ 0, µA(E1) ⩾ 0. Indeed if 0 < µA(g) the slope
µ(En−1, g) is strictly positive, so deg(En−1) is strictly negative. Moreover,
as µA(Ei−1, Ei) = µ(Ei−1, Ei) > µA(Ei, Ei+1) = µ(Ei, Ei+1) for any i ∈
{1, . . . , n−1} the slopes µ(Ei, Ei+1) are strictly positive, therefore the deg(Ei)’s
are strictly negative for i ∈ {1, . . . , n − 1}. But then (a) tells us that any
subbundle of g is of negative degree, so g is semistable, hence a contradiction.
On the same spirit, if µA(E1) < 0 then deg(E1) < 0, for any i ∈ {1, . . . , n}
one has deg(Ei) < deg(Ei−1), leading to a contradiction as deg(g) = 0.

4.5. Jordan-Hölder filtration. — In this subsection, we consider a Harder-
Narasimhan game which is known to be semi-stable and we study its stable
filtrations. Let (L ,⩽) be a bounded lattice and µ be a mapping from P<(L )
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to a complete lattice (S,⩽), which defines a Harder-Narasimhan game. We
assume the following:

(i) the bounded lattice (L ,⩽) satisfies the ascending chain condition (in
particular, the condition (1) of Proposition 4.1 is satisfied);

(ii) for any descending chain

x0 > x1 > . . . > xn > xn+1 > . . .

of elements of L , there exists N ∈ N such that µ(xN+1, xN ) = +∞ (in
particular, condition (1̃) of Proposition 4.3 is satisfied);

(iii) (S,⩽) is a totally ordered set and the function µ is slope-like;

(iv) the Harder-Narasimhan game is semi-stable, namely (see Theorem 4.21)

∀x ∈ L \ {⊥}, µ(⊥, x) ⩽ µ(⊥,⊤).

Theorem 4.25. — Assume that µ(⊥,⊤) ̸= +∞. There exists a sequence

(4.7) ⊤ = y0 > y1 > . . . > yn = ⊥

such that, for any i ∈ {1, . . . , n}, µ(yi, yi−1) = µ(⊥,⊤) and

∀ z ∈ L such that yi < z < yi−1, µ(yi, z) < µ(yi, yi−1).

Proof. — If for any x ∈ L \ {⊥,⊤} one has µ(⊥, x) < µ(⊥,⊤), the choice of
n = 1 and (y1, y0) = (⊥,⊤) satisfies the required condition. Otherwise the set{

x ∈ L \ {⊥,⊤} : µ(⊥, x) = µ(⊥,⊤)
}

is not empty and by the ascending chain condition we could pick a maximal
element of this set and let y1 be this element. By Proposition 4.6, one has
µ(y1,⊤) = µ(⊥,⊤). Moreover, for any x ∈ L such that y1 < x < ⊤, one has
µ(⊥, x) < µ(⊥,⊤) = µ(⊥, y1). Hence, by Proposition 4.6 one has

µ(y1, x) < µ(⊥, x) < µ(⊥, y1) = µ(y1,⊤).

Iterating this procedure we obtain a decreasing sequence

⊤ = y0 > y1 > . . .

such that µ(yi, yi−1) = µ(⊥,⊤) and

∀ z ∈ L such that yi < z < yi−1, µ(yi, z) < µ(yi, yi−1)

for any i. This procedure terminates within finitely many steps since otherwise
by the condition (ii) there would exist N ∈ N such that µ(yN+1, yN ) = +∞,
which contradicts the hypothesis µ(⊥,⊤) < +∞.
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Remark 4.26. — The sequence (4.7) in the above theorem is called a Jordan-
Hölder filtration of the Harder-Narasimhan game. It is usually not unique. In
the case where the pay-off function µ is affine, namely for any (a, b) ∈ L 2 such
that a ̸⩽ b one has

µ(a ∧ b, a) = µ(b, a ∨ b),

it can be shown that all Jordan-Hölder filtrations have the same length. Sup-
pose that

⊤ = x0 > x1 > . . . > xm = ⊥
is another Jordan-Hölder filtration of the Harder-Narasimhan game (with an
affine pay-off function). Let i ∈ {1, . . . , n} be the largest index such that
xm−1 ⩽ yi−1. Since xm−1 ̸⩽ yi, one has

(4.8) µ(⊥,⊤) = µ(⊥, xm−1) ⩽ µ(xm−1 ∧ yi, xm−1) = µ(yi, xm−1 ∨ yi).

Since yi < xm−1 ∨ yi ⩽ yi−1, we obtain that xm−1 ∨ yi = yi−1 since otherwise

µ(yi, xm−1 ∨ yi) < µ(yi, yi−1) = µ(⊥,⊤),

which leads to a contradiction.
For any j ∈ {1, . . . , n}, by Proposition 2.8 one has

µ(⊥,⊤) ⩾ µ(⊥, yj ∨ xm−1) ⩾ µmin(⊥, yj ∨ xm−1) ⩾ µ(⊥,⊤).

Hence µ(⊥, yj ∨ xm−1) = µ(⊥,⊤). By Proposition 4.6 we obtain

∀ j ∈ {1, . . . , n}, µ(yj ∨ xm−1, yj−1 ∨ xm−1) = µ(⊥,⊤).

If yj ∨ xm−1 < yj−1 ∨ xm−1, then for any w ∈ L such that

yj ∨ xm−1 < w < yj−1 ∨ xm−1,

one has yi−1 ̸⩽ w. Since the pay off function is affine, the equality

µ(yi−1 ∧ w, yi−1) = µ(w, yi−1 ∨ w) = µ(w, yi−1 ∨ xm−1)

is satisfied. Since yi ⩽ yi−1 ∧ w < yi−1, by Proposition 4.6 and the condition

µ(yi, yi−1 ∧ w) < µ(yi, yi−1) = µ(⊥,⊤)

we obtain
µ(yi−1 ∧ w, yi−1) > µ(yi, yi−1) = µ(⊥,⊤).

Still by Proposition 4.6 we deduce

µ(yi ∨ xm−1, w) < µ(⊥,⊤).

Therefore, from the sequence

⊤ = xm−1 ∨ y0 ⩾ . . . ⩾ xm−1 ∨ yn = xm−1

we could extract a Jordan-Hölder filtration of the restriction of the Harder-
Narasimhan game to L[xm−1,⊤], whose length is ⩽ n − 1 since xm−1 ∨ yi =
yi−1 = xm−1 ∨ yi−1. Iterating this procedure we obtain m ⩽ n. By the
symmetry between the two Jordan-Hölder filtrations we get m = n.
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Example 4.27. — Back to the example derived in Section 3.4, let R be a
Nœtherian ring, and let M be a p-coprimary R-module, where p is a prime
ideal of R. A Jordan–Hölder filtration of M is a filtration whose successive
quotients are isomorphic to R/p.
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