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CONTENTS 1

Abstract. — We establish an arithmetic intersection theory in the framework of
Arakelov geometry over adelic curves. To each projective scheme over an adelic curve,
we associate a multi-homogenous form on the group of adelic Cartier divisors, which
can be written as an integral of local intersection numbers along the adelic curve.
The integrability of the local intersection number is justified by using the theory of
resultants.





INTRODUCTION

Since the seminal work of Dedekind and Weber [17], the similarity between num-
ber fields and fields of algebraic functions of one variable has been known and has
deeply influenced researches in algebraic geometry and number theory. Inspired by
the discovery of Hensel and Hasse on embeddings of a number field into diverse local
fields, Weil [65] considered in the same time all places of a number field, finite or
infinite, in his theory of adèles, which made a decisive step toward the unification of
number theory and algebraic geometry. Many works have then been done along this
direction. On the one hand, the analogue of Diophantine problems (notably Mordell’s
conjecture) in the function field setting has been studied by Manin [47], Grauert [30]
and Samuel [60]; on the other hand, through Weil’s height machine [64] and the
theory of Néron-Tate’s height [51], methods of algebraic geometry have been system-
atically applied to the research of Diophantine problems, and it has been realized
that the understanding of the arithmetic of algebraic varieties over a number field,
which should be analogous to algebraic geometry over a smooth projective curve,
is indispensable in the geometrical approach of Diophantine problems. Under such
a circonstance Arakelov [1, 2] has developed the arithmetic intersection theory for
arithmetic surfaces (namely relative curves over SpecZ). Note that the transcription
of the intersection theory into the arithmetic setting is by no means automatic. The
key idea of Arakelov is to introduce transcendental objects, notably Hermitian met-
rics or Green functions, over the infinite places, in order to “compactify” arithmetic
surfaces. To each pair of compactified arithmetic divisors, he attached a family of
local intersection numbers parametrized by the set of places of the base number field.
The global intersection number is obtained by taking the sum of local intersection
numbers. Arakelov’s idea has soon led to spectacular advancements in Diophantine
geometry, especially Faltings’ proof [19] of Mordell’s conjecture.

The fundament of Arakelov geometry for higher dimensional arithmetic varieties
has been established by Gillet and Soulé, where an arithmetic intersection theory [25,
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27] for general arithmetic varieties has been established and an “arithmetic Riemann-
Roch theorem” [26] has been proved. They have introduced the notion of arithmetic
Chow groups, which is a hybride construction of the classic Chow group in algebraic
geometry and currents in complex analytic geometry. Applications of arithmetic
intersection theory in Diophantine geometry have then been developed, notably to
build up an intrinsic height theory for arithmetic projective varieties (see for example
[20, 5]). Arakelov’s height theory becomes now an important tool in arithmetic
geometry. Upon the need of including several constructions of local heights (such
as canonical local height for subvarieties in an Abelian variety) in the setting of
Arakelov geometry, Zhang [68] has introduced the notion of adelic metrics for ample
line bundles on a projective variety over a number field, which could be considered as
uniform limit of Hermitian line bundles (with possibly different integral models).

Inspired by the similarity between Diophantine analysis and Nevanlinna theory,
Gubler [34] has proposed a vast generalization of height theory in the framework of
M -fields. Recall that a M -field is a field K equipped with a measure space M and
a map from K ×M to R>0 which behaves almost everywhere like absolute values on
K. Combining the intersection product of Green currents in the Archimedean case
and the local height of Chow forms, he has introduced local heights (parametrized
by the measure space M) for a projective variety over an M -field. Assuming the
integrability of the function of local heights on the measure space M , he has defined
the global height of the variety as the integral of local heights. Interesting examples
have been discussed, which show that in many cases the function of local heights is
indeed integrable.

In [12], we have developed an Arakelov geometry over adelic curves. Our framework
is similar toM -field of Gubler, with a slightly different point of view: an adelic curve is
a field equipped with a family of absolute values parametrized by a measure space (in
particular, we require the absolute values to be defined everywhere). These absolute
values play the role of places in algebraic number theory. Hence we can view an
adelic curve as a measure space of “places” of a given field, except that we allow
possibly equivalent absolute values in the family, or even copies of the same absolute
value. Natural examples of adelic curves contain global fields, countably generated
fields over global fields (as we will show in the second chapter of the current article),
field equipped with copies of the trivial absolute value, and also the amalgamation of
different adelic structures of the same field. Our motivation was to establish a theory
of adelic vector bundles (generalizing previous works of Stuhler [63], Grayson [31],
Bost [6] and Gaudron [23]), which is analogous to geometry of numbers and hence
provides tools to consider Diophantine analysis in a general and flexible setting. By
using the theory of adelic vector bundles, the arithmetic birational invariants are
discussed in a systematic way.
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The first contribution of the current article is to discuss transcendental coverings
of adelic curves. Let S = (K, (Ω,A, ν), φ) be an adelic curve, where K is a countable
field, (Ω,A, ν) is a measure space, and φ : ω 7→ |.|ω is a map from Ω to the set of all
absolute values of K, such that, for any a ∈ K×, the function (ω ∈ Ω) 7→ ln |a|ω is
measurable. In [12, Chapter 3], for any algebraic extension L/K, we have constructed
a measure space (ΩL,AL, νL), which is fibered over (Ω,A, ν) and admits a family of
disintegration probability measures. For each ω ∈ Ω, we correspond the fiber ΩL,ω to
the family of all absolute values of L extending |.|ω. Thus we obtain a structure of
adelic curve on L which is called an algebraic covering of S.

In [12, §3.2.5], we have illustrated the construction of an adelic curve structure
on Q(T ), which takes into account the arithmetic of Q and the geometry of P1. In
the current article, we generalizes and systemize such a construction on a purely
transcendental and countably generated extension of the underlying field K of the
adelic curve S. For simplicity, we explain here the case of rational function of finitely
many variables. Let n be an integer such that n > 1 and T = (T1, . . . , Tn) be variables.
Let L be the rational function field K(T ) = K(T1, . . . , Tn), which is by definition the
field of fractions of the polynomial ring K[T ] = K[T1, . . . , Tn]. For each ω ∈ Ω such
that the absolute value |.|ω is non-Archimedean, by Gauss’s lemma, we extends |.|ω
to be an absolute value on L such that

∀ f =
∑
d∈Nn

ad(f)T d ∈ K[T ], |f |ω = max
d∈Nn

|ad|ω.

We then take ΩL,ω to be the one point set {ω}, which is equipped with the natural
probability measure. In the case where the absolute value |.|ω is Archimedean, we
fix an embedding ιω : K → C such that |.|ω is the composition of the usual absolute
value |.| on C with ιω (by a measurable selection argument, we can arrange that the
family of ιω parametrized by Archimedean places is A-measurable). We let

ΩL,ω :=

{
(t1, . . . , tn) ∈ [0, 1]n

∣∣∣∣ (e(t1), . . . , e(tn)) is algebraically
independent over ιω(K)

}
,

where for each t ∈ [0, 1], e(t) denotes e2πit. Note that, if we equip [0, 1]n with the
Borel σ-algebra and the uniform probability measure, then ΩL,ω is a Borel set of
measure 1. Moreover, each element t = (t1, . . . , tn) ∈ ΩL,ω gives rise to an absolute
value |.|t on L such that

∀ f =
∑
d∈Nn

ad(f)T d ∈ K[T ], |f |t =

∣∣∣∣ ∑
d∈Nn

ιω(ad(f))e(t1)d1 · · · e(tn)dn
∣∣∣∣.

It turns out that the disjoint union ΩL of (ΩL,ω)ω∈Ω forms a structure of adelic curve
on the field L, which is fibered over that of S, and admits a family of disintegration
probability measures. We denote by SL = (L, (ΩL,AΩL , νL), φL) the corresponding
adelic curve.
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In the case where the adelic curve S is proper, namely the following equality holds
for any a ∈ K× ∫

Ω

ln |a|ω ν(dω) = 0,

it is not true in general that the adelic curve SL is also proper. In the article, we
propose several natural “compactifications” of the adelic curve. Here we explain one
of them which has an “arithmetic nature”. We say that two irreducible polynomials
P and Q in K[T1, . . . , Tn] are equivalent if they differ by a factor of non-zero element
of K. This is an equivalence relation on the set of all irreducible polynomials. In
each equivalence class we pick a representative to form a family P of irreducible
polynomials. Then every non-zero element f of K can be written in a unique way as

f = a(f)
∏
F∈P

F ordF (f),

where a(f) ∈ K×, and ordF (.) : L → Z ∪ {+∞} is the discrete valuation associated
with F , we denote by |.|F = e− ordF (.) the corresponding absolute value on L. More-
over, the degree function on K[T ] extends naturally to L so that −deg(.) is a discrete
valuation on L. Moreover, the following equality holds (see Proposition 2.7.6)

∀ f ∈ K(T ),
∑
F∈P

deg(F ) ordF (f) = deg(f).

We let |.|∞ be the absolute value on L such that |.|∞ = edeg(.). Note that, for any
F ∈P, one has

hSL(F ) :=

∫
Ω

ν(dω)

∫
ΩL,ω

ln |F |x νL,ω(dx) > 0.

We fix a positive real number λ. Let (ΩλL,AλL, νλL) be the disjoint union of (ΩL,AL, νL)

and P ∪ {∞}, which is equipped with the measure νλL extending νL and such that
νλL({∞}) = λ and

∀F ∈P, νλL({F}) = hSL(F ) + λ deg(F ).

Let φλL be the map from ΩλL to the set of absolute values on L, sending x ∈ ΩλL to
|.|x. Then we establish the following result (see §2.7, notably Propositions 2.7.10 and
2.7.14, see also Proposition 2.5.1 for the general construction).

Theorem A. — Assume that the adelic curve S is proper.

(1) For any λ > 0, the adelic curve SλL = (L, (ΩλL,AλL, νλL), φλL) is proper.
(2) If the adelic curve S satisfies the Northcott property, namely, for any C > 0,

the set {
a ∈ K

∣∣∣∣ ∫
Ω

max{ln |a|ω, 0} ν(dω) 6 C

}
is finite, then, for any λ > 0, the adelic curve SλL satisfies the Northcott property.
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Together with the algebraic covering of adelic curves mentioned above. This con-
struction provides a large family of adelic structures for finitely generated extensions
of Q, which behave well from the view of geometry of numbers. Note however that the
compactification SλL is not fibered over S, but rather fibered over the amalgamation
of S with copies of the trivial absolute value on K. This phenomenon suggest that it
is a need of dealing with the trivial absolute value in the consideration of the relative
geometry of adelic curves.

To build up a more complete picture of Arakelov geometry over an adelic curve, it
is important to develop an arithmetic intersection theory and relate it to the heights of
projective varieties over an adelic curve. Although the local intersection theory is now
well understood, thanks to works such as [34, 35, 10, 50], it remains a challenging
problem to show that the local intersection numbers form an integrable function over
the parametrizing measure space. In this article, we resolve this integrability problem
and thus establish a global intersection theory in the framework of Arakelov geometry
over adelic curves. Recall that the function of local heights for an adelic line bundle
is only well defined up to the function of absolute values of a non-zero scalar. One
way to make explicit the local height function is to fix a family of global sections of
the line bundle which intersect properly. Note that each global section determines
a Cartier divisor on the projective variety, and the adelic metrics of the adelic line
bundle determine a family of Green functions of the Cartier divisor parametrized by
the measure space of “places”. For this reason, we choose to work in the framework
of adelic Cartier divisors.

Let S be an adelic curve, which consists of a field K, a measure space (Ω,A, ν)

and a family (|.|ω)ω∈Ω of absolute values on K parametrized by Ω. Let X be a
projective scheme over SpecK and d be the Krull dimension of X. By adelic Cartier
divisor on X, we mean the datum D consisting of a Cartier divisor D on X together
with a family g = (gω)ω∈Ω parametrized by Ω, where gω is a Green function of
Dω, the pull back of D on Xω = X ⊗K Kω, with Kω being the completion of K
with respect to |.|ω. Conditions of measurability and dominancy (with respect to
ω ∈ Ω) for the family g are also required (see §§4.1–4.2 for more details). We first
introduce the local intersection product for adelic Cartier divisors. More precisely, if
Di = (Di, gi), i ∈ {0, . . . , d}, form a family of integrable metrized Cartier divisors on
X (namely a Cartier divisor equipped with a Green function, which is the difference
of two plurisubharmonic Green functions) such that D0, . . . , Dd intersect properly, we
define, for any ω ∈ Ω, a local intersection number

(D0, . . . , Dd)ω ∈ R

in a recursive way by using Bedford-Taylor theory [3] and its non-Archimedean ana-
logue [10]. In the case where |.|ω is a trivial absolute value, we need a careful definition
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of the local intersection number (see Definition 3.10.1, for details). Note the local in-
tersection number is a multi-linear function on the set of (d+ 1)-uplets (D0, . . . , Dd)

such that D0, . . . , Dd intersect properly.
To establish a global intersection theory, we need to show that the function of local

intersection numbers

(ω ∈ Ω) 7−→ (D0, . . . , Dd)ω

is measurable and integrable with respect to ν, where the measurability part is more
subtle. Although the Green function families of D0, . . . , Dd are supposed to be mea-
surable, the corresponding products of Chern currents (or their non-Archimedean
analogue) depend on the local analytic geometry relatively to the absolute values |.|ω.
It seems to be a difficult (but interesting) problem to precisely describe the mea-
surability of the local geometry of the analytic spaces Xan

ω . For places ω which are
Archimedean, as we can embed all local completionsKω in the same field C, by a mea-
surable selection theorem one can show that the family of Monge-Ampère measures
is measurable with respect to ω (see Theorem 4.2.9). However, for non-Archimedean
places, such embeddings in a common valued field do not exist in general, and the
classic approach of taking a common integral model for all non-Archimedean places
is not adequate in the setting of adelic curves, either.

To overcome this difficulty, our approach consists in relating the local intersection
number to the local length of the mixed resultant and hence reduce the problem to the
measurability of the function of local lengths of the mixed resultant, which is known
by the theory of adelic vector bundles developed in [12]. This approach is inspired by
previous results of Philippon [55] on height of algebraic cycles via the theory of Chow
forms and the comparison [56, 57, 62, 5] between Philippon’s height and Faltings
height (defined by the arithmetic intersection theory). Note that the similar idea has
also been used in [34] to construct the local height in the setting of M -fields.

Let us briefly recall the theory of mixed resultant. It is a multi-homogeneous
generalization of Chow forms, which allows to describe the interactions of several em-
beddings of a variety in projective spaces by a multi-homogeneous polynomial. One of
its original forms is the discriminant of a quadratic polynomial, or more generally the
resultant of n + 1 polynomials P0, . . . , Pn in n variables over an algebraically closed
field, which is an irreducible polynomial in the coefficients of P0, . . . , Pn, that van-
ishes precisely when these polynomials have a common root. The modern algebraic
approach of resultants goes back to the elimination theory of Cayley [9], where he
related resultant to the determinant of Koszul complex. We use here a geometric re-
formulation as in the book [24] of Gel’fand, Kapranov and Zelevinsky. In Diophantine
geometry, mixed resultant has been used by Rémond [58] to study multi-projective
heights.

We assume that the Cartier divisors Di are very ample and thus determine closed
immersions fi from X to the projective space of the linear system Ei of the divisor
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Di. By incidence variety of (f0, . . . , fd), we mean the closed subscheme IX of X ×K
P(E∨0 )×K · · · ×K P(E∨d ) parametrizing points (x, α0, . . . , αd) such that

α0(x) = · · · = αd(x) = 0.

One can also consider IX as a multi-projective bundle over X (of E∨i quotient by the
tautological line subbundle). Therefore, the projection of IX in P(E∨0 )×K · · ·×KP(E∨d )

consists of a family of hyperplanes in P(E0), . . . ,P(Ed) respectively, which contain
at least one common point of X. It turns out that this projection is actually a
multi-homogeneous hypersurface of P(E∨0 ) ×K · · · ×K P(E∨d ), which is defined by a
multi-homogeneous polynomial RXf0,...,fd

, called a resultant of X with respect to the
embeddings of f0, . . . , fd. We refer the readers to [24, §3.3] for more details, see also
[16] for applications in arithmetic Nullstellensatz. When K is a number field, the
height of the polynomial RXf0,...,fd

can be viewed as a height of the arithmetic variety
X, and, in the particular case where the image of Di in the Picard group are colinear,
an explicit comparison between the height of resultant and the Faltings height of X
has been discussed in [5, Theorem 4.3.2] (see also §4.3.4 of loc. cit.).

Usually the resultant is well defined up to a factor in K×. In the classic setting
of number field, this is anodyne for the study of the global height, thanks to the
product formula. However, in our setting, this dependence on the choice of a non-
zero scalar could be annoying, especially when the adelic curve does not satisfy a
product formula. In order to obtain a local height equality, we introduce, for each
vector

(s0, . . . , sd) ∈ E0 × · · · × Ed

such that div(s0), . . . ,div(sd) intersect properly on X, a specific resultant RX,s0,...,sdf0,...,fd

of X with respect to the embeddings, which is the only resultant such that

RX,s0,...,sdf0,...,fd
(s0, . . . , sd) = 1.

We then show that the local height for this resultant coincides with the local height
of X defined by the local intersection theory. By using this comparison of local height
and properties of adelic vector bundles over an adelic curve (see [13, §4.1.4]), we prove
the integrability of the local height function on non-Archimedean places. Moreover,
the integral of the local height equalities leads to an equality between the global
height of the resultant and the arithmetic intersection number (see Remark 4.2.14),
which generalizes the height comparison results in [56, 5]. In resume, we obtain the
following result (see Theorems 3.9.7 and 4.2.12).

Theorem B. — Let S = (K, (Ω,A, ν), φ) be an adelic curve, X be a projective
scheme over S, d be the dimension of X, D0, . . . , Dd be Cartier divisors on X, which
are equipped with Green function families g0, . . . , gd, respectively, such that (Di,ω, gi,ω)

is integrable for any ω ∈ Ω and i ∈ {0, . . . , d}.
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(1) Assume that the Cartier divisors D0, . . . , Dd are very ample. For any i ∈
{0, . . . , d}, let Ei = H0(X,OX(Di)), fi : X → P(Ei) be the closed embed-
ding and si ∈ Ei be the regular meromorphic section of OX(Di) corresponding
to Di. Assume that the continuous metric family ϕgi corresponding to the Green
function family gi consists of the orthogonal quotient metrics induces by a Her-
mitian norm family ξi = (‖.‖i,ω)ω∈Ω on Ei. Then, for any ω ∈ Ω, then following
equalities hold.
(1.a) In the case where |.|ω is non-Archimedean, one has

(D0 · · ·Dd)ω = ln
∥∥∥RX,s0,...,sdf0,...,fd

∥∥∥
ω,ε
,

where the norm ‖.‖ω,ε on the space of multi-homogeneous polynomials is
the ε-tensor product of ε-symmetric power of ‖.‖i,ω,∗.

(1.b) In the case where |.|ω is Archimedean, one has

(D0 · · ·Dd)ω =

∫
S(E0,ω)×···×S(Ed,ω)

ln
∣∣∣RX,s0,...sdf0,...,fd

(z0, . . . , zd)
∣∣∣
ω

dz0 · · · dzd

+
1

2

d∑
i=0

δi

ri∑
`=1

1

`
,

where S(Ei,ω) denotes the unit sphere of (Ei,ω, ‖.‖i,ω), dzi is the Borel
probability measure on S(Ei,ω) invariant by the unitary group, ri is the
dimension of Ei, and δi is the intersection number

(D0 · · ·Di−1Di+1 · · ·Dd).

(2) Assume that, either the σ-algebra A is discrete, or the field K admits a countable
subfield which is dense in each Kω. If all couples Di = (Di, gi) are integrable
adelic Cartier divisors on X, the the function

(ω ∈ Ω) −→ (D0 · · ·Dd)ω

is ν-integrable.

As an application, we can define the multi-height of the projective scheme X with
respect to D0, . . . , Dd as

hD0···Dd(X) =

∫
Ω

(D0 · · ·Dd)ω ν(dω),

and, under the assumptions of the point (1) in the above theorem, we can relate the
multi-height with the height of the resultant, by taking the integral of the local height
equalities.

From the methodological point of view, the approach of [56] works within PN (C)

and uses elimination theory and complex analysis of the Fubini-Study metric; that
of [5] relies on a choice of integral model and computations in the arithmetic Chow
groups. In our setting, we need to deal with general non-Archimedean metrics. Hence
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these approaches do not fit well with the framework of adelic curves. Our method
consists in computing the local height of

X ×K P(E∨0 )×K · · · ×K P(E∨d )

in two ways (see Lemma 3.9.6 for details). We first consider this scheme as a fibration
of multi-projective space over X and relate this local height to that of X by taking the
local intersection along the fibers. We then relate the height of this product scheme
to that of the incidence subscheme IX and then use the identification of IX with a
multi-projective bundle over X to compute recursively the height of IX . Our method
allows to obtain a local height equality in considering the Archimedean case and the
non-Archimedean case in a uniform way.

It is worth mentioning that an intersection theory of arithmetic cycles and a
Riemann-Roch theory could be expected for the setting of adelic curves. However,
new ideas are needed to establish a good formulation of the measurability for various
arithmetic objects arising in such a theory.

The rest of the article is organized as follows. In the first chapter, we remind several
basic constructions used in the article, including multi-linear subsets and multi-linear
functions, Cartier divisors on general scheme, proper intersection of Cartier divisors
on a projective scheme, multi-homogeneous polynomials, incidence subscheme and re-
sultants, and linear projections of closed subschemes in a projective space. The second
chapter is devoted to the construction of adelic structures. After a brief reminder on
the definition of adelic curves and their algebraic covers, we introduce transcendental
fibrations of adelic curves and their compactifications. These constructions provide
a large family of examples of adelic curves. In the third chapter, we consider the
local intersection theory in the setting of projective schemes over a complete valued
field. We first remind the notions of continuous metrics on an invertible sheaf and its
semi-positivity. Then we explain the notion of Green functions of Cartier divisors and
their relation with continuous metrics. The construction of Monge-Ampère mesures
and local intersection numbers is then discussed. The last sections are devoted to
establish the link between the local intersection number and the length (in the non-
Archimedean case) or Mahler measure (in the Archimedean case) of the corresponding
resultant, respectively. In the fourth and last chapter, we prove the integrability of
the local height function and construct the global multi-height.





CHAPTER 1

MULTILINEAR ALGEBRA AND RESULTANTS

The purpose of this chapter is preliminaries of this book, especially, we review
basics of a multilinear algebra and resultants.

1.1. Symmetric and multi-linear subsets

In this section, we fix a commutative and unitary ring k, and a non-negative integer
d.

1.1.1. Definition. — Let V be a k-module. We say that a subset S of V d+1 is
multi-linear if, for any j ∈ {0, . . . , d} and for any (x0, . . . , xj−1, xj+1, . . . , xd) ∈ V d,
the subset

{xj ∈ V | (x0, . . . , xj−1, xj , xj+1, . . . , xd) ∈ S}

of V is either empty or a sub-k-module. If in addition

(x0, . . . , xd) ∈ S =⇒ (xσ(0), . . . , xσ(d)) ∈ S

for any bijection σ : {0, . . . , d} → {0, . . . , d}, we say that the multi-linear subset S is
symmetric.

1.1.2. Proposition. — Let V be a k-module and S be a multi-linear subset of V d+1.
For any j ∈ {0, . . . , d}, let Ij be a non-empty finite set, (xj,i)i∈Ij be a family of el-
ements of V , (λj,i)i∈Ij be a family of elements of k, and yj =

∑
i∈Ij λj,ixj,i. As-

sume that, for any (i0, . . . , id) ∈ I0 × · · · × Id, one has (x0,i0 , . . . , xd,id) ∈ S. Then
(y0, . . . , yd) ∈ S.

Proof. — We reason by induction on d. In the case where d = 0, S is a sub-k-module
of V when it is not empty. Since y0 is a k-linear combination of elements of S, we
obtain that y0 ∈ S.
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We now assume that d > 1 and that the statement holds for multi-linear subsets
of V d. Let

S′ = {(z0, . . . , zd−1) ∈ V d | (z0, . . . , zd−1, yd) ∈ S}.

Since S is a multi-linear subset of V d+1, for any (i0, . . . , id−1) ∈ I0×· · ·×Id−1, one has
(xi0 , . . . , xid−1

, yd) ∈ S and hence (xi0 , . . . , xid−1
) ∈ S′. Moreover, S′ is a multi-linear

subset of V d. Hence the induction hypothesis leads to (y0, . . . , yd−1) ∈ S′ and thus
(y0, . . . , yd) ∈ S.

1.1.3. Definition. — Let V and W be two k-modules, and S be a multi-linear
subset of V d+1. We say that a map f : S →W is multi-linear if, for any j ∈ {0, . . . , d}
and for any (x0, . . . , xj−1, xj+1, . . . , xd) ∈ V d, the map

{xj ∈ V | (x0, . . . , xj−1, xj , xj+1, . . . , xd) ∈ S} −→W, xj 7→ f(x0, . . . , xd),

is k-linear once
{xj ∈ V | (x0, . . . , xj−1, xj , xj+1, . . . , xd) ∈ S}

is not empty. If in addition S is symmetric and f(x0, . . . , xd) = f(xσ(0), . . . , xσ(d)) for
any (x0, . . . , xd) ∈ S and any bijection σ : {0, . . . , d} → {0, . . . , d}, we say that f is a
symmetric multi-linear map.

1.1.4. Proposition. — Let V and W be two k-modules, S be a multi-linear subset
of V d+1, and f : S → W be a multi-linear map. Let (xj,i)(j,i)∈{0,...,d}2 be a matrix
consisting of elements of V such that (x0,i0 , . . . , xd,id) ∈ S for any (i0, . . . , id) ∈
{0, . . . , d}d+1. Then∑

σ∈S({0,...,d})

f(x0,σ(0), . . . , xd,σ(d))

=
∑

∅ 6=I⊆{0,...,d}

(−1)d+1−#If
(∑

i0∈I
x0,i0 , . . . ,

∑
id∈I

xd,id

)
,

(1.1)

where S({0, . . . , d}) is the permutation group of {0, . . . , d}.

Proof. — By the multi-linearity of f , we can rewrite the right-hand side of the equal-
ity (1.1) as ∑

∅6=I⊆{0,...,d}

(−1)d+1−#I
∑

(i0,...,id)∈Id+1

f(x0,i0 , . . . , xd,id)

=
∑

(i0,...,id)∈{0,...,d}d+1

( ∑
{i0,...,id}⊆I⊆{0,...,d}

(−1)d+1−#I

)
f(x0,i0 , . . . , xd,id).

Note that, for (i0, . . . , id) ∈ {0, . . . , d}d+1 such that {i0, . . . , id} ( {0, . . . , d}, one has∑
{i0,...,id}⊆I⊆{0,...,d}

(−1)d+1−#I = (−1)d+1−#{i0,...,id}
∑

J⊆{0,...,d}\{i0,...,id}

(−1)−#J = 0
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since ∑
J⊆{0,...,d}\{i0,...,id}

(−1)−#J = (1 + (−1))d+1−#{i0,...,id} = 0.

Therefore the equality (1.1) holds.

1.1.5. Lemma. — Let P be a subset of an abelian group G with the following prop-
erties:
(1) For x, y ∈ P , x+ y ∈ P .
(2) For x ∈ G, there exist x′, x′′ ∈ P such that x = x′ − x′′.

Let d be a positive integer, A be an abelian group and f : P d → A be a map such that

f(x1, . . . , xi + yi, . . . , xd) = f(x1, . . . , xi, . . . , xd) + f(x1, . . . , yi, . . . , xd)

for all i ∈ {1, . . . , d} and x1, . . . , xi, yi, . . . , xd ∈ P . Then there exists a unique multi-
linear map f̃ : Gd → A such that f̃

∣∣
Pd

= f .

Proof. — For x1, . . . , xd ∈ G, we can find x′1, x′′1 , . . . , x′d, x
′′
d ∈ P such that xi = x′i−x′′i

for all i ∈ {1, . . . , d}. We would like to define f̃(x1, . . . , xd) to be

f̃(x1, . . . , xd) :=
∑

I⊆{1,...,d}

(−1)card(I)f(x1,I , . . . , xd,I),

where

xi,I =

{
x′′i if i ∈ I,
x′i if i ∈ {1, . . . , d} \ I.

It is sufficient to show that if x′1, x′′1 , y′1, y′′1 , . . . , x′d, x
′′
d , y
′
d, y
′′
d ∈ P and x′i−x′′i = y′i−y′′i

for all i ∈ {1, . . . , d}, then∑
I⊆{1,...,d}

(−1)card(I)f(x1,I , . . . , xd,I) =
∑

I⊆{1,...,d}

(−1)card(I)f(y1,I , . . . , yd,I).

We prove it by induction on d. We assume that d = 1. As x′1 + y′′1 = x′′1 + y′1, one has
f(x′1) + f(y′′1 ) = f(x′′1) + f(y′1). Thus the assertion follows. We assume that d > 1.
Then, by using the hypothesis of induction,∑

I⊆{1,...,d}

(−1)card(I)f(x1,I , . . . , xd,I)

=
∑

I⊆{1,...,d}
d6∈I

(−1)card(I)f(x1,I , . . . , xd,I) +
∑

I⊆{1,...,d}
d∈I

(−1)card(I)f(x1,I , . . . , xd,I)

=
∑

I′⊆{1,...,d−1}

(−1)card(I′)(f(x1,I′ , . . . , xd−1,I′ , x
′
d)− f(x1,I′ , . . . , xd−1,I′ , x

′′
d))

=
∑

I′⊆{1,...,d−1}

(−1)card(I′)(f(y1,I′ , . . . , yd−1,I′ , x
′
d)− f(y1,I′ , . . . , yd−1,I′ , x

′′
d))

=
∑

I′⊆{1,...,d−1}

(−1)card(I′)(f(y1,I′ , . . . , yd−1,I′ , y
′
d)− f(y1,I′ , . . . , yd−1,I′ , y

′′
d ))
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=
∑

I⊆{1,...,d}

(−1)card(I)f(y1,I , . . . , yd,I),

as required.

1.2. Cartier divisors

In this section, let us recall the notion of Cartier divisor on a general scheme. The
main references are [33, IV4, §§20-21] and [43].

1.2.1. Definition. — Let X be a locally ringed space. We denote by OX the
structural sheaf of X. Let MX be the sheaf of meromorphic functions on X. Recall
that MX is the sheaf of commutative and unitary rings associated with the presheaf

U 7−→ OX(U)[SX(U)−1],

where SX(U) denotes the multiplicative sub-monoid of OX(U) consisting of local
non-zero-divisors of OX(U), that is, s ∈ OX(U) such that the homothety

OX,x −→ OX,x, a 7−→ asx

is injective for any x ∈ U (here sx denotes the canonical image of s in the local ring
OX,x). We refer the readers to [43] for a clarification on the construction of the sheaf
of meromorphic functions comparing to [33, IV4.(20.1.3)].

1.2.2. Remark. — Note that, for any x ∈ X, MX,x identifies with OX,x(S−1
X,x),

where SX,x denotes the direct limit of SX(U) with U running over the set of open
neighbourhoods of x, viewed as a multiplicative submonoid ofOX,x, which is contained
in the sub-monoid of non-zero-divisors. Therefore, MX,x could be considered as a sub-
ring of the total fraction ring of OX,x, namely the localization of OX,x with respect to
the set of non-zero-divisors. In general the local ring MX,x is different from the ring
of total fractions of OX,x even if X is an affine scheme. The equality holds notably
when X is a locally Noetherian scheme or a reduced scheme whose set of irreducible
component is locally finite. We refer the readers to [43] for counter-examples and
more details.

1.2.3. Definition. — Let X be a locally ringed space. We denote by M×
X the

subsheaf of multiplicative monoids of MX consisting of invertible elements. In other
words, for any open subset U of X, M×

X (U) is consisting of sections s ∈M×
X (U) such

that, for any x ∈ U , the homothety

MX,x −→MX,x, a 7−→ asx

is an isomorphism of MX,x-modules. An element of M×
X (U) is called a regular mero-

morphic function on X. Similarly, let O×X be the subsheaf of multiplicative monoids
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of OX consisting of invertible elements : for any open subset U of X, O×X(U) consists
of sections s ∈ OX(U) such that, for any x ∈ U , the homothety

OX,x −→ OX,x, a 7−→ asx

is an isomorphism of OX,x-modules. Note that, for each s ∈ OX(U), the homothety
sx : OX,x → OX,x induces by passing to localisation an homothety MX,x → MX,x,
which is an isomorphism of MX,x-modules if sx : OX,x → OX,x is an isomorphism.
Therefore, the canonical morphism OX → MX induces a morphism of sheaves of
abelian groups O×X →M×

X .

1.2.4. Definition. — We call Cartier divisor on X any global section of the sheaf
M×

X /O
×
X . By definition, a Cartier divisor D is represented by the following data: (i)

an open cover X =
⋃
i Ui of X and (ii) fi ∈M×

X (Ui) for each i such that fi/fj ∈ O×X
on Ui ∩ Uj for all i, j. The regular meromorphic function fi is called a local equation
of D over Ui. The group of Cartier divisors is denoted by Div(X) and the group law
of Div(X) is written additively. Note that the exact sequence

1 // O×X //M×
X

//M×
X /O

×
X

// 0

induces an exact sequence of cohomological groups

1 // Γ(X,O×X) // Γ(X,M×
X ) // Div(X) // H1(X,O×X) // H1(X,M×

X ) . (1.2)

We denote by div(.) the group homomorphism Γ(X,M×
X ) → Div(X) in this exact

sequence. Since the group law of Div(X) is written additively, one has

div(fg) = div(f) + div(g)

for any couple of regular meromorphic functions f and g on X. A Cartier divisor
belonging to the image of div(.) is said to be principal. If D1 and D2 are two Cartier
divisors such that D1−D2 is principal, we say that D1 and D2 are linearly equivalent,
denoted by D1 ∼ D2.

1.2.5. Remark. — Recall that H1(X,O×X) identifies with the Picard group Pic(X)

of X, namely the group of isomorphism classes of invertible OX -modules (see [32,
0.(5.6.3)]). Similarly, H1(X,M×

X ) identifies with the group of isomorphism classes
of invertible MX -modules. If L is an invertible OX -module, then MX ⊗OX L is an
invertible MX -module. The homomorphism H1(X,O×X) → H1(X,M×

X ) sends the
isomorphism class of an invertible OX -module L to that of the invertible MX -module
MX ⊗OX L.

1.2.6. Definition. — Let L be an invertible OX -module and U be a non-empty
open subset of X. We call regular meromorphic section of L on U any element of
Γ(U,MX⊗OX L) which defines an isomorphism from MU to MU⊗OU L|U . Therefore,
MX ⊗OX L is isomorphic as MX -module to MX if and only if L admits a regular
meromorphic section on X.
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1.2.7. Remark. — LetX be a locally Noetherian scheme or a reduced scheme whose
set of irreducible component is locally finite. For any x ∈ X, the local ring MX,x

identifies with the ring of total fractions of OX,x. Therefore, if L is an invertible OX -
module and if U is an open subset of X, an element s ∈ Γ(U,MX ⊗OX L) is a regular
meromorphic section of L on U if and only if it defines an injective homomorphism
from OU to MU ⊗OU L. In particular, an element s ∈ Γ(U,L) defines a regular
meromorphic section of L on U if and only if, for any x ∈ U , sx ∈ OX,x ⊗OX L is of
the form fxs0,x, where fx is a non-zero-divisor of OX,x, and s0,x is a local trivialization
of L at x. This condition is also equivalent to s(y) 6= 0 for any associate point y ∈ U .
Recall that a point y ∈ X is called an associated point if there exists a ∈ OX,y such
that the maximal ideal of OX,y identifies with

ann(a) := {f ∈ OX,y | af = 0}.

Let x be a point ofX. Assume that sx = fxs0,x where fx is a zero-divisor inOX,x, then
fx belongs to an associated prime ideal of OX,x, which corresponds to an associated
point y ∈ X such that x ∈ {y} and s(y) = 0.

By [33, IV4.(21.3.5)], ifX is a Noetherian scheme, which admits an ample invertible
OX -module, then the set of all associated points of X is contained in an affine open
subset of X, and any invertible OX -module admits a regular meromorphic section.

1.2.8. Definition. — Let D be a Cartier divisor on X. The homomorphism
Div(X) → H1(X,O×X) in the exact sequence (1.2) sends D to an isomorphism class
of invertible OX -modules. One can actually construct explicitly an invertible OX -
module OX(D) in this class as follows. Let (Ui)i∈I be an open cover of the topolog-
ical space such that D is represented on each Ui by a regular meromorphic function
fi ∈ Γ(Ui,M

×
Ui

). For any couple (i, j) ∈ I2, fi|Ui∩Ujfj |−1
Ui∩Uj defines an isomorphism

(f−1
i OUi)|Ui∩Uj −→ (f−1

j OUj )|Ui∩Uj .

Moreover, these isomorphisms clearly satisfy the cocycle condition. Thus the gluing
of the sheaves f−1

i OUi leads to an invertible sub-OX -module of MX which we denote
by OX(D). Note that the gluing of meromorphic sections

fi ⊗ f−1
i ∈ Γ(Ui,MUi ⊗OX(D))

leads to a global regular meromorphic section of OX(D), which we denote by sD
and call canonical regular meromorphic section of OX(D). Hence MX ⊗OX OX(D)

is canonically isomorphic to MX . Note that two Cartier divisors D1 and D2 are
linearly equivalent if and only if the invertible OX -modules OX(D1) and OX(D2) are
isomorphic.

Conversely, the exactness of the diagram (1.2) shows that, an invertible OX -module
L is isomorphic to an invertible OX -module of the form OX(D) if and only if it admits
a regular meromorphic section on X. One can also construct explicitly a Cartier
divisor from a regular meromorphic section s of L. In fact, let (Ui)i∈I be an open
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cover of X such that each L|Ui is trivialized by a section si ∈ L(Ui). For any i ∈ I,
let fi be the unique regular meromorphic function on Ui such that s = fisi. Then the
family (fi)i∈I of regular meromorphic functions defines a Cartier divisor on X which
we denote by div(L; s), or by div(s) for simplicity.

1.2.9. Remark. — In the case where X is a quasi-projective scheme over a field,
any invertible OX -module admits a global regular meromorphic section and therefore
is isomorphic to an invertible OX -module of the form OX(D), where D is a Cartier
divisor. Hence one has an exact sequence

1 // Γ(X,O×X) // Γ(X,M×
X ) // Div(X) // H1(X,O×X) // 1 .

1.2.10. Remark. — Let X be a 0-dimensional projective scheme over a field k.
Then there is a k-algebra A which is finite-dimensional as a vector space over k, and
such that X = Spec(A). Note that the canonical homomorphism A →

⊕
x∈X Ax is

an isomorphism. Let fx be a regular element of Ax. As the homotethy map Ax → Ax,
a 7→ fxa, is injective and Ax is a finite-dimensional vector space over k, this homothety
map is actually an isomorphism, that is, fx ∈ A×x . Thus M×

X = O×X . Therefore, every
Cartier divisor on X can be represented by 1 ∈ A.

1.2.11. Remark. — Let X be a Noetherian scheme. We denote by X(1) the set of
all height 1 points of X, that is, x ∈ X with dim(OX,x) = 1. For x ∈ X(1) and a
regular element f of OX,x, we set

ordx(f) := lengthOX,x(OX,x/fOX,x).

Then ordx(fg) = ordx(f)+ordx(g) for all regular elements f, g ofOX,x (cf [49, the last
paragraph of Section 1.3]), so that ordx(.) extends to a homomorphism M×

X,x → Z.
Let D be a Cartier divisor on X and f be a local equation of D at x. Then it is easy
to see that ordx(f) does not depend on the choice of f , so that ordx(f) is denoted by
ordx(D). We call the cycle ∑

x∈X(1)

ordx(D){x}

the cycle associated with D, which is denoted by z(D). Let X1, . . . , X` be the irre-
ducible components of X and η1, . . . , η` be the generic points of X1, . . . , X`, respec-
tively. Then

z(D) =
∑̀
j=1

lengthOX,ηj
(OX,ηj )z(D|Xj ). (1.3)

Indeed, by [49, (6) of Lemma 1.7], ordx(D) =
∑
j∈Jx bj ordx(D|Xj ), where bj =

lengthOX,ηj
(OX,ηj ) and Jx = {j | x ∈ Xj}. Thus if we set

ax,j =

{
ordx(D|Xj ) if x ∈ Xj ,

0 if x 6∈ Xj ,
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then ordx(D) =
∑`
j=1 ax,jbj . Thus

z(D) =
∑

x∈X(1)

ordx(D){x} =
∑

x∈X(1)

(∑̀
j=1

ax,jbj

)
{x}

=
∑̀
j=1

bj
∑

x∈X(1)

ax,j{x} =
∑̀
j=1

bj
∑

x∈X(1)
j

ordx(D|Xj ){x} =
∑̀
j=1

bjz(D|Xj ),

as required.
Let L be an invertible OX -module and s be a regular meromorphic section of L

over X. For x ∈ X(1), ordx(s) is defined by ordx(f), where f is given by s = fω for
some local basis ω of L around x. Note that ordx(s) does not depend on the choice of
the local basis ω around x. Then the cycle z(L; s) associated with div(L; s) is defined
by

z(L; s) :=
∑

x∈X(1)

ordx(s){x}.

1.2.12. Definition. — Let ϕ : X → Y be a morphism of locally ringed space. If
U is an open subset of Y , we denote by Sϕ(U) the preimage of SX(ϕ−1(U)) by the
structural ring homomorphism

OY (U) −→ OX(ϕ−1(U)).

We denote by Mϕ the sheaf of commutative and unitary rings associated with the
presheaf

U 7−→ OY (U)[Sϕ(U)−1].

It is a subsheaf of MY . Moreover, the structural morphism of sheaves OY → ϕ∗(OX)

induces by localization a morphism Mϕ → ϕ∗(MX), which defines a morphism of
locally ringed spaces (X,MX)→ (Y,Mϕ).

1.2.13. Remark. — There are several situations in which Mϕ identifies with MY ,
notably when one of the following conditions is satisfied (see [33, IV4.(21.4.5)]):

(1) ϕ is flat, namely for any x ∈ X, the morphism of rings ϕx : OY,ϕ(x) → OX,x
defines a structure of flat OY,ϕ(x)-algebra on OX,x,

(2) X and Y are locally Noetherian schemes, and f sends any associated point of
X to an associated point of Y ,

(3) X and Y are schemes, the set of irreducible components of Y is locally finite,
X is reduced, and any irreducible component of X dominates an irreducible
component of Y .

1.2.14. Definition. — Let ϕ : X → Y be a morphism of locally ringed spaces, and
D be a Cartier divisor on Y . Assume that both D and −D are global sections of
(M×

Y ∩Mϕ)/O×X , or equivalently, for any local equation f of D over an open subset
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U of Y , one has {f, f−1} ⊂Mϕ(U). Then the canonical regular meromorphic section
sD of OY (D) actually defines an isomorphism

Mϕ −→Mϕ ⊗OY OY (D).

which induces an isomorphisme

ϕ∗(sD) : MX −→MX ⊗OX ϕ∗(OY (D)).

We denote by ϕ∗(D) the Cartier divisor div(ϕ∗(OY (D));ϕ∗(sD)) corresponding to
this regular meromorphic section, and call it the pull-back of D by ϕ. In the case
where ϕ is an immersion, the Cartier divisor ϕ∗(D) is also denoted by D|X .

Finally let us consider the following lemmas.

1.2.15. Lemma. — Let o be an integral domain, A be an o-algebra and S := o\{0}.
If A is flat over o, then we have the following:
(1) For s ∈ S, the homomorphism s· : A → A given by a 7→ s · a is injective.

In particular, the structure homomorphism o → A is injective, so that in the
following, o is considered as a subring of A.

(2) The natural homomorphism A→ AS is injective.
(3) For a ∈ A, a is a non-zero-divisor in A if and only if a/1 is a non-zero-divisor

in AS. In particular, a non-zero-divisor of AS can be written in the form of
a/s, where a is a non-zero-divisor of A and s ∈ S.

(4) Let Q(A) and Q(AS) be the total quotient rings of A and AS, respectively. The
homomorphism Q(A)→ Q(AS) induced by A→ AS is well-defined and bijective.
In particular, Q(A)× = Q(AS)×.

Proof. — (1) is obvious because o is an integral domain and A is flat over o. (2)
follows from (1).

(3) The assertion follows from (1) and the following commutative diagram:
A −−−−→ AS

a·
y ya·
A −−−−→ AS

(4) By (3), if a ∈ A is a non-zero-divisor, then a/1 is a non-zero-divisor in AS , so
that Q(A) → Q(AS) is well-defined. The injectivity of Q(A) → Q(AS) follows from
(2). For its surjectivity, observe the following:

b/t

a/s
=

(st/1)(b/t)

(st/1)(a/s)
=
sb/1

ta/1
.

1.2.16. Lemma. — Let X be an integral projective scheme over a field k, L be
an invertible OX-module and F be a coherent OX-module. We assume that there
exist a surjective morphism f : X → Y of integral projective schemes over k and an
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ample invertible OY -module A such that f∗(A) = L. Then R =
⊕∞

n=0H
0(X,L⊗n)

is a finitely generated algebra over k and M =
⊕∞

n=0H
0(X,F ⊗ L⊗n) is a finitely

generated R-module.

Proof. — By [49, §1.8], there exist positive integers d and n0 such that

H0(Y,A⊗d)⊗H0(Y,A⊗n ⊗ f∗(F )) −→ H0(Y,A⊗(d+n) ⊗ f∗(F ))

is surjective for all n > n0, and hence

H0(X,L⊗d)⊗H0(X,L⊗n ⊗ F ) −→ H0(X,L⊗(d+n) ⊗ F )

is surjective for all n > n0 because f∗(L
⊗n) = A⊗n ⊗ f∗(OX), f∗(L⊗n ⊗ F ) =

A⊗n ⊗ f∗(F ), OY ⊆ f∗(OX). Thus, by the arguments in [49, §1.8], one can see the
assertion.

1.3. Proper intersection

Let d be a non-negative integer and X be a d-dimensional scheme of finite type
over a field k. Let D be a Cartier divisor on X. We define the support of D to be

Supp(D) := {x ∈ X | fx 6∈ O×X,x},

where fx is a local equation of D at x. Note that the above definition does not depend
on the choice of fx since two local equations of D at x differ by a factor in O×X,x.

1.3.1. Proposition. — (1) Supp(D) is a Zariski closed subset of X.
(2) Supp(D +D′) ⊆ Supp(D) ∪ Supp(D′).

Proof. — (1) Clearly we may assume that X is affine and D is principal, that is,
X = Spec(A) andD is defined by a regular meromorphic function f onX, which could
be considered as an element of the total fraction ring of A (that is, the localization of
A with respect to the subset of non-zero-divisors). By [43], for any prime ideal p of
A, there is a canonical ring homomorphism from the total fraction ring of A to that
of Ap. We set a = {a ∈ A | af ∈ A} and b = af . Then a and b are ideals of A. Note
that, for p ∈ Spec(A),

ap = {u ∈ Ap | uf ∈ Ap}.

In fact, clearly one has ap ⊆ {u ∈ Ap |uf ∈ Ap}. Conversely, if u = a/s (with a ∈ A
and s ∈ A \ p) is an element of Ap such that uf ∈ Ap, then there exists t ∈ A \ p such
that at ∈ a and hence u = at/st ∈ ap. Thus

p 6∈ Supp(D)⇐⇒ f ∈ A×p ⇐⇒ ap = Ap and bp = Ap ⇐⇒ p 6∈ V (a) ∪ V (b),

that is, Supp(D) = V (a) ∪ V (b), as desired.
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(2) Let fx and f ′x be local equations of D and D′ at x, respectively. Then

x 6∈ Supp(D) ∪ Supp(D′) =⇒ fx, f
′
x ∈ O×X,x =⇒ fxf

′
x ∈ O×X,x

=⇒ x 6∈ Supp(D +D′),

as required.

1.3.2. Definition. — Let n be an integer such that 0 6 n 6 d. Let D0, . . . , Dn be
Cartier divisors onX. We say thatD0, . . . , Dn intersect properly if, for any non-empty
subset J of {0, . . . , n},

dim
(⋂

j∈J
Supp(Dj)

)
6 d− card(J).

By convention, dim(∅) is defined to be −1. We set

IP(n)
X := {(D0, . . . , Dn) ∈ Div(X)n+1 | D0, . . . , Dn intersect properly}.

In the case where n = d, we often denote IP(n)
X by IPX .

1.3.3. Lemma. — Let k′/k be an extension of fields. Let A be a k-algebra and
A′ := A ⊗k k′. Let π : Spec(A′) → Spec(A) be the morphism induced by the natural
homomorphism A→ A′. Let Q(A) (resp. Q(A′)) be the total fraction ring of A (resp.
A′). Let α ∈ Q(A)× and α′ := α⊗k 1 ∈ Q(A)⊗k k′. If we set{

Supp(α) := {P ∈ Spec(A) | α 6∈ A×P },
Supp(α′) := {P ′ ∈ Spec(A′) | α′ 6∈ A′×P ′},

then Supp(α′) = π−1(Supp(α)).

Proof. — First of all, note that Q(A)⊗kk′ ⊆ Q(A′) and α′ ∈ (Q(A)⊗kk′)× ⊆ Q(A′)×

because π is flat. Let I := {a ∈ A | aα ∈ A}, J := Iα, I ′ := {a′ ∈ A′ | a′α′ ∈ A′} and
J ′ := I ′α′. Then one has the following.

1.3.4. Claim. — (1) Supp(α) = Spec(A/I) ∪ Spec(A/J) and Supp(α′) =

Spec(A′/I ′) ∪ Spec(A′/J ′).
(2) I ′ = I ⊗k k′ and J ′ = J ⊗k k′.
(3) Spec(A′/I ′) = π−1(Spec(A/I)) and Spec(A′/J ′) = π−1(Spec(A/J)).

Proof. — Let {xλ}λ∈Λ be a basis of k′ over k. Note that V ⊗k k′ =
⊕

λ∈Λ V ⊗k kxλ
for any k-module V .

(1) It is sufficient to prove the first equality. The second is similar to the first.
Note that IP = {a ∈ AP | aα ∈ A×P }. Thus, if α ∈ A×P , then IP = JP = AP , so that
P 6∈ Spec(A/I)∪Spec(A/J). Conversely, we assume that P 6∈ Spec(A/I)∪Spec(A/J),
that is, I 6⊆ P and J 6⊆ P . Thus IP = JP = AP , and hence α ∈ A×P .

(2) Obviously I ⊗k k′ ⊆ I ′. We assume a′ ∈ I ′. Then there exists (aλ)λ∈Λ ∈ AΛ

such that a′ =
∑
λ aλ ⊗ xλ. By our assumption, we can find (bλ)λ∈Λ ∈ AΛ such that∑

λ
aλα⊗ xλ = a′α′ =

∑
λ
bλ ⊗ xλ,
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so that aλα = bλ ∈ A for all λ. Thus aλ ∈ I. Therefore the first assertion follows.
The second is a consequence of the first.

(3) follows from (2).

By using (1) and (3) of the above claim,

π−1(Supp(α)) = π−1(Spec(A/I) ∪ Spec(A/J))

= π−1(Spec(A/I)) ∪ π−1(Spec(A/J))

= Supp(A′/I ′) ∪ Supp(A′/J ′) = Supp(α′),

as required.

1.3.5. Remark. — Let k′/k be an extension of fields, Xk′ = X ×Spec k Spec k′

and π : Xk′ → X be the morphism of projection. Since the canonical morphism
Spec k′ → Spec k is flat, so is the morphism of projection π (see [33, IV1.(2.1.4)]).
Therefore, for any Cartier divisor D on X, the pull-back π∗(D) is well defined as a
Cartier divisor on Xk′ , which we denote by Dk′ .

By Lemma 1.3.3, one has

Supp(Dk′) = π−1(Supp(D)).

In particular, if D0, . . . , Dn are Cartier divisors on X, which intersect properly, then,
for any subset J of {0, . . . , n}, one has (see for example [28, Proposition 5.38] for the
equality in the middle)

dim
(⋂

j∈J
Supp(Dj,k′)

)
= dim

(
π−1

(⋂
j∈J

Supp(Dj)
))

= dim
(⋂

j∈J
Supp(Dj)

)
6 d− card(J).

Therefore, the Cartier divisors D0,k′ , . . . , Dn,k′ on Xk′ intersect properly.

1.3.6. Lemma. — The set IP(n)
X forms a symmetric and multi-linear subset of

Div(X)n+1 in the sense of Definition 1.1.1.

Proof. — It is sufficient to show that if (D0, D1, . . . , Dn), (D′0, D1, . . . , Dn) ∈ IP(n)
X ,

then (D0 +D′0, D1, . . . , Dn) ∈ IP(n)
X . We set

D′′i =

{
D0 +D′0, if i = 0,

Di, if i > 1.

If (D′′0 , D
′′
1 , . . . , D

′′
n) 6∈ IP(n)

X , then there is a non-empty subset J of {0, . . . , n} such
that

dim
(⋂

j∈J
Supp

(
D′′j
))

> d−#(J).

Clearly 0 ∈ J . We can find a schematic point P ∈ X such that dim {P} > d−#(J)

and P ∈ Supp
(
D′′j
)
for all j ∈ J , so that P ∈ Supp(D0 +D′0) and P ∈ Supp(Dj) for
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j ∈ J \ {0}. Thus, by Proposition 1.3.1, P ∈ Supp(D0) or P ∈ Supp(D′0), which is a
contradiction.

1.3.7. Lemma. — We assume that X is projective. Let n be an integer such that
0 6 n 6 d.
(1) Let L0, . . . , Ln be invertible OX-modules. Then there are regular meromor-

phic sections s0, . . . , sn of L0, . . . , Ln, respectively, such that, if we set Di =

div(Li; si) for i ∈ {0, . . . , n}, then D0, . . . , Dn intersect properly.
(2) If (D0, D1, . . . , Dn), (D′0, D

′
1, . . . , D

′
n) ∈ IP(n)

X and D0 ∼ D′0, then there is D′′0
such that D′′0 ∼ D0 (∼ D′0) and (D′′0 , D1, . . . , Dn), (D′′0 , D

′
1, . . . , D

′
n) ∈ IP(n)

X .

Proof. — (1) We prove it by induction on n in incorporating the proof of the initial
case in the induction procedure. By the hypothesis of induction (when n > 1), there
are regular meromorphic sections s0, . . . , sn−1 of L0, . . . , Ln−1, respectively, such that
if we set Di = div(Li; si) for i ∈ {0, . . . , n− 1}, then D0, . . . , Dn−1 intersect properly.

We now introduce the following claim, which (in the case where n = 0) also proves
the initial case of induction.

1.3.8. Claim. — There exist very ample invertible OX-modules L′n and L′′n, and
global sections s′n and s′′n of L′n and L′′n, which satisfy the following conditions :
(i) Ln = L′n ⊗ L′′n

−1,
(ii) s′n and s′′n define regular meromorphic sections of L′n and L′′n, respectively,
(iii) if we set D′n = div(L′n; s′n) and D′′n = div(L′′n; s′′n), then both families of Cartier

divisors D0, . . . , Dn−1, D
′
n and D0, . . . , Dn−1, D

′′
n intersect properly.

Proof of Claim 1.3.8. — Since X is projective, there exists a very ample OX -module
L. By [33, II.(4.5.5)], there exists an integer `0 ∈ N>1 such that both invertible
OX -modules L⊗`0 and L⊗`0 ⊗L−1

n are generated by global sections. Let Σ be the set
of generic points of

n−1⋂
i=0

Supp(Di).

We equip the set Σ∪Ass(X) with the order � of generalization, namely x � y if and
only if y belongs to the Zariski closure of {x}. We denote by {y1, . . . , yb} the set of
all minimal elements of the set Σ ∪Ass(X) .

For any i ∈ {1, . . . , b}, one has

yi ∈ X \
⋃

j∈{1,...,b}
j 6=i

{yj}.

By [33, II.(4.5.4)], for any i ∈ {1, . . . , b}, there exists `i ∈ N>1 and a section
ti ∈ H0(X,L⊗`i) such that ti(yi) 6= 0 and that ti(yj) = 0 for any j ∈ {1, . . . , b} \ {i}.
Moreover, by replacing the global sections t1, . . . , tb by suitable powers, we may as-
sume, without loss of generality, that all `1, . . . , `b are equal to a positive integer `.
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For any i ∈ {1, . . . , b}, let ui ∈ H0(X,L⊗`0) and vi ∈ H0(X,L⊗`0 ⊗ L−1
n ) be such

that ui(yi) 6= 0 and vi(yi) 6= 0. These sections exist since the invertible OX -modules
L⊗`0 and L⊗`0 ⊗ L−1

n are generated by global sections. Now we take

L′n = L⊗(`0+`), L′′n = L′n ⊗ L−1
n = (L`0 ⊗ L−1

n )⊗ L⊗`,

and

s′n =

b∑
i=1

uiti, s′′n =

b∑
i=1

viti.

Then, for any i ∈ {1, . . . , b}, one has s′n(yi) 6= 0 and s′′n(yi) 6= 0. In particular, s′n
and s′′n do not vanish on any of the associated points of X and hence are regular
meromorphic sections (see Remark 1.2.7). Moreover, since these sections do not
vanish at any point of Σ, we obtain the condition (iii) above.

Thus, by Lemma 1.3.6, we can see that D1, . . . , Dn−1, Dn intersect properly, where
Dn = D′n −D′′n = div(Ln; sn ⊗ sn−1), as required.

(2) We can find very ample Cartier divisors A and B on X such that D0 = A−B.
Then, by the same argument as the induction procedure in the proof of (1), we obtain
that there are A′ and B′ such that A′ ∼ A, B′ ∼ B and

(A′, D1, . . . , Dn), (A′, D′1, . . . , D
′
n), (B′, D1, . . . , Dn), (B′, D′1, . . . , D

′
n) ∈ IP(n)

X .

Thus if we set D′′0 = A′ −B′, then, by Lemma 1.3.6, one has the conclusion.

1.3.9. Remark. — Claim 1.3.8 has its own interest and will be used in further
chapters in the following way. Let X be a d-dimensional projective scheme over
Spec k andD0, . . . , Dd be Cartier divisors onX. We suppose thatD0, . . . , Dd intersect
properly. Let D0 = A0−A′0 be a decomposition of D0 into the difference of two very
ample Cartier divisors. A priori A0, D1, . . . , Dd do not intersect properly. However, by
Claim 1.3.8, one can find a very ample invertible OX -module L and a global section s
of L⊗OX(A0) defining a regular meromorphic section, such that div(L; s), D1, . . . , Dd

intersect properly. Let B = div(L; s) − A0. This is a very ample Cartier divisor
since OX(B) is isomorphic to L. Moreover, both (A0 + B,D1, . . . , Dd) and (A′0 +

B,D1, . . . , Dd) belong to IP(d)
X since the former one and their difference do.

1.3.10. Lemma. — We assume that D0, . . . , Dn are effective and ample. Then
D0, . . . , Dn intersect properly if and only if dim

(⋂n
i=0 Supp(Di)

)
6 d− n− 1.

Proof. — Obviously if D0, . . . , Dn intersect properly, then dim
(⋂n

i=0 Supp(Di)
)
6

d− n− 1. Conversely, let J be a subset of {0, . . . , n}. If we set Z =
⋂
j∈J Supp(Dj)

and I = {0, . . . , n} \ J , then

dim
(
Z ∩

⋂
i∈I

Supp(Di)
)
> dimZ − card(I)

because Di is effective and ample for all i ∈ I. Thus, by our assumption, one has

d− n− 1 > dimZ − card(I),
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which implies dimZ 6 d− card(J).

1.4. Multi-homogeneous polynomials

Let k be a field and (Ei)
d
i=0 be a family of finite-dimensional vector spaces over k.

Let (δ0, . . . , δd) be a multi-index in Nd+1.

1.4.1. Definition. — We call multi-homogeneous polynomial of multi-degree
(δ0, . . . , δd) on E0 × · · · × Ed any element of

Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ),

where Sδi(E∨i ) denotes the δi-th symmetric power of the vector space E∨i .

Recall that the dual vector space of Sδi(E∨i ) is given by

Γδi(Ei) := (E⊗δii )Sδi ,

where Sδi is the symmetric group on {1, . . . , δi}, which acts on E⊗δii by permuting
tensor factors (see [7, Chapitre IV, §5, no. 11, proposition 20]). Therefore, the dual
vector space of Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ) is given by

Γδ0(E0)⊗k · · · ⊗k Γδd(Ed).

If R ∈ Sδ0(E∨0 )⊗k · · ·⊗k Sδd(E∨d ) is a multi-homogeneous polynomial of multi-degree
(δ0, . . . , δd), for any (s0, . . . , sd) ∈ E0×· · ·×Ed, we denote by R(s0, . . . , sd) the value

R(s⊗δ00 ⊗ · · · ⊗ s⊗δdd )

in k. Thus R determines a function on E0×· · ·×Ed valued in K (which we still denote
by R by abuse of notation). In the case where the field k is infinite, as an element of
Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ), R is uniquely determined by the corresponding function
on E0× · · · ×Ed since each vector space Γδi(Ei) is spanned over k by elements of the
form s⊗δii , si ∈ Ei (see [7, Chapitre IV, §5, no. 5, proposition 5]). Moreover, for any
i ∈ {0, . . . , d} and si ∈ Ei, we denote by

R(· · · , si
↑

i-th coordinate

, · · · )

of R at si as an element of

Sδ0(E∨0 )⊗k · · · ⊗k Sδi−1(E∨i−1)⊗k Sδi+1(E∨i+1)⊗k · · · ⊗k Sδd(E∨d )

or as a multi-homogeneous polynomial function on

E0 × · · · × Ei−1 × Ei+1 × · · · × Ed,

according to the context.
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1.4.2. Remark. — Note that an element of Sδ0(E∨0 ) ⊗k · · · ⊗k Sδd(E∨d ) yields a
multi-homogeneous polynomial function on A(E∨0 ) ×k · · · ×k A(E∨d ) and the set of
k-rational points of A(E∨0 )×k · · · ×k A(E∨d ) is naturally isomorphic to E0 × · · · ×Ed,
where A(E∨i ) = Spec(

⊕∞
δ=0 S

δ(E∨i )) for each i.

1.5. Incidence subscheme

Let k be a field and E be a finite-dimensional vector space over k. We denote
Proj(

⊕∞
δ=0 S

δ(E)) by P(E). Recall that the projective space P(E) represents the
contravariant functor from the category of k-schemes to that of sets, which sends
a k-scheme ϕ : S → Spec k to the set of isomorphism classes of invertible quotient
OS-modules of ϕ∗(E) (cf. [33, EGA2, Théorèm 4.2.4]). In particular,

P(E)(k) = (E∨ \ {0})/∼,

where, for θ1, θ2 ∈ E∨ \ {0}, θ1 ∼ θ2 if and only if θ1 = aθ2 for some a ∈ k×.
Thus an element of Sδ(E) yields a homogeneous polynomial of degree δ on P(E)(k).
Moreover, if we denote by πE : P(E) → Spec k the structural scheme morphism,
then the universal object of the representation of the above functor by P(E) is the
isomorphism class of a quotient OP(E)-module of π∗E(E), which we denote by OE(1)

and which we call universal invertible sheaf on P(E). For any positive integer n,
we let OE(n) := OE(1)⊗n and OE(−n) := (OE(1)∨)⊗n. Note that the quotient
homomorphism π∗E(E) → OE(1) induces by passing to dual modules an injective
homomorphism

OE(−1) −→ π∗E(E∨).

We now consider the fibre product of projective spaces P(E)×k P(E∨). Let

p1 : P(E)×k P(E∨) −→ P(E) and p2 : P(E)×k P(E∨) −→ P(E∨)

be morphisms of projection. Note that the following diagram of scheme morphisms
is cartesian

P(E)×k P(E∨)
p2 //

p1

��

P(E∨)

πE∨

��
P(E)

πE
// Spec k

The composition of the homomorphisms

p∗1(OE(−1)) −→ p∗1(π∗E(E∨)) ∼= p∗2(π∗E∨(E∨)) −→ p∗2(OE∨(1)) (1.4)

determines a global section of the invertible sheaf

OE(1)�OE∨(1) := p∗1(OE(1))⊗ p∗2(OE∨(1)).
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1.5.1. Definition. — We call incidence subscheme of P(E)×kP(E∨) and we denote
by IE the closed subscheme of P(E)×k P(E∨) defined by the vanishing of the global
section of OE(1) � OE∨(1) determined by (1.4). In particular, the cycle class of IE
modulo the linear equivalence is

c1(OE(1)�OE∨(1)) ∩ [P(E)×k P(E∨)].

The following proposition shows that the incidence subscheme can be realized as a
projective bundle over P(E).

1.5.2. Proposition. — Let QE∨ be the quotient sheaf of π∗E(E∨) by the canonical
image of OE(−1). Then the incidence subscheme IE is isomorphic as a P(E)-scheme
to the projective bundle P(QE∨ ⊗ OE(1)). Moreover, under this isomorphism, the
restriction of OE(1)�OE∨(1) to IE is isomorphic to the universal invertible sheaf of
the projective bundle P(QE∨ ⊗OE(1)).

Proof. — It suffices to identify p1 : P(E)×kP(E∨)→ P(E) with the projective bundle

P(π∗E(E∨)⊗OE(1)) −→ P(E).

Note that the universal invertible sheaf of this projective bundle is isomorphic to
OE(1)�OE∨(1). Under this identification, the vanishing locus of (1.4) coincides with
the projective bundle P(QE∨ ⊗OE(1)).

1.5.3. Remark. — As a scheme over P(E), the incident subscheme IE also identifies
with the projective bundle P(QE∨). However, the universal invertible sheaf of this
projective bundle is the restriction of p∗2(OE∨(1)). Moreover, we can also consider
the morphism of projection from the incidence subscheme to P(E∨). By the duality
between E and E∨, the incidence subscheme IE also identifies with the projective
bundle of QE := π∗E∨(E)/OE∨(−1) over P(E∨). In particular, if x is a point of
P(E∨), then the fibre of the incidence subscheme IE over x identifies with

P((E ⊗k κ(x))/x∗OE(−1)),

which is a hyperplane in P(E⊗k κ(x)) defined by the vanishing locus of any non-zero
element of the one-dimensional κ(x)-vector subspace of E ⊗k κ(x) defining the point
x.

1.6. Resultants

Let k be a field and X be an integral projective k-scheme, and d be the Krull
dimension of X. For any i ∈ {0, . . . , d}, we fix a finite-dimensional vector space Ei
over k and a closed embedding fi : X → P(Ei), and we denote by Li the pull-back of
OEi(1) by fi. For each i ∈ {0, . . . , d}, we let ri be the Krull dimension of P(Ei), which
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identifies with dimk(Ei) − 1. For each i ∈ {0, . . . , d}, we let δi be the intersection
number

deg
(
c1(L0) · · · c1(Li−1)c1(Li+1) · · · c1(Ld) ∩ [X]

)
Let P = P(E0)×k · · ·×k P(Ed) be the product of k-schemes (P(Ei))

d
i=0. The family

(fi)
d
i=0 induces a closed embedding f : X → P. Let

P̌ := P(E∨0 )×k · · · ×k P(E∨d )

be the product of dual projective spaces. We identify P×k P̌ with

(P(E0)×k P(E∨0 ))×k · · · ×k (P(Ed)×k P(E∨d ))

and we denote by
IP := IE0 ×k · · · ×k IEd

the fibre product of incidence subschemes, so that the class of IP modulo the linear
equivalence coincides with the intersection product

c1(r∗0(OE0
(1)�OE∨0 (1))) · · · c1(r∗n(OEn(1)�OE∨n (1))) ∩ [P×k P̌],

where ri : P×k P̌→ P(Ei)×k P(E∨i ) is the i-th projection. By Proposition 1.5.2 (see
also Remark 1.5.3), IP is isomorphic to a fiber product of projective bundles

P(QE0
)×k · · · ×k P(QEd).

1.6.1. Definition. — We denote by IX the fibre product X ×P IP, called the inci-
dence subscheme of X ×k P̌. As an X-scheme, it identifies with

P(QE0 |X)×X · · · ×X P(QEd |X).

and hence is an integral closed subscheme of dimension

d+ (r0 − 1) + · · ·+ (rd − 1) = r0 + · · ·+ rd − 1

of P×k P̌. In particular, for any extension K of k and any element

(x, α0, . . . , αd) ∈ X(K)× P(E∨0 )(K)× · · · × P(E∨d )(K),

if we denote by Hi the hyperplane in P(Ei,K) defined by the vanishing of αi, then
(x, α0, . . . , αd) belongs to IX(K) if and only if fi,K(x) ∈ Hi for any i ∈ {1, . . . , d}.
In addition, the cycle class of IX modulo the linear equivalence is the intersection
product

c1
(
p∗(L0)⊗ q∗q∗0(OE∨0 (1))

)
· · · c1

(
p∗(Ld)⊗ q∗q∗d(OE∨d (1))

)
∩ [X ×k P̌], (1.5)

where p : X ×k P̌→ X, q : X ×k P̌→ P̌ and qi : P̌→ P(E∨i ) are the projections.

1.6.2. Proposition. — The direct image by the projection q : X ×k P̌→ P̌ of IX is
a multi-homogeneous hypersurface of multi-degree (δ0, . . . , δd).
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Proof. — It is sufficient to see that q∗(IX) belongs to the cycle class

c1(OE∨0 (δ0)� · · ·�OE∨d (δd)) ∩ [P̌].

Note that, for any (i1, . . . , in) ∈ {0, . . . , d}n such that i1, . . . , in are distinct,

q∗(c1(p∗(Li1)) · · · c1(p∗(Lin)) ∩ [X ×k P̌])

is equal to
c1(OE∨i1 (1)� · · ·�OE∨in (1)) ∩ [P̌]

if n = d, and is equal to the zero cycle class otherwise. Therefore, the assertion follows
from (1.5).

1.6.3. Proposition. — For (α0, . . . , αd) ∈ (E0\{0})×· · ·×(Ed\{0}), the following
are equivalent:

(1) For all i, fi(X) 6⊆ Supp(div(αi)), and div(f∗0 (α0))), . . . ,div(f∗d (αd))) intersect
properly on X.

(2) One has ([α0], . . . , [αd]) 6∈ q(IX), where [αi] denotes the class of αi in P(E∨i )(k).

Proof. — (1) =⇒ (2) is obvious.
(2) =⇒ (1) : We set J = {j ∈ {0, . . . , d} | fj(X) ⊆ Supp(div(αj))}. We assume

that J 6= ∅. Then, as f∗j (αj) = 0 for all j ∈ J and div(f∗i (αi)) is ample for all i 6∈ J ,
one has

⋂d
i=0 Supp(div(f∗i (αi))) 6= ∅. If we choose x ∈

⋂d
i=0 Supp(div(f∗i (αi))),

then (x, [α0], . . . , [αd]) ∈ IX , which is a contradiction. Therefore J = ∅. Note
that div(f∗i (αi)) is ample for every i and

⋂d
i=0 Supp(div(f∗i (αi))) = ∅. Thus, by

Lemma 1.3.10, div(f∗0 (α0))), . . . ,div(f∗d (αd))) intersect properly on X.

1.6.4. Definition. — Let X be an integral projective k-scheme of dimension d.
We call resultant of X with respect to (fi)

d
i=0 any multi-homogeneous polynomial of

multi-degree (δ0, . . . , δd) on E0 × · · · × Ed, whose vanishing cycle in

P(E∨0 )×k · · · ×k P(E∨d )

identifies with the projection of the cycle associated with the incidence subscheme
IX . Note that the resultant of X with respect to (fi)

d
i=0 is unique up to a factor of

scalar in k \ {0} as an element of Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ).
In general, if X is a projective k-scheme of dimension d and if

n∑
i=1

miXi

is the d-dimensional part of the fundamental cycle of X, where X1, . . . , Xn are d-
dimensional irreducible components of X, and mi is the local multiplicity of X at
the generic point of Xi, we define the resultant of X with respect to (fi)

d
i=0 as any

multi-homogeneous polynomial of the form

(RX1

f0|X1
,...,fd|X1

)m1 · · · (RXnf0|Xn ,...,fd|Xn
)mn ,
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where each RXif0|Xi ,...,fd|Xi
is a resultant of Xi with respect to (fi|Xi)di=0. Note that, in

the case where X is equidimensional, the projection to P̌ of the incidence subscheme
X ×P IP, is the hypersurface defined by the resultant of X.

1.6.5. Example. — We consider the particular case where d = 0. Let f0 : X →
P(E0) be a close embedding. We first assume that X is integral. In this case f0 sends
X to a closed point x of P(E0). Let κ(x) be the residue field of x and δ0 = [κ(x) : k] be
the degree of x. Let s0 be an element of E0. We assume that, if we view s0 as a global
section of OE0

(1), one has s0(x) 6= 0. We construct an element RX,s0f0
∈ Sδ0(E∨0 ) as

follows. Let
ϕ0 : E0 ⊗K κ(x) −→ OE0

(1)(x)

be the surjective κ(x)-linear map corresponding to the closed point x, and

ϕ∨0 : OE0
(−1)(x) −→ E∨0 ⊗K κ(x)

be the dual κ(x)-linear map of ϕ0, which is an injective linear map. Let s0(x)∨ be
the unique κ(x)-linear form on OE0

(1)(x) taking the value 1 at s0(x). We let

RX,s0f0
:= Nκ(x)/K(ϕ∨0 (s0(x)∨)) ∈ Sδ0(E∨0 ),

which is defined as the determinant of the following homothety endomorphism of the
free module Sym(E∨0 )⊗K κ(x) of rank δ0 over the symmetric algebra Sym(E∨0 )

Sym(E∨0 )⊗K κ(x)
ϕ∨0 (s0(x)∨) // Sym(E∨0 )⊗K κ(x).

Note that
ϕ∨0 (s0(x)∨)(s0 ⊗ 1) = s0(x)∨(s0(x)) = 1.

Therefore the following equality holds

RX,s0f0
(s0) = 1.

Assume that X is not irreducible. We let X1, . . . , Xn be irreducible components of
X (namely points of X). For each i ∈ {1, . . . , n}, let xi = f0(Xi) and ai be the local
multiplicity of X at Xi. Then

a1x1 + · · ·+ anxn

is the decomposition of f(X) as a zero-dimensional cycle in P(E0), where x1, . . . , xn
are closed points of P(E0) and a1, . . . , an are positive integers. If s0 is a global section
of OE0

(1), which does not vanish on any of the points x1, . . . , xn, we define

RX,s0f0
:=

n∏
i=1

(RXi,s0f0|Xi
)ai .

Then RX,s0f0
is a resultant ofX with respect to the closed embedding f0, which satisfies

RX,s0f0
(s0) = 1.
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1.6.6. Example. — Let n and m be positive integers, and let

f : P1
k −→ Pnk , (x0 : x1) 7−→ (xn0 : xn−1

0 x1 : · · · : xn1 )

and

g : P1
k −→ Pmk , (x0 : x1) 7−→ (xm0 : xm−1

0 x1 : · · · : xm1 )

be the Veronese embeddings of degree n and m, respectively. Note that the standard
resultant of P1

k with respect to f and g is the Sylvester resultant RSyl
n,m, that is,

RSyl
n,m(a0x

n
0 + a1x

n−1
0 x1 + · · ·+ anx

n
1 , b0x

m
0 + b1x

m−1
0 x1 + · · ·+ bmx

m
1 ) =

det



a0 a1 · · · an
a0 a1 · · · an 0
0

. . .
. . .

a0 a1 · · · an
b0 b1 · · · bm

b0 b1 · · · bm 0
0

. . .
. . .

b0 b1 · · · bm



m rows

n rows

Note that RSyl
n,m(xn0 , x

m
1 ) = 1.

1.6.7. Example. — Let n, d0, . . . .dn be positive integers and

Pnk = Proj(k[T0, . . . , Tn]).

For each i ∈ {0, . . . , n}, let ψi : Pnk ↪→ P(n+di
n )−1

k be the Veronese emdedding of degree
di. Let R be a resultant with respect to ψ0, . . . , ψn. If we give the normalization
condition R(T dn0 , . . . , T dnn ) = 1, then R is uniquely derterminded. It is denoted by
Rd0,...,dn and is called the multipolynomial resultant or the Macaulay resultant (cf.
[24, Example 4.17] and [15, §3.2]). Note that

Rd0,...,dn ∈ H0((P̌nk )n+1,OP̌nk
(δ0)� · · ·�OP̌nk

(δd)),

where δi = (d0 · · · dn)/di for i ∈ {0, . . . , 0}. In the case where n = 1, Rd0,d1 = RSyl
d0,d1

.
The following facts are well known (cf. [15, §3.2]):

(1) If L0 =
∑d
i=0 a0ixi, . . ., Ld =

∑d
i=0 adixi are linear forms, then

R1,...,1(L0, . . . , Ld) = det(aij).

(2) Let F ′i and F ′′i be homogeneous polynomials of degree d′i and d′′i , respectively
such that d′i + d′′i = di, then

Rd0,...,di,...,dn(F0, . . . , F
′
iF
′′
i , . . . , Fd)

= Rd0,...,d′i,...,dn
(F0, . . . , F

′
i , . . . , Fd)Rd0,...,d′′i ,...,dn

(F0, . . . , F
′′
i , . . . , Fd).
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1.6.8. Remark. — Let RXf0,...,fd
be a resultant of X with respect to (fi)

d
i=0. If

K/k is an extension and if s is an element of Ed ⊗k K, defining a global section of
OP(Ed⊗kK)(1), which intersects properly with all irreducible components X ×Spec k

SpecK, then, viewed as a multi-homogeneous polynomial on

(E0 ⊗k K)× · · · × (Ed ⊗k K)

by extension of scalars, the resultant RXf0,...,fd
specified on the last coordinate at s, is

a resultant of div(s) ∩XK with respect to (fi,K)d−1
i=0 . This observation motivates the

following explicit construction of the resultant polynomial by induction.

1.6.9. Definition. — Let (s0, . . . , sd) ∈ E0 × · · · × Ed. We assume that, for any
irreducible component Z of X, the divisors div(s0), . . . ,div(sd) intersect properly on
Z. We denote by RX,s0,...,sdf0,...,fd

the unique resultant of X with respect to f0, . . . , fd such
that

RX,s0,...,sdf0,...,fd
(s0, . . . , sd) = 1.

1.6.10. Remark. — Let k′/k be an extension of fields. For any i ∈ {0, . . . , d},
the morphism fi : X → P(Ei) induces by base change a closed embedding f ′i from
X ′ := X ×Spec k Spec k′ to P(E′i), where E′i := Ei ⊗k k′. Note that the incidence
subscheme of

X ′ ×k′ P(E′∨0 )×k′ · · · ×k′ P(E′∨d )

identifies with IX×Spec kSpec k′. Therefore, if RXf0,...,fd
is a resultant ofX with respect

to (fi)
d
i=0, then

RXf0,...,fd
⊗ 1 ∈ (Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ))⊗k k′ ∼= Sδ0(E′∨0 )⊗k′ · · · ⊗k′ Sδd(E′∨d )

is a resultant of X ′ with respect to (f ′i)
d
i=0. Similarly, if (s0, . . . , sd) is an element of

E0 × · · · × Ed such that the divisors div(s0), . . . ,div(sd) intersect properly on each
irreducible component of X, then the following equality holds

R
X′,s′0,...,s

′
d

f ′0,...,f
′
d

= RX,s0,...,sdf0,...,fd
⊗ 1,

where for each i ∈ {0, . . . , d}, s′i denotes the element si ⊗ 1 in E′i = Ei ⊗k k′.

1.7. Projection to a projective space

Let k be an infinite field, n be an integer such that n > 1, and V be a vector
space of dimension n+1 over k. Let P(V ) be the projective space associated with the
k-vector space V and OV (1) be the universal invertible sheaf on P(V ). Recall that for
any k-algebra A, any k-point of P(V ) valued in A corresponds to a quotient invertible
A-module of V ⊗k A. In particular, if x is a scheme point of P(V ) and κ(x) is the
residue field of x, then the scheme point x corresponds to a non-zero κ(x)-linear map
px : V ⊗k κ(x)→ κ(x), which is unique up to a unique homothety κ(x)→ κ(x) by an
element of κ(x)×.
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1.7.1. Definition. — We call rational linear subspace of P(V ) any Zariski closed
subset of P(V ) defined by the vanishing of sections in a k-linear subspace of V =

H0(P(V ),OV (1)). If Y is a rational linear subspace of P(V ) which is of codimension
1, we say that Y is a rational hyperplane in P(V ).

1.7.2. Example. — (1) The scheme P(V ) is a rational linear subspace of P(V ).
It is defined by the vanishing of the zero vector in V .

(2) Let x be a rational point of P(V ), which corresponds to a non-zero k-linear map
πx : V → k. Then {x} is the vanishing locus of sections in Ker(πx) and hence
is a rational linear subspace of P(V ).

(3) The empty subset of P(V ) is a rational linear subspace, which identifies with
the vanishing locus of all sections in V . By convention, the dimension of the
empty subset of P(V ) is defined as −1.

1.7.3. Remark. — If Y is a rational linear subspace of P(V ) which is the vanishing
locus of a k-vector subspace W of V , then the k-scheme Y is isomorphic to P(V/W ).
We call linear projection with center Y the k-morphisme πY : P(V ) \ Y → P(W )

which sends, for any commutative k-algebra A, any quotient invertible A-module
pL : V ⊗k A→ L in (P(V ) \ Y )(A) to the composition

W ⊗k A ↪−→ V ⊗k A
pL−→ L,

which is an element of P(W )(A).
We assume that Y = {y} is the set of one rational point of P(V ), which corresponds

to a non-zero k-linear map py : V → k whose kernel is W . Let z be a scheme point
of P(V ), κ(z) be the residue field of z, and pz : V ⊗k κ(z) → κ(z) be the non-zero
κ(z)-linear map corresponding to the scheme point z. Note that κ(z) is generated by
elements of the form pz(f ⊗ 1)/pz(g ⊗ 1), where f and g are elements of V such that
pz(g ⊗ 1) 6= 0. Assume that y does not belong the Zariski closure of {z}. Then there
exists at least an element s ∈ V \W such that pz(s⊗ 1) = 0. Let z′ be the image of z
by the linear projection πY . The residue field of z′ identifies with the sub-extension
of κ(x)/k generated by elements of the form pz(f

′⊗1)/pz(g
′⊗1), where f ′ and g′ are

elements of W such that pz(g′ ⊗ 1) 6= 0. As W is of codimension 1 in V and s is an
element of V \W such that pz(s⊗ 1) = 0, we obtain that, for any f ∈ V , there exists
f ′ ∈ W such that pz(f ⊗ 1) = pz(f

′ ⊗ 1). Therefore we obtain that κ(z) = κ(z′). In
particular, if X is a closed subset of P(V ) which does not contain y, then πY (X) has
the same dimension as X.

1.7.4. Proposition. — Let d ∈ {0, . . . , n}. Let X be a Zariski closed set of P(V )

such that dim(X) 6 d. Then we have the following:

(1) There is a rational linear subspace M of P(V ) such that dim(M) = n − 1 − d
and X ∩M = ∅.
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(2) Let T be a rational linear subspace of P(V ) such that dim(T ) > n− d− 1, and
that X and T meet properly. Then there is a rational linear subspace M of P(V )

such that M ⊆ T , dim(M) = n− 1− d and X ∩M = ∅.
(3) We assume that X is irreducible and dim(X) = d. Let M be a rational linear

subspace of P(V ) such that dim(M) = n − 1 − d and M ∩ X = ∅, which is
the vanishing locus of a vector space W of V . Let πM : P(V ) \M → P(W )

be the projection with the center M . Then π := πM |X : X → Pdk is finite and
surjective and π∗(OPdk

(1)) = OPnk (1)
∣∣
X
.

Proof. — (1) We prove the assertion by induction on n − d. If n = d, then the
assertion is obvious by choosing M as the empty set, so that we assume that n > d.
SinceX 6= P(V ) and k is an infinite field, there is a rational point x ∈ P(V ) which does
not belong to X. LetW be the set of sections s ∈ V = H0(P(V ),OV (1)) which vanish
at x. This is a vector subspace of V . Let π : P(V ) \ {x} → P(W ) be the projection
with center {x}. Since x 6∈ X, by Remark 1.7.3 we obtain that X and X ′ have the
same dimension. In particular, dim(X ′) 6 d. As (n−1)−d < n−d, by the hypothesis
of induction, there is a linear subspace M ′ in P(W ) such that dim(M ′) = n − 2 − d
and X ′ ∩M ′ = ∅. Thus if we set M = π−1(M ′) ∪ {x}, then one has the desired
subspace.

(2) Assume that T is defined by the vanishing of sections in a k-vector subspace
W of V . If we set X ′ = X ∩ T and t = dimT , then dimX ′ 6 d − (n − t) and
T ' P(V/W ). As

t− (d− (n− t)) = n− d > 0,

by (1), there is linear subspace M in T such that dimM = t− 1− (d− (n− t)) and
M ∩X ′ = ∅. Thus one has (2).

(3) Let T be a linear subspace of P(V ) such that M ⊆ T and dim(T ) = n− d. It
is sufficient to show that dim(T ∩X) = 0. Note that M is a rational hyperplane in
T , so that if dim(T ∩X) > 1, then M ∩X 6= ∅. Therefore dim(T ∩X) = 0.



CHAPTER 2

ADELIC CURVES AND THEIR CONSTRUCTIONS

In this chapter, we recall an adelic structure of a field, and give a “standard”
construction of an adelic structure for a countable field of characteristic zero.

2.1. Adelic structures

Let K be a field. An adelic structure of K consists of data ((Ω,A, ν), φ) satisfying
the following properties:

(1) (Ω,A, ν) is a measure space, that is, A is a σ-algebra of Ω and ν is a measure
on (Ω,A).

(2) The last φ is a map from Ω to MK , where MK is the set of all absolute values
of K. For any ω ∈ Ω, we denote the absolute value φ(ω) by |.|ω.

(3) For any ω ∈ Ω and any a ∈ K×, the function (ω ∈ Ω) 7→ ln |a|ω is ν-integrable.

The field K equipped with an adelic structure is called an adelic curve. Moreover,
the adelic structure ((Ω,A, ν), φ) is said to be proper if∫

Ω

ln |a|ω ν(dω) = 0 (2.1)

holds for all a ∈ K×. If the adelic structure ((Ω,A, ν), φ) is proper, we also say
that the adelic curve (K, (Ω,A, ν), φ) is proper. The equation (2.1) is called product
formula. For details, see [13, Chapter 3]. We denote the set of all ω ∈ Ω with |.|ω
Archimedean (resp. non-Archimedean) by Ω∞ (resp. Ωfin). The restriction of A to
Ω∞ (resp. Ωfin) is denoted by A∞ (resp. Afin). Note that Ω∞ and Ωfin belong to A
(see [13, Proposition 3.1.1]). For each ω ∈ Ω∞, there exist an embedding ιω : K → C
and κω ∈ (0, 1] such that |a|ω = |ιω(a)|κω for all a ∈ K, where |.| is the usual absolute
value of C. Note that the exponent κω does not depend on the choice of the embedding
ιω : K → C. From now on, we always assume that κω = 1 for all ω ∈ Ω∞.
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For (a1, . . . , an) ∈ Kn \ {(0, . . . , 0)}, the height hS(a1, . . . , an) of (a1, . . . , an) with
respect to the adelic curve S = (K, (Ω,A, ν), φ) is defined to be

hS(a1, . . . , an) :=

∫
Ω

ln(max{|a1|ω, . . . , |an|ω})ν(dω). (2.2)

Note that if S is proper, then hS(a) = 0 for all a ∈ K×.

2.1.1. Remark. — Many classic constructions in algebraic geometry and arithmetic
geometry, such as algebraic curves, rings of algebraic integers, polarized projective
varieties and arithmetic varieties, can be interpreted as adelic curves. For example,
on the filed Q of rational numbers there is an adelic structure consisting of all places
of Q (namely the set ΩQ of all prime numbers and ∞) equipped with the discrete
σ-algebra and the measure ν such that ν({ω}) = 1 for any ω ∈ ΩQ, where |.|∞ is the
usual absolute value on Q and |.|p is the p-adic absolute value for any prime number
p. The product formula for this adelic curve is just the logarithmic version of the
usual product formula for rational numbers

∀ a ∈ Q×, |a|∞ ·
∏
p

|a|p = 1.

We call this adelic structure the standard adelic structure on Q. We refer the readers
to [13, §3.2] for more examples.

2.1.2. Definition. — Let S = (K, (Ω,A, ν), φ) and S′ = (K ′, (Ω′,A′, ν′), φ′) be two
adelic curves. We call morphism from S′ to S any triplet α = (α#, α#, Iα), where
(1) α# : K → K ′ is a field homomorphism,
(2) α# : (Ω′,A′)→ (Ω,A) is a measurable map, such that, for any ω′ ∈ Ω′,

|.|ω′ ◦ α# = |.|α#(ω′),

and that the direct image of ν′ by α# coincides with ν, namely, for any A-
measurable function g : Ω → R which is non-negative (resp. integrable), the
function g ◦ α# is also non-negative (resp. integrable), and one has∫

Ω′
g(α#(ω′)) ν′(dω′) =

∫
Ω

g(ω) ν(dω).

If in addition ν′ admits a disintegration with respect to the fibration α#, namely
there exists an R-linear map

Iα : L 1(Ω′,A′, ν′) −→ L 1(Ω,A, ν)

sending positive integrable functions on (Ω′,A′, ν′) to positive integrable functions on
(Ω,A, ν) such that

∀ f ∈ L 1(Ω′,A′, ν′),
∫

Ω

Iα(f)(ω) ν(dω) =

∫
Ω′
f(ω′) ν′(dω′),

∀ g ∈ L 1(Ω,A, ν), Iα(g ◦ α#) = g,

we say that α : S′ → S is a covering of adelic curves.
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2.2. Algebraic coverings of adelic curves

Adelic curves are very flexible constructions. On a field there exist many adelic
structures. It is also possible to construct new adelic structures from given ones. Let
S = (K, (Ω,A, ν), φ) be an adelic curve. In [13, §3.2] it has been explained how to
construct, for any algebraic extension L/K, a natural adelic curve

S ⊗K L = (L, (ΩL,AL, νL), φL)

on L such that ΩL = Ω×MK ,φML. The projection map πL/K : ΩL → Ω satisfies the
relation

ν = (πL/K)∗(νL).

Moreover, for any ω ∈ Ω, the fibre π−1
L/K({ω}) is equipped with a natural σ-algebra

and a probability measure νL,ω, such that, for any positive AL-measurable function
f on ΩL, one has∫

ΩL

g(x) νL(dx) =

∫
Ω

ν(dω)

∫
π−1
L/K

(ω)

g(x) νL,ω(dx).

In other words, the family of measures (νL,ω)ω∈Ω form a disintegration of νL over ν.
If the adelic curve S is proper, then also is S ⊗K L, see [13, Proposition 3.4.10]. If
we denote by iK,L : K → L the inclusion map, and

IL/K : L 1(ΩL,AL, νL) −→ L 1(Ω,A, ν)

the linear map of fiber integrals, which sends g ∈ L1(ΩL,AL, νL) to the function

(ω ∈ Ω) 7−→
∫
π−1
L/K

(ω)

g(x) νL,ω(dx),

then the triplet (iK,L, πL/K , IL/K) forms a covering of adelic curves in the sense of
Definition 2.1.2.

2.2.1. Lemma. — Let K ′ be an algebraic extension of K and S ⊗ K ′ :=

(K ′, (Ω′,A′, ν′), φ′). Suppose that K and Ωfin are countable sets. If (Ωfin,Afin)

is discrete, so is (Ω′fin,A′fin).

Proof. — Since K ′/K is an algebraic extension, and K and Ωfin are countable sets,
we obtain that the sets K ′ and Ω′fin are countable, so that it is sufficient to see that
{ω′} ∈ A′fin for all ω′ ∈ Ω′fin.

First we consider the case where K ′ is finite over K. Let ω′ ∈ Ω′ and ω = π(ω′),
where π : Ω′ → Ω is the canonical map. Then as {ω} is Afin-measurable and π is
measurable, π−1({ω}) ∈ A′fin. If |.|ω is trivial, then π−1({ω}) = {ω′}, so that the
assertion is obvious. Next we assume that |.|ω is non-trivial. Let us see that, for any
(x, x′) ∈ π−1({ω})2 with x 6= x′, |.|x is not equivalent to |.|x′ . Otherwise, there is
κ ∈ R>0 such that |.|x′ = |.|κx. As |.|ω is non-trivial, there is a ∈ K such that |a|ω < 1.
Then

|a|ω = |a|x′ = |a|κx = |a|κω,
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and hence κ = 1, which is a contradiction. Therefore, there is a′ ∈ K ′ such that
|a′|ω′ < 1 and |a′|x > 1 for all x ∈ π−1({ω})\{ω′} (cf. [52, the proof of Theorem 3.4]).
Note that

∆ := {χ ∈ Ω′ : |a′|χ < 1}

is A′fin-measurable, so that {ω′} = π−1({ω}) ∩∆ is A′fin-measurable.
In general, for a ∈ K ′, let

(K(a), (ΩK(a),AK(a), νK(a)), φK(a)) = S ⊗K(a)

and let πK′/K(a) : Ω′ → ΩK(a) be the canonical map. By the previous case,
{πK′/K(a)(ω

′)} ∈ AK(a), so that π−1
K′/K(a)({πK′/K(a)(ω

′)}) ∈ A′. Therefore, as K ′ is
countable, ⋂

a∈K′
π−1
K′/K(a)(πK′/K(a)(ω

′)).

belongs to A′. Thus it suffices to prove

{ω′} =
⋂
a∈K′

π−1
K′/K(a)(πK′/K(a)(ω

′)). (2.3)

Indeed, if x ∈
⋂
a∈K′ π

−1
K′/K(a)({πK′/K(a)(ω

′)}), then, for any a ∈ K ′, πK′/K(a)(x) =

πK′/K(a)(ω
′), so that |a|x = |a|ω′ , which means that x = ω′.

2.3. Transcendental fibrations of adelic curves

The purpose of this section is to discuss the extension of an adelic structure to a
transcendental extension of the field. We fix an adelic curve S = (K, (Ω,A, ν), φ).
For any ω ∈ Ω, let Kω be the completion of K with respect to the absolute value |.|ω.
We begin with an example which illustrates a construction of pure transcendental
fibration of transcendence degree 1 over the adelic curve.

2.3.1. An illustrative example. — Assume that the field K is countable when
Ω∞ is not empty. For ω ∈ Ωfin, we extend the absolute value |.|ω to K(T ) by taking
the Gauss norm. Recall that for any polynomial

F (T ) = a0 + a1T + · · ·+ anT
n ∈ K[T ],

one has
|F |ω = max{|a0|ω, . . . , |an|ω}.

If Ω∞ is not empty, for any ω ∈ Ω∞, Kω identifies with R or C. We let ιω : K →
C be corresponding embedding (in the case where Kω

∼= C we need to choose an
embedding between two conjugated ones), and let ΩK,ω be the set of t ∈ [0, 1] such
that e2πit is transcendental over K with respect to the embedding ιω. Note that the
complementary of ΩK(T ),ω in [0, 1] is countable since K is assumed to be countable
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in the case where Ω∞ 6= ∅. Note that For each t ∈ ΩK(T ),ω, the evaluation of
polynomials(

F =

n∑
`=0

a`T
` ∈ K[T ]

)
7−→ Fω(e2πit) :=

n∑
`=0

ιω(a`)e
2πi`t ∈ C

defines a ring homomorphism from K[T ] to C which is injective since e2πit is tran-
scendental over K. Thus it induces a field embedding from K(T ) to C, which we
denote by

(f ∈ K(T )) 7−→ fω(e2πit).

Therefore, the usual absolute value on C induces by restriction an absolute value on
K(T ) which we denote by |.|t.

We denote by ΩK(T ) the disjoint union

Ωfin q
∐

ω∈Ω∞

ΩK(T ),ω.

Clearly the set ΩK(T ) is fibered over Ω, where the projection map sends the elements
of ΩK(T ),ω to ω. We equip ΩK(T ),ω (which is a subset of measure 1 of [0, 1]) with
the Borel σ-algebra and the Lebesgue measure. Then the fiber integral defines a σ-
algebra AK(T ) as follows. A real-valued function f on ΩK(T ) is AK(T )-measurable if
it satisfies the following conditions:
(1) for any ω ∈ Ω∞, the restriction of f to ΩK(T ),ω is Borel measurable,
(2) the fibre integral of f , which is defined as

(ω ∈ Ω) −→


f(ω), if ω ∈ Ωfin,∫

ΩK(T ),ω

f(t) dt, if ω ∈ Ω∞,

is A-measurable.
Moreover, the fibre integral also defines a measure νK(T ) on (ΩK(T ),AK(T )) such that,
for any non-negative function f on ΩK(T ), one has∫

ΩK(T )

f(x) νK(T )(dx) =

∫
Ωfin

f(ω) ν(dω) +

∫
Ω∞

∫
ΩK(T ),ω

f(t) dt ν(dω).

Thus we obtain an adelic curve with K(T ) as its underlying field. Moreover, the
canonical embedding K → K(T ) and the projection map ΩK(T ) → Ω defines a
covering of adelic curves as described in Definition 2.1.2.

Note that, in the case where the adelic curve S is proper, it is not true in general
that the adelic curve constructed above is also proper. However, it admits a natural
compactification that we will explain below. We denote by P the set of irreducible
monic polynomials in K[T ]. For any P ∈ P, let |.|P be the absolute value on the
field K(T ) of rational functions defined as

|.|P = e− ordP (.).
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We denote by (Ω∗K(T ),A
∗
K(T ), ν

∗
K(T )) the disjoint union of (ΩK(T ),AK(T ), νK(T )) with

P, where P is equipped with the discrete σ-algebra and the measure such that

∀P ∈P, ν∗K(T )({P}) =

∫
Ωfin

ln |P |ω ν(dω) +

∫
Ω∞

∫ 1

0

ln |Pω(e2πit)|dt ν(dω).

Then the measure space (Ω∗K(T ),A
∗
K(T ), ν

∗
K(T )) together with the family (|.|x)x∈ΩK(T )

form a proper adelic curve.
The above compactification is not unique. Let us consider its λ-twisted variant as

follows. Let |.|∞ be the absolute value on K(T ) such that, for any F ∈ K[T ], one has

|F |∞ = edeg(F ).

Let λ be a positive real number. We denote by (ΩλK(T ),A
λ
K(T ), ν

λ
K(T )) the disjoint

union of (ΩK(T ),AK(T ), νK(T )) with P q{∞}, where P q{∞} is equipped with the
discrete σ-algebra and the measurable such that

∀P ∈P, νλK(T ){P} = ν∗K(T )({P}) + λ deg(P )

νλK(T )({∞}) = λ.

Then the measure space (ΩλK(T ),A
λ
K(T ), ν

λ
K(T )) together with the family of absolute

values (|.|ω)ω∈Ωλ
K(T )

form a proper adelic curve, which is called the λ-twisted com-
pactification of (K(T ), (ΩK(T ),AK(T ), νK(T )), (|.|ω)ω∈ΩK(T )

).

2.3.2. A general construction of transcendental fibration. — Let B be a K-
algebra. Note that B is not necessarily of finite type over K. We assume that B is a
unique factorization domain and the set B× of units in B coincides with K×. We say
that two irreducible elements of B are equivalent if they differ by a unit as a factor.
This defines an equivalence relation on the set of all irreducible elements of B. We
pick a representative in each of the equivalence classes to form a subset PB of B
consisting of non-equivalent irreducible elements. Let L be the field of fractions of B.
Recall that any non-zero element g ∈ L can be written in a unique way as

c(g)
∏

F∈PB

F ordF (g),

where c(g) is an element of K× = B×, and for each F ∈ PB , ordF (g) is an integer.
Note that ordF (.) is a discrete valuation on the field L, and ordF (a) = 0 for any
a ∈ K× = B×.

2.3.1. Definition. — For any ω ∈ Ω, let SL,ω = (L, (ΩL,ω,AL,ω, νL,ω), φL,ω) be
an adelic curve such that νL,ω is a probability measure. We say that the family
(SL,ω)ω∈Ω is an admissible fibration with respect to (B,PB) over the adelic curve S
if the following conditions are satisfied:

(a) for any ω ∈ Ω and any x ∈ ΩL,ω, the absolute value φL,ω(x) on L is an extension
of φ(ω) on K,
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(b) for any element g ∈ B \ {0}, any finite family (Fj)
n
j=1 of elements of PB

containing {F ∈PB | ordF (g) 6= 0} and any (Cj)
n
j=1 ∈ Rn>0, the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cn νL,ω(dx)

is A-measurable,
(c) for any ω ∈ Ω and any element F of PB , the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

ln |F |x νL,ω(dx)

is integrable with respect to ν.

Let (SL,ω)ω∈Ω be an admissible fibration over the adelic curve S. We define ΩL as
the disjoint union of (ΩL,ω)ω∈Ω and let φL be the map from ΩL to the set of all absolute
values on L, whose restriction on each ΩL,ω is equal to φL,ω. Let πL/K : ΩL → Ω

be the projection map, sending the elements of ΩL,ω to ω. We equip ΩL with the
σ-algebra AL generated by the projection map πL/K and all functions of the form
(x ∈ ΩL) 7→ |g|x, where g runs over the set L.

2.3.2. Proposition. — Let f be a non-negative AL-measurable function on ΩL.
For any ω ∈ Ω, the function f is AL,ω-measurable on ΩL,ω. Moreover, the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

f(x) νL,ω(dx) ∈ [0,+∞]

is A-measurable.

Proof. — Let H be the set of all bounded non-negative AL-measurable functions g
on ΩL which is AL,ω-measurable on ΩL,ω for any ω ∈ Ω and such that the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

f(x) νL,ω(dx)

is A-measurable. Note that, for any non-negative bounded A-measurable function ϕ
on Ω, one has ϕ ◦ π ∈ H since it is constant on each fiber ΩL,ω and∫

ΩL,ω

ϕ(π(x)) νL,ω(dx) =

∫
ΩL,ω

ϕ(ω) νL,ω(dx) = ϕ(ω).

In particular, all non-negative constant functions belong to H. Clearly, for any
(g1, g2) ∈ H × H and any (a1, a2) ∈ R>0 × R>0, one has a1g1 + a2g2 ∈ H. For
any increasing sequence of functions (gn)n∈N in H, the pointwise limit of (gn)n∈N
belongs to H. Moreover, for functions g1 and g2 in H such that g2 > g1, one has
g2 − g1 ∈ H.

Let S be the set of functions of the form

(x ∈ ΩL) 7−→ |g|x1l|F1|x6C1,...,|Fn|x6Cnϕ(π(x)),
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where g is an element of B\{0}, (Fj)
n
j=1 is a finite family of elements of PB containing

{F ∈ PB | ordF (g) 6= 0}, (Cj)
n
j=1 is a family of positive constants and ϕ is a non-

negative and bounded A-measurable function on Ω. Clearly the set S is stable by
multiplication. Note that the function sending ω ∈ Ω to∫

ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cnϕ(π(x)) νL,ω(dx)

= ϕ(ω)

∫
ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cn νL,ω(dx)

takes real values and is A-measurable by the condition (b) above. Therefore, S is a
subset ofH. Since the σ-algebraAL is generated by S, by monotone class theorem (see
[66, §2.2], see also [13, §A.1]), H contains all bounded non-negative AL-measurable
functions. Finally, since any non-negative AL-measurable function f can be written as
the limit of an increasing sequence of bounded non-negative AL-measurable functions,
the assertion of the proposition is true.

2.3.3. Definition. — Let (SL,ω)ω∈Ω be an admissible fibration over S (see Defi-
nition 2.3.1), where SL,ω = (L, (ΩL,ω,AL,ω, νL,ω), φL,ω). By Proposition 2.3.2, there
is a measure νL on the measurable space (ΩL,AL) such that, for any non-negative
AL-measurable function f on ΩL, one has∫

ΩL

f(x) νL(dx) =

∫
Ω

ν(dω)

∫
ΩL,ω

f(x) νL,ω(dx).

Therefore SL := (L, (ΩL,AL, νL), φL) is an adelic curve, called the adelic curve asso-
ciated with the admissible fibration (SL,ω)ω∈Ω. Since νL,ω are probability measures,
if we denote by iK,L : K → L the inclusion map, by πL/K : ΩL → Ω the map sending
the elements of ΩL,ω to ω, and by

IL/K : L 1(ΩL,AL, νL) −→ L 1(Ω,A, ν)

the linear map of fiber integrals, then the triplet (iK,L, πL/K , IL/K) forms a covering
of adelic curves in the sense of Definition 2.1.2.

2.4. Intrinsic compactification of admissible fibrations

Let S = (K, (Ω,A, ν), φ) be a proper adelic curve, B be a K-algebra which is
a unique factorization domain, and PB be a representative family of irreducible
elements as in the previous section. Let L be the field of fractions of B and(

SL,ω = (L, (ΩL,ω,AL,ω, νL,ω), φL,ω)
)
ω∈Ω

be an admissible fibration with respect to (B,PB). In the previous section, we
have constructed an adelic curve SL := (L, (ΩL,AL, νL), φL) which fibers over S and
such that the measure νL disintegrates over ν by the family of measures (νL,ω)ω∈Ω

on the fibers. This construction looks similar to algebraic coverings of adelic curves.
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However, even in the case where the adelic structure ((Ω,A, ν), φ) is proper, the adelic
structure ((ΩL,A, νL), φL) is not necessarily proper. In this section, we show that,
under a mild condition on the admissible fibration (Sω)ω∈Ω over S, we can naturally
“compactify” the adelic structure ((ΩL,AL, νL), φL). For any element F ∈ PB , we
denote by |.|F the absolute value on K(T ) such that

∀ g ∈ L×, |g|F := e− ordF (g) .

Thus we obtain a map φ′L from PB to ML sending F to |.|F . Let (Ω∗L,A∗L) be the
disjoint union of the measurable spaces (ΩL,AL) and PB equipped with the discrete
σ-algebra. Let φ∗L : Ω∗L →ML be the map extending φL on ΩL and φ′L on PB .

2.4.1. Proposition. — Let (Sω)ω∈Ω be an admissible fibration over S. We assume
that, for any element F ∈PB,

hSL(F ) :=

∫
Ω

ν(dω)

∫
ΩL,ω

ln |F |x νL,ω(dx) > 0. (2.4)

Let ν∗L be the measure on (Ω∗L,A∗L) which coincides with νL on (ΩL,AL) and such
that

∀F ∈PB , ν∗L({F}) = hSL(F ).

Then S∗L := (L, (Ω∗L,A∗L, ν∗L), φ∗L) is a proper adelic curve.

Proof. — For any g ∈ L×, one has∫
ΩL

ln |g|x νL(dx) =

∫
Ω

ν(dω)

∫
ΩL,ω

ln |g|x νL,ω(dx)

=
∑

F∈PB

ordF (g)

∫
Ω

ν(dω)

∫
ΩL,ω

ln |F |x νL,ω(dx) =
∑

F∈PB

ordF (g)hSL(F ).
(2.5)

Thus ∫
Ω∗L

ln |g|x ν∗L(dx) =

∫
ΩL

ln |g|x νL(dx) +
∑

F∈PB

hSL(F ) ln |g|F = 0.

2.4.2. Definition. — Under the assumption (2.4), the adelic curve S∗L is called the
canonical compactification of SL.

2.4.3. Remark. — Let AB be the discrete σ-algebra on PB , νB be the measure
on (PB ,AB) such that

νB({F}) = hSL(F )

for any F ∈ PB , and φB : PB → MK be the map sending any element of PB to
the trivial absolute value on K. Then SB := (K, (PB ,AB , νB), φB) forms an adelic
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curve having K as the underlying field. Let S∗ be the amalgamation of S and SB .
Then, the inclusion map K → L, the projection

πL/K q IdPB
: Ω∗L = ΩL qPB −→ Ω∗ = ΩqPB

and the integral along fibers form a covering of adelic curves.

2.5. Non-intrinsic compactification of admissible fibrations

We keep the notation of the previous section. In this section, we assume that
the family of absolute values (|.|F )F∈PB

can be included in a proper adelic struc-
ture. We will show that a weaker positivity condition than (2.4) would be enough
to ensure the existence of (non-intrinsic) compactifications of the adelic structure
((ΩL,AL, νL), φL). In the rest of the subsection, we assume that there exists a proper
adelic structure ((Ω′L,A′L, ν′L), φ′L) on L which satisfies the following conditions:
(1) Ω′L contains PB as a discrete measurable sub-space and ν′L({F}) > 0 for any

F ∈PB ,
(2) for any F ∈PB , one has φ′L(F ) = |.|F .

Note that the existence of such an adelic structure is is true whenK is of characteristic
0 and SpecB is a smoothK-scheme of finite type. In this case there exists a projective
K-schemeX and an open immersion from B intoX. Then one can construct an adelic
structure consisting of prime divisors of X, by choosing a polarization on X. We refer
the readers to [13, §3.2.4] for more details.

2.5.1. Proposition. — Let (Sω)ω∈Ω be an admissible fibration over S. For any
element F ∈PB, let

hSL(F ) :=

∫
Ω

ν(dω)

∫
ΩL,ω

ln |F |x νL,ω(dx). (2.6)

Let δ be a positive constant. We assume that

∀F ∈PB , hSL(F ) + δν′L({F}) > 0.

Let (Ω′′L,A′′L) be the disjoint union of (ΩL,AL) and (Ω′L,A′L), φ′′L : Ω′′L → ML be the
map extending φL and φ′L, and ν

δ
L be the measure on (Ω′′L,A′′L) which coincides with

νL on (ΩL,AL) and coincides with

δν′L +
∑

F∈PB

hSL(F ) DiracF

on (Ω′L, ν
′
L), where DiracF denotes the Dirac measure at F . Then ((Ω′′L,A′′L, νδL), φ′′L)

is a proper adelic structure on L.

Proof. — For any g ∈ L×, one has∫
Ω∗L

ln |g|x νδL(dx) =

∫
ΩL

ln |g|x νL(dx) + δ

∫
Ω′L

ln |g|x ν′L(dx) +
∑

F∈PB

hSL(F ) ln |g|F .
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By (2.5), one has ∫
ΩL

ln |g|x νL(dx) +
∑

F∈PB

hSL(F ) ln |g|F = 0.

Moreover, since ((Ω′L,A′L, ν′L), φ′L) is a proper adelic structure, one has∫
Ω′L

ln |g|x ν′L(dx) = 0.

Therefore we obtain ∫
Ω′′L

ln |g|x νδL(dx) = 0.

2.6. Purely transcendental fibration of adelic curves

In this section, we apply the results obtained in previous sections to the study of
adelic structures on a purely transcendental extension of the underlying field of an
adelic curve. Let S = (K, (Ω,A, ν), φ) be an adelic curve and I be a non-empty set.
We consider the polynomial ring K[TI ] spanned by I, where TI = (Ti)i∈I denotes the
variables. Let N⊕I be the set of vectors d = (di)i∈I ∈ NI such that di = 0 for all but
a finite number of i ∈ I. For any vector d = (di)i∈I ∈ N⊕I , we denote by T d the
monomial ∏

i∈I, di>0

T dii .

If g is an element of K[TI ], for any d ∈ N⊕I we denote by ad(g) the coefficient of T d

in the writing of g as a K-linear combination of monomials. For convenience, K[TI ]

means K in the case where I = ∅.

2.6.1. Lemma. — (1) Let J be a subset of I. If f and g are two elements of
K[TI ] such that fg belongs to K[TJ ], then both polynomials f and g belong to
K[TJ ].

(2) The ring K[TI ] is a unique factorization domain and K[TI ]
× = K×.

Proof. — (1) For i ∈ I and ϕ ∈ K[TI ], the degree of ϕ with respect to Ti is denoted
by degi(ϕ). Note that the function degi(.) satisfies the equality degi(fg) = degi(f) +

degi(g), so that degi(f) = degi(g) = 0 once i ∈ I \ J , which means that g and h

belong to K[TJ ].

(2) For any finite subset J of I, it is well known that K[TJ ] is a unique factorization
domain. Moreover, for f ∈ K[TI ] \ {0}, there is a finite subset J of I such that
f ∈ K[TJ ]. Thus the first assertion follows from (1). The second assertion is a direct
consequence of (1) in the particular case where J = ∅.
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Let L = K(TI) be the field of fractions of K[TI ]. As in §2.3, we pick in each
equivalence class of irreducible polynomials inK[TI ], a representative to form a subset
PK[TI ]. For each element F ∈PK[TI ], we let ordF (.) be the discrete valuation on L
defined by F and let |.|F := e− ordF (.) be the corresponding absolute value. Let deg(.)
be the degree function on K[TI ]. Note that for any (f, g) ∈ K[TI ]

2 one has

deg(f + g) 6 max{deg(f),deg(g)}, deg(fg) = deg(f) + deg(g).

Therefore the function −deg(.) extends to a discrete valuation on L. Denote by |.|∞
the corresponding absolute value, defined as

|.|∞ = edeg(.).

Note that the following product formula holds

∀ g ∈ L \ {0}, ln |g|∞ +
∑

F∈PK[TI ]

deg(F ) ln |g|F = 0.

In other words, if we equip Ω′L := PK[TI ] q {∞} with the discrete σ-algebra A′L and
the measure ν′L such that

ν′L({∞}) = 1 and ν′L({F}) = deg(F )

for any F ∈PK[TI ], then (L, (Ω′L,A′L, ν′L), φ′L) forms a proper adelic curve, where

φ′L : PK[TI ] q {∞} →ML

sends x to |.|x.

2.6.2. Remark. — Let XI∪{∞} = {Xi}i∈I ∪ {X∞} be the variables indexed by
I ∪ {∞}. Let ϕ : K[XI∪{∞}] → K[TI ] be the homomorphism given by ϕ(f) =

f((Ti)i∈I , 1). If f is an irreducible homogeneous polynomial in K[XI∪{∞}] and
f 6= X∞, then ϕ(f) is an irreducible polynomial in K[TI ]. Moreover, for any ir-
reducible polynomial g in K[TI ], there is an irreducible homogeneous polynomial f in
K[XI∪{∞}] such that ϕ(f) = g. Note that the above |.|∞ comes from the irreducible
polynomial X∞, so that the corresponding element is 1 = ϕ(X∞).

2.6.3. Lemma (Gauss’s Lemma). — Let |.| be a non-Archimedean absolute value
on K. We fix eee = (ei)i∈I ∈ RI>0. For d = (di)i∈I ∈ N⊕I , we set eeed :=

∏
i∈I e

di
i . We

denote by |.|eee,L the function on K[TI ] sending f ∈ K[TI ] to

max
d∈N⊕I

|ad(f)|eeed.

Then, for any (f, g) ∈ K[TI ]
2 one has

|fg|eee,L = |f |eee,L · |g|eee,L and |f + g|eee,L 6 max{|f |eee,L, |g|eee,L}.

In particular, |.|eee,L extends to an absolute value on L = K(TI).



2.6. PURELY TRANSCENDENTAL FIBRATION OF ADELIC CURVES 49

Proof. — If we set f =
∑
d′∈N⊕I ad′T

d′ and g =
∑
d′′∈N⊕I bd′′T

d′′ , then

fg =
∑
d∈N⊕I

 ∑
d′,d′′∈N⊕I ,
d′+d′′=d

ad′bd′′

T d and f + g =
∑
d∈N⊕I

(ad + bd)T d

Thus it is easy to see {
|fg|eee,L 6 |f |eee,L · |g|eee,L,
|f + g|eee,L 6 max{|f |eee,L, |g|eee,L}.

(2.7)

Let Σf = {d′ ∈ N⊕I | |ad′ |eeed
′

= |f |eee,L} and Σg = {d′′ ∈ N⊕I | |bd′′ |eeed
′′

= |g|eee,L}.
Let 6lex be the lexicographic order on N⊕I . We choose δδδ(f) ∈ Σf and δδδ(g) ∈ Σg such
that d′ 6lex δδδ(f) and d′′ 6lex δδδ(g) for all d′ ∈ Σf and d′′ ∈ Σg.

2.6.4. Claim. — One has |ad′ | · |bd′′ | 6 |aδδδ(f)| · |bδδδ(g)| for all d′,d′′ ∈ N⊕I with
d′ + d′′ = δδδ(f) + δδδ(g). Moreover, the equality holds if and only if d′ = δδδ(f) and
d′′ = δδδ(g).

Proof. — As |ad′ |eeed
′
6 |f |eee,L and |bd′′ |eeed

′′
6 |g|eee,L, one has

|ad′ | · |bd′′ | 6
|f |eee,L|g|eee,L
eeed′+d′′

=
|aδδδ(f)|eeeδδδ(f)|bδδδ(g)|eeeδδδ(g)

eeed′+d′′
= |aδδδ(f)| · |bδδδ(g)|.

We assume that the equality holds. Then d′ ∈ Σf and d′′ ∈ Σg, so that d′ 6lex δδδ(f)

and d′′ 6lex δδδ(g). Therefore, one has the assertion because d′+d′′ = δδδ(f) +δδδ(g).

The above claim implies that∣∣∣∣∣∣∣∣∣
∑

d′,d′′∈N⊕I ,
d′+d′′=δδδ(f)+δδδ(g)

ad′bd′′

∣∣∣∣∣∣∣∣∣e
eeδδδ(f)+δδδ(g) = |aδδδ(f)|eeeδδδ(f)|bδδδ(g)|eeeδδδ(g) = |f |eee,L|g|eee,L,

which means that |fg|eee,L > |f |eee,L|g|eee,L, as required.

For any ω ∈ Ω \ Ω∞, let |.|ω,L be the absolute value on L such that

∀ g =
∑
d∈N⊕I

ad(g)T dI ∈ K[TI ], |g|ω,L := sup
d∈N⊕I

|ad(g)|ω.

By Lemma 2.6.3, this absolute value is an extension of |.|ω on K. Let

((ΩL,ω,AL,ω, νL,ω), φL,ω)

be the adelic structure on L which consists of a single copy of the absolute value |.|ω,L,
equipped with the unique probability measure. We denote by SL,ω the adelic curve
(L, (ΩL,ω,AL,ω, νL,ω), φL,ω).

2.6.5. Proposition. — If Ω∞ = ∅, then family (SL,ω)ω∈Ω is an admissible fibration
over S.
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Proof. — Let g be a non-zero element of K[TI ], (Fj)
n
j=1 be a finite family of elements

of PK[TI ] containing {F ∈ PK[TI ] | ordF (g) 6= 0} and (Cj)
n
j=1 be a family of non-

negative constants. One has∫
ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cn νL,ω(dx) = max
d∈N⊕I

|ad(g)|ω ·
n∏
j=1

∏
d∈N⊕I

1l|ad(Fj)|ω6Cj .

Therefore the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cn νL,ω(dx).

is A-measurable. Moreover, for any element F of PK[TI ], one has∫
ΩL,ω

ln |F |x νL,ω(dx) = max
d∈N⊕I , ad(F )6=0

ln |ad(F )|ω. (2.8)

Therefore the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

ln |F |x νL,ω(dx)

is ν-integrable.

2.6.6. Remark. — In the case where Ω∞ = ∅ and the adelic curve S is proper, for
any d such that ad(F ) 6= 0, one has∫

ω∈Ω

ln |ad(F )|ω ν(dω) = 0,

and hence

hSL(F ) =

∫
Ω

ν(dω)

∫
ΩL,ω

ln |F |x νL,ω(dx) > 0.

2.7. Arithmetic adelic structure

In this section, we provides a “standard” construction of an adelic structure for
a countable field of characteristic zero. More precisely, for any countable field E of
characteristic zero, we will construct an adelic curve SE = (E, (ΩE ,AE , νE), φE),
which satisfies the following properties:

(1) SE is proper.
(2) For any ω ∈ ΩE , the absolute value φE(ω) is not trivial.
(3) The set ΩE,fin of ω ∈ Ω such that φE(ω) is non-Archimedean is infinite but

countable.
(4) Let Eac be an algebraic closure of E. If E0 is a subfield of Eac such that E0 is

finitely generated over Q, then

{a ∈ Eac | hSE⊗EEac(1, a) 6 C and [E0(a) : E0] 6 δ}

is finite for all C ∈ R>0 and δ ∈ Z>1.
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2.7.1. Definition. — Let K be a countable field of characteristic 0. An adelic
structure of K which satisfies the above conditions (1)–(4) is said to be arithmetic.

2.7.2. Remark. — Note that the condition (4) is analogous to Northcott’s property
in Diophantine geometry. In Arakelov geometry of adelic curve, we say that an adelic
curve S = (K, (Ω,A, ν), φ) has Northcott property if the set

{a ∈ K |hS(1, a) 6 C}

is finite for any C > 0 (see [13, Definition 3.5.2]). In the case where the adelic curve
S is proper and has Northcott property, an analogue of Northcott’s theorem holds
(see [13, Definition 3.5.3])

In the remaining of the section, we fix a countable field K of characteristic 0 and
a countable non-empty set I. We equip K with an adelic structure ((Ω,A, ν), φ)

to form an adelic curve, which we denote by S. We also fix a family (ιω)ω∈Ω∞ of
embeddings from K to C such that |.|ω = |ιω(.)| for any ω ∈ Ω∞ and that the map
(ω ∈ Ω∞) 7→ ιω(a) is measurable for each a ∈ K (see [13, Step 1 in Theorem 4.1.26]).
For any element f ∈ K[TI ], we denote by ιω(f) the polynomial in C[TI ] defined as

ιω(f) :=
∑
d∈N⊕I

ιω(ad(f))T dI .

This defines a ring homomorphism from K[TI ] to C[TI ], which extends to a homo-
morphism of fields form K(TI) to C(TI), which we still denote by ιω(.).

2.7.3. Notation. — For convenience, for any f ∈ K[TI ], the complex polynomial
ιω(f) ∈ C[TI ] is often denoted by fω.

For any t ∈ [0, 1], we denote by e(t) the complex number e2πt
√
−1. For any ω ∈ Ω∞,

we denote by ΩL,ω the set

ΩL,ω :=

{
(ti)i∈I ∈ [0, 1]I

∣∣∣∣ (e(ti))i∈I is algebraically
independent over ιω(K)

}
.

Note that by definition one has

[0, 1]I \ ΩL,ω =
⋃

f∈K[TI ]\{0}

{(ti)i∈I ∈ [0, 1]I : fω
(
(e(ti))i∈I

)
= 0}. (2.9)

We equip [0, 1]I with the product σ-algebra (namely the smallest σ-algebra making
measurable the projection maps to the coordinates) and the product of the uniform
probability measure on [0, 1], denoted by ηI (see [45, §4.2] for the product of an
arbitrary family of probability spaces).

2.7.4. Lemma. — For any ω ∈ Ω∞, the subset ΩL,ω of [0, 1]I is measurable, and
[0, 1]I \ ΩL,ω is ηI-negligible.
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Proof. — The measurability of ΩL,ω follows from (2.9).
For any non-zero element of K[TI ], let

VI(f) = {(ti)i∈I ∈ [0, 1]I | fω
(
(e(ti))i∈I

)
= 0}.

Since K and I are countable, K[TI ] is a countable set. Therefore, by (2.9), to prove
the second statement it suffices to show that ηI(VI(f)) = 0. We first treat the case
where I is a finite set. Without loss of generality, we assume that I = {1, . . . , n},
where n ∈ N. The case where n = 0 (namely I = ∅) is trivial since in this case VI(f)

is empty. Assume that n > 1. For t ∈ [0, 1], let ft be the polynomial

ιω(f)(T1, . . . , Tn−1, e(t)) ∈ ιω(K)(e(t))[T1, . . . , Tn−1].

Then by Fubini’s theorem, one has

η{1,...,n}(V{1,...,n}(f)) =

∫
[0,1]

η{1,...,n−1}(V{1,...,n−1}(ft)) dt = 0,

where the second equality comes from the induction hypothesis.
We now consider the general case. Let J be a finite subset of I such that f ∈

K[(Ti)i∈J ]. By the definition of the product measure, one has

ηI(VI(f)) = ηJ(VJ(f)) = 0.

For any ω ∈ Ω∞, we equip ΩL,ω with the restriction of the product σ-algebra on
[0, 1]I and the restriction of the product probability measure ηI to obtain a probability
space denoted by (ΩL,ω,AL,ω, νL,ω). Let φL,ω : ΩL,ω → ML be the map sending
x = (ti)i∈I ∈ ΩL,ω to the absolute value

(f ∈ L) 7−→ |f |x :=
∣∣∣fω((e(ti))i∈I)∣∣∣.

Thus we obtain an adelic curve SL,ω := (L, (ΩL,ω,AL,ω, νL,ω), φL,ω).
We recall Jensen’s formula for Mahler measure of polynomials (see [41] for a proof).

2.7.5. Lemma (Jensen’s formula). — Let

P (T ) = ad(T − α1) · · · (T − αd) ∈ C[T ]

be a complex polynomial of one variable T , with ad ∈ C \ {0} and (α1, . . . , αd) ∈ Cd.
One has ∫ 1

0

ln |P (e(t))|dt = ln |ad|+
d∑
j=1

ln(max{1, |αj |}) > ln |ad|.

2.7.6. Proposition. — The family of adelic curves (SL,ω)ω∈Ω is an admissible fi-
bration over the adelic curve S. Moreover, in the case where the adelic curve S is
proper, for any F ∈PK[T ], one has

hSL(F ) :=

∫
Ω

ν(dω)

∫
ΩL,ω

ln |F |x νL,ω(dx) > 0.
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Proof. — Step 1. By construction, for any ω ∈ Ω and any x ∈ ΩL,ω, the absolute
value φL,ω(x) on L extends the absolute value φ(ω) on K.

Step 2. Let g be a non-zero element of K[TI ], (Fj)
n
j=1 be elements of PK[TI ]

containing
{F ∈PK[TI ] : ordF (g) 6= 0},

and (Cj)
n
j=1 ∈ Rn>0. We show that the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cn νL,ω(dx) (2.10)

is A-measurable. We choose a finite subset J of I such that g, F1, . . . , Fn belong to
K[(Ti)i∈J ]. By Lemma 2.7.4, one has∫

ΩL,ω

|g|x1l|F1|x6C1,...,|Fn|x6Cn νL,ω(dx)

=

∫
[0,1]I

∣∣∣gω((e(ti))i∈I)∣∣∣ n∏
j=1

1l|Fj,ω((e(ti))i∈I)|6Cj ηI(d(ti)i∈I)

=

∫
[0,1]J

∣∣∣gω((e(ti))i∈J)∣∣∣ n∏
j=1

1l|Fj,ω((e(ti))i∈I)|6Cj ηJ(d(ti)i∈J)

Note that [0, 1]J is a separable compact metric space. By the criterion of measur-
ability for functions on product measurable space proved in [46, Lemma 9.2] and
the measurability of integrals with parameter (see [42, Lemma 1.26]), we obtain the
measurability of the function (2.10) on Ω∞. The measurability of this function on
Ω \ Ω∞ follows from Proposition 2.6.5.

Step 3. It remains to show that the function

(ω ∈ Ω) 7−→
∫

ΩL,ω

ln |F |x νL,ω(dx) (2.11)

is well defined and is integrable for any F ∈ PK[T ]. By Proposition 2.6.5 again, it
suffices to show its integrability on Ω∞. Let

Θ := {d ∈ N⊕I : ad(F ) 6= 0}.

One has
ln |F |x 6 max

d∈Θ
ln |ad(F )|ω + ln(card(Θ)).

Therefore, for ω ∈ Ω∞, the integral∫
ΩL,ω

ln |F |x νL,ω(dx)

is well defined and the following inequality holds:∫
ΩL,ω

ln |F |x νL,ω(dx) 6 max
d∈Θ

ln |ad(F )|ω + ln(card(Θ)). (2.12)
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Moreover, by an argument similar to that in Step 2, it can be shown that the function

(ω ∈ Ω∞) −→
∫

ΩL,ω

ln |F |x νL,ω(dx)

is measurable. Finally, by writing∫
ΩL,ω

ln |F |x νL,ω(dx)

as successive integrals, and then by applying Jensen’s formula in a recursive way, we
obtain that there exists d0 ∈ Θ such that

∀ω ∈ Ω∞,

∫
ΩL,ω

ln |F |x νL,ω(dx) > ln |ad0
(F )|ω. (2.13)

Combining this inequality with (2.12) and the fact that ν(Ω∞) < +∞ (see [13,
Proposition 3.1.2]), we obtain the integrability of the function (2.11) on Ω∞. Finally,
applying (2.8) to ω ∈ Ω \ Ω∞, the inequality (2.13) leads to

hSL(F ) >
∫
ω∈Ω

ln |ad0(F )|ω ν(dω) = 0

provided that the adelic curve S is proper. The proposition is thus proved.

2.7.7. Remark. — Note that, for f ∈ L,

hSL(f) =

∫
Ω∞

ν(dω)

∫
ΩL,ω

ln
∣∣∣fω((e(ti))i∈I)∣∣∣ ηI(d(ti)i∈I) +

∫
Ωfin

ln |f |ω ν(dω).

Thus hSL(1) = 0 and hSL(Ti) = 0 for all i ∈ I.

2.7.8. Definition. — As a corollary, to the admissible fibration (SL,ω)ω∈Ω one can
associate an adelic structure ((ΩL,AL, νL), φL) on L as in Definition 2.3.3. We fix
λ ∈ R>0. Let SλL := (L, (ΩλL,AλL, νλL), φλL) be an adelic curve with underlying field L
such that
(1) (ΩλL,AλL, νλL) is the disjoint union of (ΩL,AL, νL) and PK[TI ] ∪ {∞} equipped

with the discrete σ-algebra and the measure satisfying

νλL({F}) = hSL(F ) + λ deg(F ) and νλL({∞}) = λ

for any F ∈PK[TI ].
(2) the map φλL : ΩλL →ML extends φL and the map

(x ∈PK[TI ] ∪ {∞}) 7−→ |.|x.

The adelic curve SλL is called the λ-twisted compactification of SL.

2.7.9. Remark. — Note that if λ = 0, then SλL = S∗L. Moreover, if K and Ωfin

are countable and AΩfin
is discrete, then L and Ω∗L,fin are countable and AΩ∗L,fin

is
discrete.

2.7.10. Proposition. — The adelic curve SλL = (L, (ΩλL,AλL, νλL), φλL) is proper.
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Proof. — If λ = 0, then the assertion follows from Proposition 2.4.1 and Proposi-
tion 2.7.6. Note that

deg(g) =
∑

F∈PK[TI ]

deg(F ) ordF (g) (2.14)

for g ∈ L×, so that∑
F∈PK[TI ]

(hSL(F ) + λ deg(F ))(− ordF (g)) + λ deg(g) =
∑

F∈PK[TI ]

hSL(F )(− ordF (g)),

as required.

2.7.11. Remark. — The above result can be considered as a particular case of
Proposition 2.5.1. In fact, if we equip PK[TI ] ∪ {∞} with the discrete σ-algebra A′
and the measure ν′ such that ν′({∞}) = 1 and ν′({F}) = deg(F ), then

(L, (PK[TI ] ∪ {∞},A′, ν′), φ′)

forms an adelic curve, where φ′ sends x ∈ PK[TI ] ∪ {∞} to the absolute value |.|x.
Then the equality (2.14) shows that this adelic curve is proper. Note that the restric-
tion of νλL on PK[TI ] ∪ {∞} coincides with

λν′L +
∑

F∈PK[TI ]

hSL(F ) DiracF .

Therefore the statement of Proposition 2.7.10 follows from Proposition 2.5.1.

2.7.12. Lemma. — (1) If F0, . . . , Fr ∈ K[TI ] with (F0, . . . , Fr) 6= (0, . . . , 0), then

hSλL(F0, . . . , Fr) 6
∫

ΩL,∞

ln max{|F0|x, . . . , |Fr|x}νL,∞(dx)

+

∫
Ωfin

ln max{|F0|ω, . . . , |Fr|ω}νfin(dω)

+ λmax{deg(F0), . . . ,deg(Fr)}.

Moreover, if G.C.D(F0, . . . , Fr) = 1, then the equality holds.
(2) Fix n ∈ I and let I ′ = I \ {n} and L′ = K(TI′). For F ∈ K[TI ] \ {0}, if we

set F = a0T
d
n + a1T

d−1
n + · · ·+ ad such that a0, a1, . . . , ad ∈ K[TI′ ] and a0 6= 0,

then
hSλ

L′
(a0, . . . , ad) 6 hSL(F ) + deg(F )(λ+ ln(2)ν(Ω∞)).

Proof. — (1) Note that

max{|F0|ξ, . . . , |Fr|ξ}

{
6 1 in general,

= 1 if G.C.D(F0, . . . , Fr) = 1,

for ξ ∈PK[TI ], so that the assertion follows.
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(2) Note that d 6 deg(F ). We set f = F/a0. For y ∈ ΩL′,∞, let

fy = T dn + ιy(a1/a0)T d−1
n + · · ·+ ιy(ad/a0) = (Tn − α1) · · · (Tn − αd)

be the irreducible decomposition in C[Tn]. Then,

ιy(ak/a0) = (−1)k
∑

16i1<···<ik6d

αi1 · · ·αik ,

so that

|ak/a0|y 6
∑

16i1<···<ik6d

|αi1 | · · · |αik | 6
∑

16i1<···<ik6d

max{1, |αi1 |} · · ·max{1, |αik |}

6
∑

16i1<···<ik6d

max{1, |α1|} · · ·max{1, |αd|}

6 2deg(F ) max{1, |α1|} · · ·max{1, |αd|}

because
(
d
k

)
6 2d 6 2deg(F ), and hence one has

max{1, |ak/a0|y} 6 2deg(F ) max{1, |α1|} · · ·max{1, |αd|}.

On the other hand, by Jensen’s formula,∫ 1

0

ln |fy(e(tn))|dtn =

d∑
i=1

ln max{1, |αi|}.

Therefore, one obtains

ln max{1, |ak/a0|y} 6
∫ 1

0

ln |fy(e(tn))|dtn + deg(F ) ln(2)

for all k ∈ {1, . . . , d}, so that

ln max{|a0|y, |a1|y, . . . , |ad|y}
= ln |a0|y + ln max{1, |a1/a0|y, . . . , |ad/a0|y}

6 ln |a0|y +

∫ 1

0

ln |fy(e(tn))|dtn + deg(F ) ln(2)

=

∫ 1

0

ln |Fy(e(tn))|dtn + deg(F ) ln(2).

Thus, by Fubini’s theorem,∫
ΩL,∞

ln |F |xνL,∞(dx) =

∫
ΩL′,∞×[0,1]

ln |Fy(e(tn))| νL′(dy) dtn

=

∫
ΩL′,∞

(∫ 1

0

ln |Fy(e(tn))|dtn
)
νL′(dy)

>
∫

ΩL′,∞

(ln max{|a0|y, . . . , |ad|y} − deg(F ) ln(2)) νL′(dy)
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=

∫
ΩL′,∞

ln max{|a0|y, . . . , |ad|y} νL′(dy)− deg(F ) ln(2)νL′(ΩL′,∞)

=

∫
ΩL′,∞

ln max{|a0|y, . . . , |ad|y} νL′(dy)− deg(F ) ln(2)ν(Ω∞).

On the other hand, note that

|F |ω = max{|a0|ω, . . . , |ad|ω}

for ω ∈ Ωfin, so that∫
ΩL′,∞

ln max{|a0|y, . . . , |ad|y} νL′(dy)

+

∫
Ωfin

ln max{|a0|ω, . . . , |ad|ω} ν(dω)

6 hSL(F ) + deg(F ) ln(2) ν(Ω∞).

hSλ
L′

(a0, . . . , ad) 6
∫

ΩL′,∞

ln max{|a0|y, . . . , |ad|y} νL′(dy)

+

∫
Ωfin

ln max{|a0|ω, . . . , |ad|ω} ν(dω)

+ λmax{deg(a0), . . . ,deg(ad)}
6 hSL(F ) + deg(F )(λ+ ln(2)ν(Ω∞)),

as required.

Fix n ∈ I and let I ′ = I \ {n} and L′ = K(TI′). For F ∈ K[TI ] \ {0}, we set
F = a0T

d
n + · · ·+ ad such that a0, . . . , ad ∈ K[TI′ ] and a0 6= 0. We define �(F ) to be

�(F ) := F/a0 = T dn + (a1/a0)T d−1
n + · · ·+ (ad/a0).

Note that �(F ) is a monic polynomial over L′.

2.7.13. Proposition. — If SλL′ has Northcott’s property, then, for C ∈ R and
δ ∈ Z>1, then the set

{�(F ) | F ∈ K[TI ] \ {0}, hSL(F ) 6 C and deg(F ) 6 δ}

is finite.

Proof. — Let Θ := {F ∈ K[TI ] \ {0} | hSL(F ) 6 C and deg(F ) 6 δ} and ϑ : Θ →
Pδ(L′) be a map given by the following way: for

F = a0T
d
n + · · ·+ ad ∈ Θ (a0, . . . , ad ∈ K[TI ] and a0 6= 0),

ϑ(F ) :=

δ+1︷ ︸︸ ︷
(a0 : · · · : ad : 0 : · · · : 0) ∈ Pδ(L′).

By Lemma 2.7.12,
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hSλ
L′

(ϑ(F )) 6 hSL(F ) + deg(F )(λ + ln(2)ν(Ω∞)) 6 C + δ(λ + ln(2)ν(Ω∞)).

Thus the assertion of the proposition is a consequence of Northcott’s property of
SλL′ .

2.7.14. Proposition. — If S has Northcott’s property, card(I) < ∞ and λ > 0,
then SλL has also Northcott’s property.

Proof. — We prove it by induction on card(I). If card(I) = 0, then the assertion is
obvious because SλL = S. Fix n ∈ I and let I ′ = I \ {n} and L′ = K(TI′). It is
sufficient to see that {f ∈ L× | hSλL(f, 1) 6 C} is finite for any C. For f ∈ L×, let us
choose F1, F2 ∈ K[TI ]\{0} such that f = F1/F2, and F1 and F2 are relatively prime.
We set{

F1 = a1,0T
d1
n + · · ·+ a1,d1

(a1,0, . . . , a1,d1
∈ K[TI′ ] and a1,0 6= 0),

F2 = a2,0T
d2
n + · · ·+ a2,d2

(a2,0, . . . , a2,d2
∈ K[TI′ ] and a2,0 6= 0).

2.7.15. Claim. — If hSλL(f, 1) 6 C, then one has the following:

(1) max{deg(F1),deg(F2)} 6 C/λ and max{hSL(F1), hSL(F2)} 6 C.
(2) hSλ

L′
(a10, a20) 6 C.

Proof. — (1) As C > hSλL(f, 1) = hSλL(F1, F2) and F1 and F2 are relatively prime, by
(1) in Lemma 2.7.12, one has

C > λmax{deg(F1),deg(F2)}+

∫
ΩL,∞

ln max{|F1|x, |F2|x} νL(dx)

+

∫
Ωfin

ln max{|F1|ω, |F2|ω} ν(dω). (2.15)

Thus,

C > λmax{deg(F1),deg(F2)}+ max{hSL(F1), hSL(F2)}

Therefore, (1) follows because hSL(F1), hSL(F2) > 0.

(2) By (1) in Lemma 2.7.12,

hSλ
L′

(a1,0, a2,0) 6 λmax{deg(a1,0),deg(a2,0)}

+

∫
ΩL′,∞

ln max{|a1,0|y, |a2,0|y} νL′(dy)

+

∫
Ωfin

ln max{|a1,0|ω, |a2,0|ω} ν(dω).

Therefore, by (2.15), it is sufficient to see the following:∫
ΩL,∞

ln max{|F1|x, |F2|x}νL,∞(dx) >
∫

ΩL′,∞

ln max {|a1,0|y, |a2,0|y} νL′(dy) (2.16)
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and ∫
Ωfin

ln max{|F1|ω, |F2|ω} ν(dω) >
∫

Ωfin

ln max{|a1,0|ω, |a2,0|ω} ν(dω). (2.17)

Indeed, by Jensen’s formula together with Fubini’s theorem,∫
ΩL,∞

ln max{|F1|x, |F2|x} νL(dx)

=

∫
ΩL′,∞×[0,1]

ln max
i=1,2
{|Fi,y(e(tn))|} νL′(dy)dtn

=

∫
ΩL′,∞

(∫ 1

0

ln max
i=1,2
{|Fi,y(e(tn))|}dtn

)
νL′(dy)

>
∫

ΩL′,∞

max
i=1,2

{∫ 1

0

ln |Fi,y(e(tn))|dtn
}
νL′(dy)

>
∫

ΩL′,∞

max
i=1,2

{ln |ιy(ai,0)|} νL′(dy)

=

∫
ΩL′,∞

ln max {|a1,0|y, |a2,0|y} νL′(dy),

as required for (2.16). Further, since |F1|ω > |a1,0|ω and |F2|ω > |a2,0|ω, one has
(2.17).

If we set{
∆ = {�(F ) | F ∈ K[TI ] \ {0}, hSL(F ) 6 C and deg(F ) 6 C/λ },
∆′ = {a ∈ K(TI′) | hSλ

L′
(a, 1) 6 C},

then, by Proposition 2.7.13 together with the hypothesis of induction, ∆ and ∆′ are
finite. Moreover, by Claim 2.7.15, if hSλL(f, 1) 6 C, then

�(F1), �(F2) ∈ ∆ and a1,0/a2,0 ∈ ∆′.

Thus the assertion follows because f = (a1,0/a2,0)(�(F1)/�(F2)).

2.7.16. Remark. — (1) Note that hSλL(1, Tn) = λ for all n ∈ I, so that North-
cott’s property does not hold for SλL if I is infinite.

(2) Let SQ be the standard adelic structure of Q. Then, it is easy to see that

h(SQ)∗Q(T )
(1, Tn − 1) =

∫ 1

0

ln max{1, |e(nt)− 1|} dt 6 ln 2

for all n > 0, so that the Northcott’s property does not hold for S∗Q(T ).

2.7.17. Theorem. — We use the same notation as in Section 2.6. We assume that
S has Northcott’s propery and λ > 0. Let E be an algebraic closure of L = K(TI).
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If E0 is a subfield of E such that E0 is finitely generated over K, then SλL ⊗L E has
Northcott’s property over E0, that is,{

a ∈ E | hSλL⊗E(1, a) 6 C and [E0(a) : E0] 6 δ
}

is finite for any C ∈ R>0 and δ ∈ Z>1.

Proof. — Since E0 is finitely generated over K and E is algebraic over L, we can
choose a finite subset I ′ of I such that E0(TI′) is finite over K(TI′). It is sufficient
to see that the set{

α ∈ E | hSλL⊗E(1, α) 6 C and [K(TI′)(α) : K(TI′)] 6 δ
}

(2.18)

is finite for any C ∈ R>0 and δ ∈ Z>1. Indeed, note that

[K(TI′)(α) : K(TI′)] 6 [E0(TI′)(α) : K(TI′)]

= [E0(TI′)(α) : E0(TI′)][E0(TI′) : K(TI′)]

6 [E0(α) : E0][E0(TI′) : K(TI′)],

so that{
a ∈ E | hSλL⊗E(1, a) 6 C and [E0(a) : E0] 6 δ

}
⊆
{
α ∈ E | hSλL⊗E(1, α) 6 C and

[K(TI′)(α) : K(TI′)] 6 δ[E0(TI′) : K(TI′)]
}
.

Let α be an element of the set (2.18). Let f(t) be the minimal polynomial of α over
K(TI′). As K(TI) is a regular extension over K(TI′),

K(TI)[t]/f(t)K(TI)[t] ' (K(TI′)[t]/f(t)K(TI′)[t])⊗K(TI′ )
K(TI)

is an integral domain, so that f(t) is irreducible over K(TI), and hence f(t) is also
the minimal polynomial of α over K(TI). We set

f = td + a1t
d−1 + · · ·+ ad (a1, . . . , ad ∈ K(TI′)).

Then, in the same arguments as [13, Theorem 3.5.3], one has

hSλL(1, a1, . . . , ad) 6 δC + (δ − 1) ln(2)ν(Ω∞),

so that hSλ
K(T

I′ )
(1, a1, . . . , ad) 6 δC + (δ − 1) ln(2)ν(Ω∞). Therefore, the assertion is

a consequence of Proposition 2.7.14.

2.7.18. Theorem. — If E is a countable field of characteristic zero, then E has an
arithmetic adelic structure (see Definition 2.7.1).

Proof. — We denote by S the standard adelic curve with Q as underlying field. Recall
that the measure space of S is given by the set of all places of Q equipped with the
discrete σ-algebra and the counting measure. Let {xn}Nn=1 be a transcendental basis
of E over Q. Note that N might be +∞. Moreover, E is algebraic over L :=
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Q((xn)Nn=1). Let λ be a positive number. Starting from the adelic curve S, by the
way in Subsetion 2.6, let SλL be the λ-twisted compactification of SL. We claim
that the adelic curve SλL ⊗L E satisfies the properties (1) – (4) characterizing an
arithmetic adelic curve. The property (1) follows from Proposition 2.7.10 and [13,
Proposition 3.4.10]. The property (2) is obvious. For (3), see Lemma 2.2.1 and
Remark 2.7.9. Finally the property (4) follows from Theorem 2.7.17.

2.7.1. Density of Fermat property over arithmetic function fields. — In
this subsection, let us consider a simple application of Theorem 2.7.18 together with
Faltings’ theorem [21]. Let K be a field. We denote by µ(K) the subgroup of K×

consisting of roots of unity in K, that is,

µ(K) := {a ∈ K | an = 1 for some n ∈ Z>0}.

Let N be a positive integer and let FN := Spec(Z[X,Y ]/(XN + Y N − 1)). We say
that FN has Fermat’s property over K if x, y ∈ µ(K) ∪ {0} for all (x, y) ∈ FN (K).
Then one has the following theorem.

2.7.19. Theorem. — If K is an arithmetic function field, then

lim
m→∞

#{N ∈ Z | 1 6 N 6 m and FN has Fermat’s property over K}
m

= 1.

Proof. — Let S be a proper adelic structure of K with Northcott’s property (cf.
Theorem 2.7.18). Let us begin with the following claim:

2.7.20. Claim. — (1) For x, y ∈ K, hS(x, y, 1) = 0 if and only if x, y ∈ µ(K) ∪
{0}.

(2) If N ≥ 4, then there is a positive integer m0 such that FNm has Fermat’s
property of every integer m ≥ m0.

Proof. — (1) We assume that hS(x, y, 1) = 0 for x, y ∈ K. Then hS(xn, yn, 1) =

nhS(x, y, 1) = 0 for all n ∈ Z>0, so that, by Northcott’s property,

{(xn, yn) | n ∈ Z>0}

is finite. Therefore, there are n, n′ ∈ Z>0 such that n > n′ and (xn, yn) = (xn
′
, yn

′
),

and hence x, y ∈ µ(K) ∪ {0}. The converse is obvious.

(2) First of all, note that FN (K) is finite by Faltings’ theorem [21]. We set{
H := max{hS(x, y, 1) | (x, y) ∈ FN (K)},
a := inf{hS(x, y, 1) | x, y ∈ K and hS(x, y, 1) > 0}.

Note that a > 0 by Northcott’s property. For a positive integerm withm > exp(H/a),
we assume that hS(x, y, 1) > 0 for some (x, y) ∈ FNm(K). Then, as (xm, ym) ∈
FN (K),

H > hS(xm, ym, 1) = mhS(x, y, 1) > ma,
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so that exp(H/a) > exp(m), and hence m > exp(m). This is a contradiction. There-
fore, hS(x, y, 1) = 0 for all (x, y) ∈ FNm(K). Thus, by (1), FNm has Fermat’s
property.

By (2) together with [40, Lemma 5.16], one can conclude the assertion of the
theorem.

In the case where K = Q, it was proved by [22, 29, 39] (cf. [59]). A general
number field case is treated in [40]. The above theorem gives an evidence of the
following conjecture:

2.7.21. Conjecture (Fermat’s conjecture over an arithmetic function field)
Let K be an arithmetic function field. Then is there a positive integer N0

depending on K such that FN has Fermat’s property over K for all N ≥ N0?

2.8. Polarized adelic structure

In this subsection, we recall an adelic structure induced by a polarization of a field.
Let K be a finitely generated field over Q and n be the transcendental degree of K
over Q. Let B → SpecZ be a normal projective arithmetic variety such that the
function field of B is K. Note that dim B = n+ 1. Let(

B; H 1 = (H1, h1), . . . ,H n = (Hn, hn)
)

be data with the following properties:
(1) H1, . . . ,Hn are invertible OB-modules that are nef along all fibers of B →

Spec(Z).
(2) The second entries h1, . . . , hn are semipositive metrics of H1, . . . ,Hn on B(C),

respectively.
(3) For each i = 1, . . . , n, the associated height function with H i is non-negative

According to [48], the data (B; H 1, . . . ,H n) is called a polarization of K.
Let x be a C-valued point of B, that is, there are a unique scheme point px ∈ B

and a unique homomorphism φx : OB,px → C such that x is given by φx. We say x
is generic if px is the generic point of B. We denote the set of all generic C-valued
points by B(C)gen. Note that the measure of B(C) \B(C)gen is zero.

The polarization (B; H 1, . . . ,H n) yields a proper adelic structure of K in the
following way. First of all, we set{

Ω∞ := B(C)gen,

Ω \ Ω∞ := the set of all prime divisors on B.

For each element of ω ∈ Ω, |.|ω is give by{
|f |x := |φx(f)| if x ∈ Ω∞,

|f |Γ := exp (− ordΓ(f)) if Γ ∈ Ω \ Ω∞
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for f ∈ K. Note that Ω∞ is a measurable subset of a projective space, so that one
can give the standard measurable space structure and a measure on Ω∞ is given by
c1(H 1)∧ · · · ∧ c1(H n). The measurable space structure on Ω \Ω∞ is discrete and a
measure ν on Ω\Ω∞ is given by ν({Γ}) = (H 1 · · ·H n · (Γ, 0)). This adelic structure
is called the polarized adelic structure by the polarization (B; H 1, . . . ,H n).

2.8.1. Example. — Let h be the metric of OP1
C
(1) on P1

C = Proj(C[T0, T1]) given
by

|aT0 + bT1|h(ζ0, ζ1) :=
|aζ0 + bζ1|

max{|ζ0|, |ζ1|}
.

Then (OP1
Z
(1), h) gives rise to a semipositive metrized invertible OP1

Z
-module, so that(

(P1
Z)n; p∗1(OP1

Z
(1), h), . . . , p∗n(OP1

Z
(1), h)

)
yields to an adelic structure of the purely transcendental extension Q(x1, . . . , xn) over
Q, where pi : (P1

Z)n → P1
Z is the projection to the i-th factor. Note that it is nothing

more than the adelic structure described in Section 2.6 and Section 2.7.





CHAPTER 3

LOCAL INTERSECTION NUMBER AND LOCAL
HEIGHT

In this chapter, we fix a field k equipped with an absolute value |.|, such that k is
complete under the topology induced by the absolute value |.|. In the case where |.|
is Archimedean, k is equal to R or C. In this case we always assume that |.| is the
usual absolute value on R or C. Note that the absolute value |.| extends in a unique
way to any algebraic extension of k (see [52] Chapter II, Theorem 6.2). In particular,
we fix an algebraic closure kac, on which the absolute value |.| extends in a unique
way. Throughout this chapter, we denote the pair (k, |.|) by v. In the case where |.|
is non-Archimedean, we denote by ov the valuation ring of v = (k, |.|), and by mv the
maximal ideal of ov.

3.1. Reminder on completion of an algebraic closure

We denote by Ck the completion of an algebraic closure kac of k, on which the ab-
solute value |.| extends by continuity. Recall that Ck is algebraically closed. A proof
for the case where k = Qp can for example be found in [53, (10.3.2)], by using Kras-
ner’s lemma. The positive characteristic case is quite similar, but a supplementary
argument is needed to show that there is no inseparable algebraic extension of Ck. For
the convenience of the readers, we include the proof here (see also [61, Theorem 17.1]
for another proof).

3.1.1. Lemma. — Let K be a field equipped with an absolute value |.| and K̂ be the
completion of K. If the field K is perfect, then also is K̂.

Proof. — Clearly it suffices to treat the case where the characteristic of K is p > 0.
To prove that the completed field K̂ is perfect, we need to show that any element a
of K̂ has a p-th root in K̂. We choose a sequence (an)n∈N of elements of K which
converges to a. Since K is supposed to be perfect, for each n ∈ N we can choose
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bn ∈ K such that bpn = an. For any (n,m) ∈ N2 one has

|bn − bm|p = |(bn − bm)p| = |bpn − bpm| = |an − am|.

Hence (bn)n∈N is a Cauchy sequence in K, which converges to an element b ∈ K̂.
Therefore

bp = lim
n→+∞

bpn = lim
n→+∞

an = a,

as required.

3.1.2. Proposition. — The field Ck is algebraically closed.

Proof. — It suffices to treat the case where the absolute value |.| is non-Archimedean.
We begin with proving that the field Ck is separably closed. Let Csk be a separable
closure of Ck, on which |.| extends in a unique way. Let α be a non-zero element of
Csk and

f(T ) = T r + a1T
r−1 + · · ·+ ar ∈ Ck[T ]

be the minimal polynomial of α. Assume that r > 2. Let α2, . . . , αr be conjugates of
α in Csk which are different from α, and let

ε = min
j∈{2,...,r}

|α− αj |.

Since kac is dense in Ck, there exists a polynomial

g(T ) = T r + b1T
r−1 + · · ·+ br ∈ kac[T ]

such that
max

i∈{1,...,r}
|α|r−i|bi − ai| < εr.

Since kac is algebraically closed, there exist elements β1, . . . , βr such that

g(T ) = (T − β1) · · · (T − βr).

One has
r∏
i=1

|α− βi| = |g(α)| = |g(α)− f(α)| 6 max
i∈{1,...,r}

|α|r−i|bi − ai| < εr.

Hence there exists β ∈ {β1, . . . , βr} such that |α − β| < ε. However, for any σ ∈
Gal(Csk/Ck), one has

|α− β| = |σ(α− β)| = |σ(α)− β|.

This implies |α− σ(α)| < ε, which leads to a contradiction. Therefore one has r = 1,
or equivalently, α ∈ Ck.

To show that Ck is algebraic closed, it suffices to check that Ck does not admit any
algebraic inseparable extension, or equivalently, Ck is a perfect field. Note that any
algebraic closed field is perfect (see [8, Chapitre V, §1, no.5, Proposition 5]). Hence
the result follows from Lemma 3.1.1.
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3.2. Reminder on norms

Let E be a finite-dimensional vector space over k. If ‖.‖ is a norm on E, we denote
by ‖.‖∗ the dual norm of ‖.‖ on the dual vector space E∨, which is defined as follows:

∀ f ∈ E∨, ‖f‖∗ = sup
s∈E\{0}

|f(s)|
‖s‖

.

Let ‖.‖1 and ‖.‖2 be two norms of E. Let ‖.‖1,∗ and ‖.‖2,∗ be the dual norm of ‖.‖1
and ‖.‖2, respectively. Then we define d(‖.‖1, ‖.‖2) and d∗(‖.‖1, ‖.‖2) to bed(‖.‖1, ‖.‖2) := sup

s∈E\{0}

∣∣∣ ln ‖s‖1 − ln ‖s‖2
∣∣∣,

d∗(‖.‖1, ‖.‖2) := d(‖.‖1,∗, ‖.‖2,∗).

Note that if dimk E = 1, then d(‖.‖1, ‖.‖2) = d∗(‖.‖1, ‖.‖2). It is easy to see that d
and d∗ satisfy the triangle inequality.

3.2.1. Lemma. — Let 0 → F → E → Q → 0 be an exact sequence of finite-
dimensional vector spaces over k. Let ‖.‖1,F and ‖.‖2,F be restricted norms of ‖.‖1
and ‖.‖2, respectively, and ‖.‖1,Q and ‖.‖2,Q be quotient norms of ‖.‖1 and ‖.‖2,
respectively. Then one has the following:{

d(‖.‖1,F , ‖.‖2,F ) 6 d(‖.‖1, ‖.‖2), d(‖.‖1,Q, ‖.‖2,Q) 6 d(‖.‖1, ‖.‖2),

d∗(‖.‖1,F , ‖.‖2,F ) 6 d∗(‖.‖1, ‖.‖2), d∗(‖.‖1,Q, ‖.‖2,Q) 6 d∗(‖.‖1, ‖.‖2).
(3.1)

Proof. — See [13, Proposition 1.1.42].

3.2.2. Lemma (Abstract form of Fubini-Study metric)
Let π : E → Q be a surjective homomorphism of finite-dimensional vector

spaces over k such that dimkQ = 1. Let ‖.‖E be a norm on E and ‖.‖Q be the quotient
norm of Q induced by the homomorphism π : E → Q and ‖.‖E. Let φ ∈ E∨ \ {0}
such that φ|Kerπ = 0. Then, for any s ∈ E,

‖π(s)‖Q =
|φ(s)|
‖φ‖E,∗

.

Proof. — Note that the dual norm ‖.‖Q,∗ of Q∨ is equal to the sub-norm
‖.‖E,∗,Q∨↪→E∨ of Q∨ induced by the injective homomorphism Q∨ → E∨, α 7→ α ◦ π
and the dual norm ‖.‖E,∗ (cf. [13, Proposition 1.1.20]). As φ|Kerπ = 0, there is
ϕ ∈ Q \ {0} such that ϕ ◦ π = φ, and one has ‖φ‖E,∗ = ‖ϕ‖Q,∗. Since Q is of
dimension 1 over k, for any q ∈ Q, one has

‖q‖Q =
|ϕ(q)|
‖ϕ‖Q,∗

=
|ϕ(q)|
‖φ‖E,∗

.
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In particular, for any s ∈ E, the following equality holds:

‖π(s)‖Q =
|ϕ(π(s))|
‖φ‖E,∗

=
|φ(s)|
‖φ‖E,∗

,

which concludes the lemma.

3.3. Continuous metrics

If X is a projective k-scheme, we denote by Xan the analytification of X. If k = C
and |.| is the usual absolute value, then Xan is a complex analytic space; if |.| is non-
Archimedean, then the analytification Xan is defined in the sense of Berkovich (see
[4, §4.3]). Recall that any element x of Xan consists of a scheme point of X and an
absolute value |.|x on the residue field of the scheme point, which extends the absolute
value |.| on k. We denote by κ̂(x) the completion of the residue field of the scheme
point with respect to the absolute value |.|x, on which the absolute value extends by
continuity. In the remaining of the section, we fix a projective k-scheme X.

3.3.1. Definition. — Let E be a locally freeOX -module. We call continuous metric
on E any family ϕ = (|.|ϕ(x))x∈Xan , where for each x ∈ Xan, |.|ϕ(x) is a norm on
E(x) := E ⊗OX κ̂(x), such that, for any section s of E on a Zariski open subset U
of X, the map |s|ϕ from Uan to R>0 sending (x ∈ Uan) to |s(x)|ϕ(x) is a continuous
function on Uan. Let L be an invertible OX -module. If ϕ and ψ are continuous
metrics on L, we define

d(ϕ,ψ) := sup
x∈Xan

∣∣∣∣ ln |.|ϕ(x)

|.|ψ(x)

∣∣∣∣,
where

|.|ϕ(x)

|.|ψ(x)
:=
|`|ϕ(x)

|`|ψ(x)
for any ` ∈ L(x) \ {0}.

3.3.2. Example. — (1) Let L be an invertible OX -module and n be a positive
integer. Let (E, ‖.‖) be a finite-dimensional normed vector space over k. We
assume that p : E⊗kOX → L⊗n is a surjective homomorphism of OX -modules,
which induces a k-morphism f : X → P(E) such that L⊗n is isomorphic to
f∗(OE(1)), where OE(1) denotes the universal invertible sheaf on the projective
space P(E) (see [33, II.(4.2.3)]). For each point x ∈ Xan the norm ‖.‖ induces
a quotient norm |.|(x) on L(x) such that, for any ` ∈ L(x) \ {0},

|`|(x) = inf
s∈E, λ∈κ̂(x)×

p(s)(x)=λ`⊗n

(
|λ|−1

x ‖s‖
)1/n

.

The quotient norms (|.|(x))x∈Xan define a continuous metric on L, called the
quotient metric induced by ‖.‖. By definition, if ‖.‖1 and ‖.‖2 are two norms on
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E, and if ϕ1 and ϕ2 are quotient metrics induced by ‖.‖1 and ‖.‖2, respectively,
then one has

d(ϕ1, ϕ2) 6 d(‖.‖1, ‖.‖2). (3.2)

(2) Let L be an invertible OX -module and ϕ = (|.|ϕ(x))x∈Xan be a continuous
metric on L. The dual norms of |.|ϕ(x) on L(x)∨ form a continuous metric on
L∨, which we denote by −ϕ. Recall that for any ` ∈ L(x) \ {0}, one has

|`∨|−ϕ = |`|−1
ϕ ,

where `∨ denotes the linear form on L(x) such that `∨(λ`) = λ for any λ ∈ κ̂(x).
(3) Let L1 and L2 be invertible OX -modules, and ϕ1 and ϕ2 be continuous metrics

on L1 and L2 respectively. Then the tensor product norms of |.|ϕ1
(x) and

|.|ϕ2(x) form a continuous metric on L1⊗L2, which we denote by ϕ1 +ϕ2. Note
that, for any `1 ∈ L1(x) and `2 ∈ L2(x), one has

|`1 ⊗ `2|ϕ1+ϕ2
(x) = |`1|ϕ1

(x) · |`2|ϕ2
(x).

(4) Let f : Y → X be a k-morphism of projective k-schemes. We denote by
fan : Y an → Xan the continuous map of analytifications induced by f . Let L
be an invertible OX -module, equipped with a continuous metric ϕ. Then the
metric ϕ induces by pull-back a continuous metric f∗(ϕ) on f∗(L) such that,
for any y ∈ Y an and any ` ∈ L(fan(y)), one has

|f∗(`)|f∗(ϕ)(y) = |`|ϕ(fan(y)).

The metric f∗(ϕ) is called the pull-back of ϕ by f .
(5) Let k′/k be an extension of fields. We assume that the absolute value |.| extends

to k′ and that the field k′ is complete with respect to the topology induced by
the extended absolute value. Let Xk′ be the fiber product X ×Spec k Spec k′.
We denote by π : Xk′ → X the morphism of projection. Then the map

π\ : Xan
k′ −→ Xan, (3.3)

sending any point x′ = (j(x′), |.|x′) ∈ Xan
k′ to the pair consisting of the scheme

point π(j(x′)) of X and the restriction of |.|x′ to the residue field of π(j(x′)),
is continuous (see [13, Proposition 2.1.17]), where j : Xan

k′ → Xk′ denotes the
map sending a point in the analytic space to its underlying scheme point.

Let L be an invertible OX -module, equipped with a continuous metric ϕ.
Let Lk′ be the pull-back of L by the morphism of projection π. The continuous
metric ϕ induces a continuous metric ϕk′ on Lk′ such that, for any x′ ∈ Xan

k′

and any ` ∈ L(π\(x′)), one has

∀ a ∈ κ̂(x′), |a⊗ `|ϕk′ (x
′) = |a|x′ · |`|ϕ(π\(x′)).

In particular, if ψ is another continuous metric on L, then one has

d(ϕk′ , ψk′) 6 d(ϕ,ψ). (3.4)
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3.3.3. Definition. — Let (E, ‖.‖) be a finite-dimensional normed vector space over
k. We assume that the norm ‖.‖ is either ultrametric or induced by an inner product.
Let k′/k be an extension of fields, on which the absolute value |.| extends. We assume
that the field k′ is complete with respect to the extended absolute value. We denote
by ‖.‖k′ the following norm on Ek′ := E ⊗k k′.
(1) In the case where the absolute value |.| is non-Archimedean and the norm ‖.‖ is

ultrametric, ‖.‖k′ is the ε-extension of scalars of the norm ‖.‖. Namely, for any
t = s1 ⊗ λ1 + · · ·+ sm ⊗ λm ∈ E ⊗k k′

‖t‖k′ := sup
f∈E∨\{0}

|λ1f(s1) + · · ·+ λmf(sm)|
‖f‖∗

,

where ‖.‖∗ denotes the dual norm of ‖.‖, which is defined as

‖f‖∗ := sup
x∈E\{0}

|f(s)|
‖s‖

.

This is an ultrametric norm on Ek′ such that ‖s ⊗ a‖k′ = ‖s‖ · |a| (see [13,
Proposition 1.3.1]). Moreover, if (ei)

r
i=1 is an orthonormal basis of (E, ‖.‖),

then (ei ⊗ 1)ri=1 is an orthonormal basis of (Ek′ , ‖.‖k′) (see [13, Proposition
1.3.13]).

(2) In the case where the absolute value |.| is Archimedean, k = R, k′ = C, and ‖.‖
is induced by an inner product 〈 , 〉, ‖.‖C is the orthogonal extension of scalars
of ‖.‖. Namely, for any (s, t) ∈ E × E,

‖s⊗ 1 + t⊗
√
−1‖C := (‖s‖2 + ‖t‖2)1/2.

Clearly, for any s ∈ E one has ‖s ⊗ 1‖C = ‖s‖. Note that the norm ‖.‖C is
induced by an inner product 〈 , 〉C on EC such that, for any u = s⊗ 1 + t⊗

√
−1

and u′ = s′ ⊗ 1 + t′ ⊗
√
−1 in EC,

〈u, u′〉 = 〈s, s′〉+ 〈t, t′〉+
√
−1(〈s, t′〉 − 〈t, s′〉).

Moreover, if (ei)
r
i=1 is an orthonormal basis of (E, ‖.‖), then (ei ⊗ 1)ri=1 is an

orthonormal basis of (EC, ‖.‖C).

3.3.4. Remark. — Let n be a positive integer. Assume that p : E⊗kOX → L⊗n is a
surjective homomorphism of OX -modules, which induces a k-morphism f : X → P(E)

such that L⊗n = f∗(OE(1)). We equip L with the quotient metric ϕ induced by ‖.‖.
In the case where the absolute value |.| is non-Archimedean, for any point x ∈ Xan,
the norm |.|nϕ(x) on L⊗n(x) coincides with the quotient norm on L⊗n(x) induced by
the norm ‖.‖κ̂(x) on E⊗k κ̂(x) and the quotient map px : E⊗k κ̂(x)→ L⊗n. We refer
the readers to [13, Proposition 1.3.26 (i)] for a proof. As for the Archimedean case
with k = R and κ̂(x) = C, note that, if s and t are elements of E and a and b are
complex numbers such that

px(s) = a`⊗n, px(t) = b`⊗n,
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where ` is a fixed non-zero element of L(x). Then one has

px(s⊗ 1 + t⊗
√
−1) = (a+ b

√
−1)`⊗n

and hence
(‖s‖2 + ‖t‖2)

1
2

|a+ b
√
−1|

>
(‖s‖2 + ‖t‖2)

1
2

|a|+ |b|
>

1√
2

‖s‖+ ‖t‖
|a|+ |b|

>
1√
2
|`|nϕ(x).

Therefore, the quotient norm on L⊗n induced by ‖.‖κ̂(x) and the quotient map

px : E ⊗k κ̂(x) −→ L⊗n(x),

which is bounded from above by |.|nϕ(x) by definition, is actually bounded from below
by (1/

√
2)|.|nϕ(x).

Let k′/k be a valued extension of (k, |.|) which is complete. By extension of scalars,
we obtain a surjective homomorphism of OXk′ -modules

pk′ : Ek′ ⊗k′ OXk′ −→ L⊗nk′ ,

which corresponds to the k′-morphism fk′ : Xk′ → P(Ek′). Let ϕ be the quotient
metric on L induced by ‖.‖. In the case where |.| is non-Archimedean, it turns out
that the quotient metric on Lk′ induced by ‖.‖k′ coincides with ϕk′ . This fact follows
from [13, Proposition 1.3.15 (i)] and the above identification of the quotient metric to
a family of quotient norms. In the Archimedean case with k = R and k′ = C, by the
above estimate, in general the quotient metric ϕ′ on LC induced by ‖.‖C is different
from ϕC. The above estimate actually shows that, for any x ∈ Xan

C one has

2−
1

2n |.|ϕC(x) 6 |.|ϕ′(x) 6 |.|ϕC(x).

Note that the metric ϕC is still a quotient metric. In fact, if we consider the π-
extension of scalars ‖.‖C,π on EC defined as

∀ t ∈ EC, ‖t‖C,π := inf
t=s1⊗λ1+···+sm⊗λm

m∑
i=1

|λi| · ‖si‖.

Then the metric ϕC identifies with the quotient metric induced by ‖.‖C,π.

3.3.5. Definition. — Let L be an invertible OX -module and n be a positive integer.
Let (E, ‖.‖) be a finite-dimensional normed vector space over k. We assume that the
norm ‖.‖ is either ultrametric or induced by an inner product. Let p : E⊗kOX → L⊗n

be a surjective homomorphism of OX -modules, which induces a k-morphism f : X →
P(E) such that L⊗n is isomorphic to f∗(OE(1)). For each point x ∈ Xan, the norm
‖.‖κ̂(x) on E ⊗k κ̂(x) induces by quotient a norm |.|(x) on L⊗n(x). There then exists
a unique continuous metric ϕ on L such that |.|nϕ(x) = |.|(x) for any x ∈ Xan. The
metric ϕ is called the orthogonal quotient metric induced by ‖.‖. Note that, in the
case where |.| is non-Archimedean or (k, |.|) is C equipped with the usual absolute
value, the orthogonal quotient metric identifies with the quotient metric induced by
‖.‖ introduced in Example 3.3.2 (1). Moreover, for any complete valued extension
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k′/k, the metric ϕk′ identifies with the orthogonal quotient metric induced by ‖.‖k′
(see Remark 3.3.4 above).

3.3.6. Definition. — Let L be a semi-ample invertible OX -module and ϕ be a
continuous metric on L. If there exists a sequence of quotient metrics ϕn on L such
that

lim
n→+∞

d(ϕn, ϕ) = 0,

we say that the metric ϕ is semi-positive (see [12, §2.2]). In the case where |.| is
Archimedean and k = C, this definition is equivalent to the plurisubharmonicity of
the metric ϕ (see for example [67, Theorem 3.5]).

3.3.7. Remark. — Let L be an invertible OX -module. Let k′/k be a complete
valued extension of k, Xk′ be the fiber product X×Spec k Spec k′ and π\ : Xan

k′ → Xan

be the map defined in (3.3). If ϕ and ψ are two continuous metrics on L, then the
metrics ϕk′ and ψk′ satisfy the relation (see (3.4))

d(ϕk′ , ψk′) 6 d(ϕ,ψ).

Therefore, if ϕ is a semi-positive metric on L, then ϕk′ is also a semi-positive metric.

3.3.8. Definition. — Let L be a very ample invertible OX -module and ϕ be a
continuous metric on L. For any positive integer m, the continuous metric ϕ induces
a seminorm ‖.‖mϕ on H0(X,L⊗m) as follows:

∀ s ∈ H0(X,L⊗m), ‖s‖mϕ = sup
x∈Xan

|s|mϕ(x).

This seminorm is a norm notably when the scheme X is reduced. For each point
x ∈ Xan, the seminorm ‖.‖mϕ induces a quotient seminorm |.|ϕ(m)(x) on L(x) such
that, for any ` ∈ L(x) \ {0}

|`|ϕ(m)(x) = inf
s∈H0(X,L⊗m), λ∈κ̂(x)×

s(x)=λ`⊗m

(|λ|−1‖s‖mϕ)1/m.

This seminorm is actually a norm and is bounded from below by |.|ϕ(x). The norms
(|.|ϕ(m)(x))x∈Xan form a continuous metric on L, which we denote by ϕ(m).

3.3.9. Proposition. — Let L be a very ample invertible OX-module. If ϕ1 and ϕ2

are two continuous metrics on L, then the following inequalities hold:

∀m ∈ N>1, d(ϕ
(m)
1 , ϕ

(m)
2 ) 6 d(ϕ1, ϕ2).

Proof. — By definition, one has

sup
s∈H0(X,L⊗m)
‖s‖mϕ1

6=0

∣∣∣∣ ln ‖s‖mϕ1

‖s‖mϕ2

∣∣∣∣ 6 d(mϕ1,mϕ2) = md(ϕ1, ϕ2).
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Therefore,

d(ϕ
(m)
1 , ϕ

(m)
2 ) 6

1

m
d(mϕ1,mϕ2) = d(ϕ1, ϕ2).

3.3.10. Remark. — Let (E, ‖.‖) be a finite-dimensional vector space over k, m be a
positive integer and p : π∗(E)→ L⊗m be a surjective homomorphism of OX -modules,
where π : X → Spec k denotes the structural morphism of schemes. Let ϕ be the
quotient metric induced by ‖.‖. Note that p induces by adjunction between π∗ and
π∗ a k-linear map α : E → H0(X,L⊗m). Let s be an element of H0(X,L⊗m). For
any x ∈ Xan, one has

|s|mϕ(x) = inf
t∈E, λ∈κ̂(x)×

α(t)(x)=λs(x)

‖t‖
|λ|x

.

In particular, for any s in the image of the linear map α, one has

‖s‖mϕ 6 inf
t∈E,α(t)=s

‖t‖.

Therefore, for x ∈ Xan and ` ∈ L(x) \ {0}, one has

|`|ϕ(m)(x) = inf
s∈H0(X,L⊗m), λ∈κ̂(x)×

s(x)=λ`⊗m

(‖s‖mϕ
|λ|x

)1/m

6 inf
t∈E, λ∈κ̂(x)×

α(t)(x)=λ`⊗m

( ‖t‖
|λ|x

)1/m

= |`|ϕ(x).

Combining with the inequality |`|ϕ(m)(x) > |`|ϕ(x), we obtain the equality ϕ(m) = ϕ.

3.3.11. Proposition. — Let L be a very ample invertible OX-module, equipped with
a continuous metric ϕ. Let ‖.‖ be a norm on the vector space H0(X,L⊗n). For any
a > 0, let ‖.‖a be the norm on H0(X,L⊗n) defined by

∀ s ∈ H0(X,L⊗n), ‖s‖a = max{‖s‖ϕ, a‖s‖} = max
{

sup
x∈Xan

|s|ϕ(x), a‖s‖
}
,

and let ϕa be the quotient metric on L induced by ‖.‖a. Then, for any x ∈ Xan

|.|ϕ(1)(x) 6 |.|ϕa(x), (3.5)

and there exists a0 > 0 such that ϕa = ϕ(1) when 0 < a 6 a0.

Proof. — By definition, one has ‖.‖a > ‖.‖ϕ. Hence the inequality (3.5) holds.
Let N‖.‖ϕ be the null space of the seminorm ‖.‖ϕ, which is defined as

N‖.‖ϕ = {s ∈ H0(X,L) | ‖s‖ϕ = 0}.

Let E be the quotient vector space H0(X,L)/N‖.‖ϕ and π : H0(X,L) → E be the
projection map. We denote by ‖.‖E the quotient norm of ‖.‖ on E and ‖.‖ϕ,E be the
quotient seminorm of ‖.‖ϕ on E, which is actually a norm satisfying the relation

∀ s ∈ H0(X,L), ‖π(s)‖ϕ,E = ‖s‖ϕ. (3.6)
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Since all norms on E are equivalent, there exists C > 0 such that ‖.‖E 6 C‖.‖ϕ,E .
Therefore, for any x ∈ Xan, and any ` ∈ L(x) \ {0} one has

|`|ϕa(x) = inf
s∈H0(X,L⊗n), λ∈κ̂(x)×

s(x)=λ`⊗n

(max{‖s‖ϕ, a‖s‖}
|λ|

) 1
n

= inf
s∈H0(X,L⊗n), λ∈κ̂(x)×

s(x)=λ`⊗n

(max{‖π(s)‖ϕ,E , a‖π(s)‖E}
|λ|

)
= |`|ϕ(1)(x)

once a < C−1, where the second equality comes from the fact that s(x) = 0 when
s ∈ N‖.‖ϕ .

3.3.12. Proposition. — Let L be a very ample invertible OX-module, equipped with
a semi-positive continuous metric ϕ. Then one has

lim
m→+∞

d(ϕ(m), ϕ) = 0.

Proof. — First of all, for positive integers m and m′, one has

∀x ∈ Xan, ∀ ` ∈ L(x) \ {0}, |`|m+m′

ϕ(m+m′)(x) 6 |`|mϕ(m) · |`|m
′

ϕ(m′) .

Therefore
(m+m′)d(ϕ(m+m′), ϕ) 6 md(ϕ(m), ϕ) +m′d(ϕ(m′), ϕ).

By Fekete’s lemma we obtain that the sequence

d(ϕ(m), ϕ), m ∈ N, m > 1

converges to a non-negative real number, which is also equal to

inf
m∈N, m>1

d(ϕ(m), ϕ).

Moreover, since the metric ϕ is semi-positive, there exist a sequence of positive integers
(mn)n∈N, a sequence of finite-dimensional normed vector spaces ((En, ‖.‖n))n∈N and
surjective homomorphisms of OX -modules pn : En ⊗k OX → L⊗mn such that, if we
denote by ϕn the quotient metric on L induced by ‖.‖n, then one has

lim
n→+∞

d(ϕn, ϕ) = 0.

By Remark 3.3.10, one has ϕ(mn)
n = ϕn and hence

d(ϕ(mn), ϕ) 6 d(ϕ(mn), ϕn) + d(ϕn, ϕ) = d(ϕ(mn), ϕ(mn)
n ) + d(ϕn, ϕ) 6 2d(ϕn, ϕ),

where the last inequality comes from Proposition 3.3.9. By taking the limite when
n→ +∞, we obtain that

inf
m∈N,m>1

d(ϕ(m), ϕ) = 0.
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3.3.13. Definition. — Let (L,ϕ) be a metrized invertible OX -module. We say that
(L,ϕ) is integrable if there exist ample invertible OX -modules L1 and L2 equipped
with semi-positive metrics ϕ1 and ϕ2 respectively, such that L = L1 ⊗ L∨2 and ϕ =

ϕ1 − ϕ2.

3.3.14. Definition. — We assume that v is non-Archimedean. Let (L,ϕ) be a
metrized invertible OX -module. We say ϕ is a model metric if there are a positive
integer n and a model (X ,L ) of (X,L⊗n) such that nϕ coincides with the metric
arising from the model (X ,L ) (cf. [13, Subsection 2.3.2]). In the above definition,
we may assume that X is flat over ov (for details, see [13, Subsection 2.3.2]). In the
case where L is nef, if L is nef along the special fiber of X → Spec(ov), then the
model (X ,L ) is said to be nef and ϕ is called a nef model metric.

3.3.15. Remark. — Let (X ,L ) be a model of (X,L), Xred be the reduced scheme
associated with X and Lred := L |Xred

. For x ∈ Xan, the morphism Spec(ox) →
X factors through Spec(ox) → Xred → X , and hence ϕL coincides with ϕLred

.
Moreover, L is nef with respect to X → Spec(ov) if and only if Lred is nef with
respect to Xred → Spec(ov).

3.3.16. Definition. — Let (L,ϕ) be a metrized invertible OX -module. We say
that ϕ is smooth if one of the following conditions is satisfied:

(i) if v is Archimedean, ϕ is a C∞-metric;
(ii) if v is non-Archimedean, ϕ is a model metric.

If L is nef and v is non-Archimedean, then ϕ is said to be M -semi-positive if there is
a sequence (ϕm)∞m=1 of nef model metrics of L such that lim

m→∞
d(ϕ,ϕm) = 0.

3.3.17. Lemma. — We assume that v is non-Archimedean. Let L be an invertible
OX-module and (X ,L ) be a model of (X,L). Then there is a model (X ′,L ′) of
(X,L) with the following properties:

(1) X ′ → Spec(ov) is finitely presented, that is, (X ′,L ′) is a coherent model of
(X,L) (cf. [13, Subsection 2.3.2]).

(2) X is a closed subscheme of X ′.
(3) The special fiber of X ′ → Spec(ov) coincides with the special fiber of X →

Spec(ov).
(4) L ′|X = L .

Proof. — By [38, Corollary 5.16 in Chapter II], there are a polynomial ring A :=

ov[T0, . . . , TN ] over ov and a homogeneous ideal I of A such that X = Proj(A/I).
We set R := A/I. Let p : A→ R and π : A→ A⊗ov (ov/mv) = (ov/mv)[T0, . . . , TN ]

be the natural homomorphisms. There are homogeneous elements h1, . . . , he of R and
gij ∈ R(hihj) ((i, j) ∈ {1, . . . , e}2) such that X =

⋃e
i=1D+(hi) and (gij)(i,j)∈{1,...,e}2

gives transition functions of L , where R(h) (for a homogenous element h) is the
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homogeneous localization with respect to h. We choose a homogeneous element Hi

of A such that p(Hi) = hi. Since

∅ =

e⋂
i=1

V+(hi) = V+(h1R+ · · ·+ heR),

we have R+ ⊆ rad(h1R+ · · ·+heR) by [44, Lemma 3.35 in Section 2.3], that is, there
is a positive integer a such that p(T0)a, . . . , p(TN )a ∈ h1R+ · · ·+ heR, so that

T a0 , . . . , T
a
N ∈ H1A+ · · ·+HeA+ I. (3.7)

We also choose Gij ∈ A(HiHj) such that p(Gij) = gij and Gii = 1. As gijgjl = gil on
R(hihjhl), one can see

GijGjl −Gil ∈ I(HiHjHl) (3.8)

for all (i, j, l) ∈ {1, . . . , e}3. Let S = ov \ {0}. Since IS and π(I) are homogeneous
ideals of k[T0, . . . , TN ] and (ov/mv)[T0, . . . , TN ], respectively, IS and π(I) are finitely
generated ideals. Therefore, by using (3.7) and (3.8), one can find a finitely generated
homogeneous ideal I ′ of A such that

I ′ ⊆ I, I ′S = IS , π(I ′) = π(I),

T a0 , . . . , T
a
N ∈ H1A+ · · ·+HeA+ I ′,

GijGjl −Gil ∈ I ′(HiHjHl) (∀ i, j, l ∈ {1, . . . , e}).

Let R′ := A/I ′, X ′ := Proj(R′) and p′ : A → R′ be the natural homomorphism.
Obviously X is a closed subscheme of X ′. We set h′i = p′(Hi) and g′ij = p′(Gij).
Then p′(T0)a, . . . , p′(TN )a ∈ h′1R′+ · · ·+ h′eR

′, which means that X ′ =
⋃e
i=1D+(h′i)

by [44, Lemma 3.35 in Section 2.3]. Moreover, g′ijg′il = g′il. In particular, g′ijg′ji =

g′ii = 1, so that g′ij ∈ R′
×
(h′ih

′
j)
. This means that {g′ij}i,j∈{1,...,e} gives rise to an

invertible OX ′ -module L ′ such that L ′|X = L . Moreover, (X ′,L ′) is a model
of (X,L) and the special fiber of X ′ → Spec(ov) is same as the special fiber of
X ′ → Spec(ov), as required.

3.3.18. Proposition. — Let X → Spec(ov) be a model of X and L be an invertible
OX -module. If L is ample on every fiber of X → Spec(ov), then L is ample.

Proof. — By Lemma 3.3.17, there are a coherent model of X ′ of X and an invertible
OX ′ -module L ′ such that X is a closed subscheme of X ′, L ′|X = L and the
special fiber of X ′ → Spec(ov) coincides with the special fiber of X → Spec(ov).
Note that L ′ is ample on every fiber of X ′ → Spec(ov), and hence L ′ is ample by
[33, IV-3, Corollaire (9.6.4)] because X ′ → Spec(ov) is finitely presented. Therefore
L is ample.

3.3.19. Theorem. — We assume that v is non-Archimedean and |.| is not trivial.
Let L be a semi-ample invertible OX-module and ϕ be a continuous metric of L. Then
ϕ is semi-positive if and only if ϕ is M -semi-positive.
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Proof. — First we assume that ϕ is semi-positive. By Remark 3.3.15, we may assume
thatX is reduced. As L is semi-positive, there is a positive integer n0 such that L⊗n0 is
generated by global sections, so we may assume that L is generated by global sections,
and hence L⊗n is generated by global sections for all n > 1. Fix λ ∈ ]0, 1[ such that
λ < sup{|a||a ∈ k×, |a| < 1}. By [13, Proposition 1.2.22], there is a finitely generated
lattice En of H0(X,L⊗n) such that d(‖.‖En , ‖.‖nϕ) 6 log(λ−1). Note that there is
a morphism fn : X → P(H0(X,L⊗n)) with f∗n(OP(H0(X,L⊗n))(1)) = L⊗n, so we can
find a morphism Fn : Xn → P(En) over ov such that Xn is flat and projective over ov
and Fn is an extension of fn over ov. If we set Ln = F∗n(OP(En)(1)), then (Xn,Ln) is
a flat model of (X,L⊗n). As En⊗ov OP(En) → OP(En)(1) is surjective, one also has the
sujectivity of En ⊗ov OXn

→ Ln. Therefore, by [13, Proposition 2.3.12], the model
metric ϕLn coincides with the quotient metric induced by ‖.‖En . Therefore, if we
denote by ϕn the quotient metic induced by ‖.‖nϕ, then, by [13, Proposition 2.2.20],

d(ϕLn
, ϕn) 6 d(‖.‖En , ‖.‖nϕ) 6 log(λ−1),

which implies

d( 1
nϕLn

, ϕ) 6 d( 1
nϕLn

, 1
nϕn) + d( 1

nϕn, ϕ) 6 1
n log(λ−1) + d( 1

nϕn, ϕ),

and hence lim
n→∞

d( 1
nϕLn , ϕ) = 0. Thus ϕ is M -semi-positive because Ln is nef.

Let us see the converse. Let (X ,L ) be a model of (X,L) such that L is nef along
the special fiber of X → Spec(ov). Let ϕL be the metric arising from the model
(X ,L ). It is sufficient to see that ϕL is semi-positive. Let A be an ample invertible
OX -module. Then, for n > 1, A ⊗L ⊗n is ample on every fiber of X → Spec(ov),
and hence, by Proposition 3.3.18, A ⊗L ⊗n is ample on X for all n > 1. Therefore,
by [13, Proposition 2.3.17], ϕL is semi-positive.

3.4. Green functions

In this section, we fix a projective k-scheme X.

3.4.1. Definition. — Let D be a Cartier divisor on X. We call Green function of
D any real-valued continuous function on (X \ Supp(D))an such that, for any regular
meromorphic function f ∈ Γ(U,M×

X ) which defines the Cartier divisor locally on
a Zariski open subset U , the function g + log |f | on (U \ Supp(D))an extends to a
continuous function on Uan. A pair (D, g) consisting of a Cartier divisor D on X

and a Green function g of D is called a metrized Cartier divisor. We denote by
D̂iv(X) the set of all metrized Cartier divisors on X. Further g is said to be smooth
if (OX(D), |.|g) is smooth. A smooth Green function of D = 0 is called a smooth
function on Xan.

3.4.2. Example. — In the case where D is the zero Cartier divisor, Green functions
of D are continuous functions on Xan. In particular, if the Krull dimension of X is
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zero, then Xan consists of isolated points. In this case any Cartier divisor D on X is
trivial (see Remark 1.2.10) and hence Green functions identify with elements in the
real vector space spanned by Xan.

In the case where D is a principal Cartier divisor, namely a Cartier divisor of the
form div(f), where f is a regular meromorphic function, then by definition − ln |f | is
a Green function of div(f). We denote by d̂iv(f) the pair (div(f),− ln |f |). Such a
metrized Cartier divisor is said to be principal.

3.4.3. Remark. — Metrized Cartier divisors are closely related to metrized invert-
ible sheafs. Let D be a Cartier divisor on X. We denote by OX(D) the sub-OX -
module of MX generated by −D. Let (Ui)i∈I be an open covering of X such that, on
each Ui the Cartier divisor is defined by a regular meromorphic function si. Then the
restriction of OX(D) at Ui is given by OUis−1

i . If g is a Green function of D, then it
induces a continuous metric ϕg = (|.|g(x))x∈Xan on OX(D) such that

|s−1
i |g := exp(−g − ln |si|) on Uan

i .

Note that the metric of the canonical regular meromorphic section (see Definition
1.2.8) is given by

|sD|g = |si ⊗ s−1
i |g = exp(−g) on Ui.

Conversely, given an invertible OX -module L, any non-zero rational section s of L
defines a Cartier divisor div(L; s). Moreover, if ϕ is a continuous metric on L, then
− ln |s|ϕ is a Green function of div(L; s). We denote by d̂iv(L; s) (or by d̂iv(s) for
simplicity) the metrized Cartier divisor (div(L; s),− ln |s|ϕ).

The above relation between metrized Cartier divisors and metrized invertible
sheaves is important to define the following composition law on the set of metrized
Cartier divisors. Let (D1, g1) and (D2, g2) be metrized Cartier divisors. Note that
OX(D1 + D2) is canonically isomorphic to OX(D1) ⊗OX OX(D2). Moreover, under
the canonical isomorphism

OX(D1 +D2)
∼−→ OX(D1)⊗OX OX(D2),

the regular meromorphic section sD1+D2
corresponds to sD1

⊗ sD2
. We equip the

invertible sheaf OX(D1) and OX(D2) with the metrics ϕg1 = (|.|g1(x))x∈Xan and
ϕg2 = (|.|g2(x))x∈Xan respectively, and OX(D1 +D2) with the tensor product metric
ϕg1
⊗ ϕg2

. We then denote by g1 + g2 the Green function in the metrized Cartier
divisor d̂iv(sD1+D2

). Clearly, for any x ∈
(
X \ (Supp(D1) ∪ Supp(D2))

)an, one has

(g1 + g2)(x) = g1(x) + g2(x).

Note that the set D̂iv(X) of metrized Cartier divisors equipped with this composition
law forms a commutative group.

3.4.4. Definition. — Let (A, g) be a metrized Cartier divisor such that OX(A) is
an ample invertible OX -module (namely the Cartier divisor A is ample). We say that
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the Green function g is plurisubharmonic if the metric |.|g on OX(A) is semi-positive.
We refer to [11, §6.8] and [37, §6] for a local version of positivity conditions.

We say that a metrized Cartier divisor (D, g) is integrable if there are ample Cartier
divisors A1 and A2 together with plurisubharmonic Green functions g1 and g2 of A1

and A2, respectively, such that (D, g) = (A1, g1)− (A2, g2). We denote by Înt(X) the
set of all integrable metrized Cartier divisors. This is a subgroup of the group D̂iv(X)

of metrized Cartier divisors.

3.4.5. Remark. — Let k′/k be a valued extension which is complete. Let Xk′ be
the fiber product X ×Spec k Spec k′, and π : Xk′ → X be the morphism of projection.
Let (D, g) be a metrized Cartier divisor on X. Then the pull-back Dk′ of D by
the morphisme π is well defined (see Definition 1.2.14 and Remark 1.3.5). Note
that OXk′ (Dk′) is isomorphic with the pull-back of OX(D) by π, and the canonical
meromorphic section sDk′ of Dk′ identifies with the pull-back of sD by π. Let ϕg be
the continuous metric on OX(D) induced by the Green function g. We denote by gk′
the Green function of Dk′ defined as

gk′ = − ln |sDk′ |ϕg,k′ ,

where ϕg,k′ is the continuous metric on π∗(OX(D)) ∼= OXk′ (Dk′) induced by ϕg
(see Example 3.3.2 (5)). Note that, for any element x′ ∈ Xan

k′ such that π\(x′) ∈
(X \ Supp(D))an, one has

gk′(x
′) = g(π\(x′)).

Moreover, the composition of g with the restriction of π\ to (Xk′ \ Supp(Dk′))
an

forms a Green function of Dk′ . We denote by gk′ this Green function. By Re-
mark 3.3.7, if OX(D) is semi-ample and g is plurisubharmonic, then gk′ is also
plurisubharmonic. If (D, g) is integrable, then (Dk′ , gk′) is also integrable. There-
fore the correspondance (D, g) 7→ (Dk′ , gk′) defines a group homomorphism from
D̂iv(X) → D̂iv(Xk′), whose restriction to Înt(X) defines a group homomorphism
Înt(X)→ Înt(Xk′).

3.4.6. Theorem. — Let X be a d-dimensional projective and integral scheme over
k. Let D be a nef and effective Cartier divisor and g be a Green function of D such
that either

(a) if v is Archimedean, the metric of |.|g of OX(D) is C∞ and semi-positive, or
(b) if v is non-Archimedean, the metric of |.|g of OX(D) is a nef model metric.

Then there is a sequence (ψn)n∈N of smooth functions on Xan with the following
properties:

(1) for all n ∈ N, ψn 6 g, ψn 6 ψn+1.
(2) for each point x ∈ Xan, sup{ψn(x) |n ∈ N} = g(x).
(3) for all n ∈ N, g − ψn is a Green function of D such that either
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(3.a) if v is Archimedean, the metric of |.|g−ψn of OX(D) is C∞ and semi-
positive, or

(3.b) if v is non-Archimedean, the metric of |.|g−ψn of OX(D) is a nef model
metric.

Proof. — This theorem is nothing more than [10, Théorème 3.1]. In the case where
v is non-Archimedean, it is proved under the additional assumption that v is discrete.
However, their proof works well by slight modifications. For reader’s convenience, we
reprove it here.

We may assume that v is non-Archimedean. If the theorem holds for (mD,mg) for
some positive number m, then it also holds for (D, g), so that we may assume that
there is a flat model (X ,L ) of (X,OX(D)) such that |.|g = |.|ϕL and L is nef along
the special fiber of X → Spec(ov). By Lemma 1.2.15, there is a Cartier divisor D

on X such that OX (D) = L , D |X = D and g is the Green function arising from
(X ,D). Let X =

⋃N
i=1 Spec(Ai) be an affine open covering of X such that D is

given by a local equation fi on Spec(Ai). Since D is effective, one has fi ∈ (Ai)S ,
that is, sifi ∈ Ai for some si ∈ S, where S := ov \ {0}, so that if we set s = s1 · · · sN ,
then sfi ∈ Ai for all i = 1, . . . , N . Let

g′ := g − log |s|, L ′ := L ⊗OX s−1 and D ′ := D + div(s).

Then D ′ is effective, OX (D ′) = L ′ and |.|g′ = |.|L ′ . Thus, if the theorem holds
for g′, then one has the assertion for g, and hence we may further assume that D is
effective.

Fix a ∈ S such that |a| < 1, and set

ψn = min{g,−n log |a|} (∀ n ∈ N).

The properties (1) and (2) are obvious, so we need to see (3). Let In be the ideal sheaf
of OX generated by a local equation of D and an. Let pn : Yn →X be the blowing-
up in terms of the ideal sheaf In. Note that InOY is a locally principal ideal sheaf of
OYn whose support is contained in the special fiber of Yn → Spec(ov), that is, there
is an effective Cartier divisor En on Yn such that OYn(−En) = InOYn and En|X = 0.
Obviously ψn is a smooth function arising from the model (Yn,En). Therefore, it is
sufficient to show that p∗n(D)− En is nef along the special fiber Yn → Spec(ov). Let
X =

⋃N
i=1 Spec(Ai) be an affine open covering of X as before. Note that D is given

by fi ∈ Ai on Spec Ai for each i. Then

p−1
n (Spec Ai) = Proj(Ai[T0, T1]/(fiT0 − anT1)).

If we set p−1
n (Spec Ai)α = {Tα 6= 0} for α ∈ {0, 1}, then fi = an(T1/T0) on

p−1
n (Spec Ai)0 and an = fi(T0/T1) on p−1

n (Spec Ai)1, so that{
OYn(−En)|p−1

n (Spec Ai)0
= anOp−1

n (Spec Ai)0
,

OYn(−En)|p−1
n (Spec Ai)1

= fiOp−1
n (Spec Ai)1

.
(3.9)
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Therefore, one can see that p∗n(D) − En and div(an) − En are effective. Let us see
(p∗n(D) − En · C) > 0 for any irreducible curve C on the special fiber of Yn →
Spec(ov). Let ξ be the generic point of C. We choose i such that ξ ∈ p−1

n (Spec Ai). If
ξ 6∈ Supp(p∗n(D)− En), then the assertion is obvious because p∗n(D)− En is effective.
Otherwise, by (3.9), ξ ∈ p−1

n (Spec Ai)0. Then, by (3.9) again, ξ 6∈ Supp(div(an)−En),
so that ((div(an)− En) ·C) > 0 by the reason of the effectivity of div(an)− En. Note
that p∗n(D)− En is linearly equivalent to p∗n(D) + (div(an)− En). Thus it is sufficient
to show that (p∗n(D) ·C) > 0, which is obvious because of the projection formula and
the nefness of D .

3.5. Local measures

In this section, we assume that k is algebraically closed. Let X be a projective k-
scheme and let d be the dimension of X. Assume given a family (Li)

d
i=1 of semi-ample

invertible OX -modules. For any i ∈ {1, . . . , d}, let ϕi be a semi-positive continuous
metric on Li. First we assume that X is integral. In the case where |.| is Archimedean
(and hence k = C), by Bedford-Taylor theory [3] one can construct a Borel measure

c1(L1, ϕ1) · · · c1(Ld, ϕd)

having

deg(c1(L1) · · · c1(Ld) ∩ [X])

as its total mass. In the non-Archimedean case, an analoguous measure has been
proposed by Chambert-Loir [10], assuming that the field k admits a dense count-
able subfield (see also [11, §5] for a general non-Archimedean analogue of Bedford-
Taylor theory). In any case, the measure c1(L1, ϕ1) · · · c1(Ld, ϕd) is also denoted
by µ(L1,ϕ1)···(Ld,ϕd). Note that the measure µ(L1,ϕ1)···(Ld,ϕ) is additive with respect to
each (Li, ϕi). More precisely, if i ∈ {1, . . . , d} and if (Mi, ψi) is another semi-positively
metrized invertible OX -module, then the measure

µ(L1,ϕ1)···(Li−1,ϕi−1)(Li⊗Mi,ϕi⊗ψi)(Li+1,ϕi+1)···(Ld,ϕd)

is equal to

µ(L1,ϕ1)···(Li−1,ϕi−1)(Li,ϕi)(Li+1,ϕi+1)···(Ld,ϕd)

+ µ(L1,ϕ1)···(Li−1,ϕi−1)(Mi,ψi)(Li+1,ϕi+1)···(Ld,ϕd)

Moreover, for any permutation σ : {1, . . . , d} → {1, . . . , d}, one has

µ(Lσ(1),ϕσ(1))···(Lσ(d),ϕσ(d)) = µ(L1,ϕ1)···(Ld,ϕd).

In general, let X1, . . . , Xn be irreducible components of X which are of dimension
d, and η1, . . . , ηn the generic points of X1, . . . , Xn, respectively. Let ξi : Xi ↪→ X be
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the canonical closed embedding for each i. Then a measure µ(L1,ϕ1)···(Ld,ϕd) on Xan

is defined to be

µ(L1,ϕ1)···(Ld,ϕd) :=
n∑
j=1

lengthOX,ηj
(OX,ηj )(ξan

j )∗

(
c1
(
ξ∗j (L1, ϕ1)

)
· · · c1

(
ξ∗j (Ld, ϕd)

))
. (3.10)

3.5.1. Definition. — Let (L1, ϕ1), . . . , (Ld, ϕd) be a family of integrable metrized
invertible OX -modules. For each i ∈ {1, . . . , d}, we let (L′i, ϕ

′
i) and (L′′i , ϕ

′′
i ) be ample

invertibleOX -modules equipped with semi-positive metrics, such that Li = L′i⊗(L′′i )∨

and ϕi = ϕ′i ⊗ (ϕ′′i )∨. We define a signed Radon measure µ(L1,ϕ1)···(Ld,ϕd) on Xan as
follows:

µ(L1,ϕ1)···(Ld,ϕd) :=
∑

I⊆{1,...,d}

(−1)card(I)µ(L1,I ,ϕ1,I)···(Ld,I ,ϕd,I),

where (Lj,I , ϕj,I) = (L′′j , ϕ
′′
j ) if j ∈ I, and (Lj,I , ϕj,I) = (L′j , ϕ

′
j) if j ∈ {1, . . . , d} \ I

(cf. Lemma 1.1.5).

3.5.2. Example. — We recall the explicit construction of Chambert-Loir’s measure
in a particular case as explained in [10, §2.3]. Assume that the absolute value |.| is
non-Archimedean and that the k-scheme X is integral and normal. Let k◦ be the
valuation ring of (k, |.|) and m be the maximal ideal of k◦. Suppose given an integral
model of X, namely, a flat and normal projective k◦-scheme X such that

X ×Spec k◦ Spec k ∼= X.

Let Xm be the fibre of X over the closed point of Spec k◦. It turns out that the re-
duction map from Xan to Xm is surjective. Let Z1, . . . , Zn be irreducible components
of Xm. For any j ∈ {1, . . . , n}, there exists a unique point zj ∈ Xan whose reduction
identifies with the generic point of Zj .

Assume that each metric ϕj is induced by an integral model Li, which is an
invertible sheaf on X such that Li|X ∼= Li. Then the measure

c1(L1, ϕ1) · · · c1(Ld, ϕd)

is given by
d∑
j=1

multZj (Xm) deg(c1(L1|Xm
) · · · c1(Ld|Xm

) ∩ [Zj ]) Diraczj ,

where multZj (Xm) is the multiplicity of Zj in Xm, and Diraczj denotes the Dirac
measure at zj .

3.5.3. Remark. — We assume that X is integral. Let (ϕ1,n)∞n=1, . . . , (ϕd,n)∞n=1 be
sequences of semi-positive metrics of L1, . . . , Ld, respectively such that

lim
n→∞

d(ϕi,n, ϕi) = 0
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for all i ∈ {1, . . . , d}. Then, by using [18, Corollary (3.6)] and [11, Corollaire (5.6.5)],
one can see

lim
n→∞

∫
Xan

fµ(L1,ϕ1,n)···(Ld,ϕd,n) =

∫
Xan

fµ(L1,ϕ1)···(Ld,ϕd)

for any smooth function f on Xan.

3.5.4. Definition. — Let D1 = (D1, g1), . . . , Dd = (Dd, gd) be a family of inte-
grable metrized Cartier divisors on X. Note that (OX(Di), |.|gi) is an integrable
metrized invertible OX -module for each i ∈ {1, . . . , d}, so that we define a signed
Radon measure µD1···Dd on Xan to be

µD1···Dd := µ(OX(D1),|.|g1 )···(OX(Dd),|.|gd ).

For any i ∈ {1, . . . , d}, we write (Di, gi) as the difference of two metrized Cartier
divisors (D′i, g

′
i)− (D′′i , g

′′
i ), where D′i and D′′i are ample, and g′i and g′′i are plurisub-

harmonic. Then we can see

µD1···Dd :=
∑

I⊆{1,...,d}

(−1)card(I)µD1,I ···Dd,I ,

where Dj,I = (D′′j , g
′′
j ) if j ∈ I, and Dj,I = (D′j , g

′
j) if j ∈ {1, . . . , d} \ I (cf.

Lemma 1.1.5, Definition 3.4.4 and Definition 3.5.1).
LetX1, . . . , Xn be irreducible components ofX and η1, . . . , ηn be the generic points

of X1, . . . , Xn, respectively. Let ξj : Xj ↪→ X be the canonical closed embedding.
Then it is easy to see

µ(D1,g1)···(Dd,gd) =

n∑
j=1

lengthOX,ηj
(OX,ηj )(ξan

j )∗

(
µξ∗j (D1,g1)···ξ∗j (Dd,gd)

)
. (3.11)

3.5.5. Proposition. — Let π : Y → X be a surjective morphism between
integral projective schemes over k. We set e = dimX and d = dimY . Let
(L1, ϕ1), . . . , (Ld, ϕd) be integrable metrized invertible OX-modules. Then one has
the following:

(1) If d > e, then π∗(µπ∗(L1,ϕ1)···π∗(Ld,ϕd)) = 0.
(2) If d = e, then π∗(µπ∗(L1,ϕ1)···π∗(Ld,ϕd)) = (deg π)µ(L0,ϕ0)···(Ld,ϕd).

Proof. — We may assume that L1, . . . , Ld are ample and ϕ1, . . . , ϕd are semi-positive.
If ϕ1, . . . , ϕd are smooth, then the assertion is well-known (cf. [36, Proposition 10.4]).
Let (ϕ1,n)∞n=1, . . . , (ϕd,n)∞n=1 be regularizations of ϕ1, . . . , ϕd, that is, ϕ1,n, . . . , ϕd,n
are smooth and semi-positive for i ∈ {1, . . . , d} and n > 1, and lim

n→∞
d(ϕi, ϕi,n) = 0

for i ∈ {1, . . . , d} (for example, see [14] for the Archimedean case and Theorem 3.3.19
for the non-Archimedean case). Let f be a smooth function on Xan (namely the
metric on OX induced by f is smooth). Then, by using [18, Corollary (3.6)] and [11,
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Corollaire (5.6.5)], one can see that

lim
n→∞

∫
Xan

π∗(f)µπ∗(L1,ϕ1,n)···π∗(Ld,ϕd,n) =

∫
Xan

π∗(f)µπ∗(L1,ϕ1)···π∗(Ld,ϕd)

and if d = e, then

lim
n→∞

∫
Y an

fµ(L1,ϕ1,n)···(Ld,ϕd,n) =

∫
Xan

fµ(L1,ϕ1)···(Ld,ϕd).

Thus the assertions follow.

3.5.6. Remark. — Let X and Y be two projective schemes over Spec k, of Krull
dimension d and n, respectively. Let L1, . . . , Ld be integrable metrized invertible OX -
modules, M1, . . . ,Mn be integrable metrized invertible OY -modules. We consider
the fiber product X ×k Y and let π1 : X ×k Y → X and π2 : X ×k Y → Y be the
two morphisms of projection. In the case where k is Archimedean, the analytic space
(X ×k Y )an is homeomorphic to Xan × Y an and the measure

µπ∗1 (L1)···π∗1 (Ld)π∗2 (M1)···π∗2 (Mn)

on (X ×k Y )an identifies with

µL1···Ld ⊗ µM1···Mn
.

In the case where |.| is non-Archimedean, in general the topological space (X×k Y )an

is not homeomorphic to Xan × Y an. However, there is a natural continuous map

α : (X ×k Y )an −→ Xan × Y an.

Then the following equality holds (see [10, §2.8])

α∗

(
µπ∗1 (L1)···π∗1 (Ld)π∗2 (M1)···π∗2 (Mn)

)
= µL1···Ld ⊗ µM1···Mn

.

In particular, if g is a measurable function on Y an which is integrable with respect to
µM1···Mn

, one has∫
(X×kY )an

(g ◦ πan
2 ) dµπ∗1 (L1)···π∗1 (Ld)π∗2 (M1)···π∗2 (Mn) =

∫
Y an

g dµM1···Mn
. (3.12)

3.5.7. Definition. — Let E be a finite-dimensional vector space over k. We say
that a norm ‖.‖ on E is orthonormally decomposable if

(1) in the case where |.| is non-Archimedean, the norm ‖.‖ is ultrametric, and
(E, ‖.‖) admits an orthonormal basis (ej)

r
j=0, namely,

∀ (λj)
r
j=0 ∈ kr+1, ‖λ0e0 + · · ·+ λrer‖ = max

j∈{0,...,r}
|λj |;

(2) in the case where |.| is Archimedean, the norm ‖.‖ is induced by an inner product
〈·, ·〉.
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Note that for each valued extension (k′, |.|′) of (k, |.|), there is a unique norm ‖.‖k′ on
E ⊗k k′, which is either ultrametric or induced by an inner product, such that any
orthonormal basis of (E, ‖.‖) is also an orthonormal basis of the extended normed
vector space (E ⊗k k′, ‖.‖k′) (see Definition 3.3.3).

3.5.8. Remark. — Let E be a finite-dimensional vector space over k, and ‖.‖ be an
orthonormally decomposable norm on E. For any s ∈ E, the real number ‖s‖ belongs
to the image of the absolute value |.|. In particular, if s is non-zero, then there exists
λ ∈ k such that ‖λs‖ = 1.

In the case where the absolute value |.| is non-Archimedean, it is not true that any
ultrametrically normed vector space admits an orthonormal basis (see [54, Example
2.3.26]). However, if (E, ‖.‖) is a finite-dimensional ultrametrically normed vector
space over k, for any α ∈ R such that 0 < α < 1, there exists an α-orthogonal basis
of E (cf. [54, §2.3], see also [13, §1.2.6] for details), namely a basis (ei)

r
i=1 such that,

for any (λi)
r
i=1 ∈ kr,

α max
i∈{1,...,r}

|λi| · ‖ei‖ 6 ‖λ1e1 + · · ·+ λrer‖ 6 max
i∈{1,...,r}

|ai| · ‖ei‖.

Moreover, since k is assumed to be algebraically closed, in the case where absolute
value |.| is non-trivial, the image of |.| is dense in R. In fact, if a is an element of k
such that |a| 6= 1, for any non-zero rational number p/q with p ∈ Z and q ∈ Z>0, any
element x ∈ k satisfying the polynomial equation

xq = ap

has |a|p/q as absolute value. Therefore, by possibly delating the vectors (ei)
r
i=1 we

may assume that
α 6 ‖ei‖ 6 1

for any i ∈ {1, . . . , r}. Therefore, if we denote by ‖.‖α the norm on E under which
(ei)

r
i=1 is an orthonormal basis of E, then for any x = λ1e1 + · · ·+λrer in E, one has

‖x‖α = max
i∈{1,...,r}

|λi| 6 α−1 max
i∈{1,...,r}

|λi| · ‖ei‖ 6 α−2‖x‖,

and
‖x‖ 6 max

i∈{1,...,r}
|λ| · ‖ei‖ 6 max

i∈{1,...,r}
|λi| = ‖x‖α.

Therefore, one has

d(‖.‖α, ‖.‖) := sup
x∈E\{0}

∣∣∣ ln ‖x‖α − ln ‖x‖
∣∣∣ 6 −2 ln(α).

Thus we can approximate the ultrametric norm ‖.‖ by a sequence of ultrametric norms
which are orthonormally decomposable.

3.5.9. Proposition. — Let (E, ‖.‖) be a finite-dimensional vector space over k,
equipped with an orthonormally decomposable norm. Then any element s0 ∈ E such
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that ‖s0‖ = 1 belongs to an orthonormal basis. Moreover, for any quotient vector
space G of E, the quotient norm on G is orthonormally decomposable.

Proof. — The statement is classic when |.| is Archimedean, which follows from the
Gram-Schmidt process. In the following, we assume that |.| is non-Archimedean. Let
k◦ be the valuation ring of (k, |.|).

Let (ej)
r
j=0 be an orthonormal basis of (E, ‖.‖). Without loss of generality, we may

assume that s0 = λ0e0 + · · · + λrer with (λ0, . . . , λr) ∈ (k◦)r+1 and |λ0| = 1. We
then construct an upper triangular matrix A of size (r + 1) × (r + 1), such that the
first row A is (λ0, . . . , λr) and the diagonal coordinates of A are elements of absolute
value 1 in k. Then the matrix A belongs to GLr+1(k◦). Let (sj)

r
j=0 be the basis of E

such that
(s0, . . . , sr)

T = A(e0, . . . , er)
T .

For any j ∈ {0, . . . , r}, one has ‖sj‖ = 1. Moreover, for any (b0, . . . , br) ∈ kr, one has

b0s0 + · · ·+ brsr = (b0, . . . , br)A(e0, . . . , er)
T .

Let (c0, . . . , cr) = (b0, . . . , br)A. Since (e0, . . . , er) is an orthonormal basis, one has

‖b0s0 + · · ·+ brsr‖ = max
j∈{0,...,r}

|cj |.

Note that (b0, . . . , br) = (c0, . . . , cr)A
−1. Since A−1 belongs to GLr+1(k◦), one has

∀ i ∈ {0, . . . , r}, |bi| 6 max
j∈{0,...,r}

|cj |.

Therefore one obtains

‖b0s0 + · · ·+ brsr‖ > max
i∈{0,...,r}

|bi|.

Combined with the strong triangle inequality, we obtain

‖b0s0 + · · ·+ brsr‖ = max
i∈{0,...,r}

|bi|.

Therefore (sj)
r
j=0 is an orthonormal basis of (E, ‖.‖). In particular, the image of

(s1, . . . , sr) in E/ks0 forms an orthonormal basis of E/ks0 with respect to ‖.‖. There-
fore the quotient norm on E/ks0 is orthonormally decomposable. By induction we
can show that all quotient norms of ‖.‖ are orthonormally decomposable.

In the remaining of this section, we fix a finite-dimensional vector space E equipped
with an orthonormally decomposable norm ‖.‖. We also choose an orthonormal basis
(ej)

r
j=1 of (E, ‖.‖). Let P(E) be the projective space of E and OE(1) be the univer-

sal invertible sheaf on P(E). We equip OE(1) with the orthogonal quotient metric
(|.|(x))x∈P(E)an (see Definition 3.3.5) and denote by OE(1) the corresponding metrized
invertible sheaf. Recall that each point x ∈ P(E)an corresponds to a one-dimensional
quotient vector space

E ⊗K κ̂(x) −→ OE(1)(x),
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where κ̂(x) denotes the completed residue field of x. Then the norm |.|(x) on OE(1)(x)

is by definition the quotient norm of ‖.‖κ̂(x).

3.5.10. Definition. — Assume that |.| is non-Archimedean. We denote by ξ the
point in P(E)an which is the generic point of P(E)an equipped with the absolute value

|.|ξ : k
(
e0
er
, . . . , er−1

er

)
−→ R>0

such that, for any

P =
∑

a=(a0,...,ar−1)∈Nd
λa

(e0

er

)a0

· · ·
(er−1

er

)ar−1

∈ k
[
e0
er
, . . . , er−1

er

]
,

one has
|P |ξ = max

a∈Nd
|λa|.

Note that the point ξ does not depend on the choice of the orthonormal basis (ej)
r
j=0.

In fact, the norm ‖.‖ induces a symmetric algebra norm on k[E] (which is often called
a Gauss norm) and hence defines an absolute value on the fraction field of k[E]. The
restriction of this absolute value to the field of rational functions on P(E) identifies
with |.|ξ. Hence ξ is called the Gauss point of P(E)an.

3.5.11. Proposition. — Assume that the absolute value |.| is non-Archimedean.
The following equality holds

c1(OE(1))r = Diracξ,

where Diracξ denotes the Dirac measure at ξ.

Proof. — Let k◦ be the valuation ring of (k, |.|), m be the maximal ideal of k◦, and
κ = k◦/m be the residue field of k◦. Let E be the free k◦-module generated by
{e0, . . . , er}. Then P(E) is a projective flat k◦-scheme such that

P(E)×Spec k◦ Spec k ∼= P(E).

Note that the fibre product
P(E)×Spec k◦ Specκ

is isomorphic to P(E ⊗k◦ κ), which is an integral κ-scheme. Therefore, one has (see
Example 3.5.2)

c1(OE(1))r = deg(c1(OEκ(1))r ∩ P(Eκ)) Diracξ = Diracξ .

3.5.12. Remark. — Assume that k = C and |.| is the usual absolute value. Let
(E, ‖.‖) be a Hermitian space and

S(E∨, ‖.‖∗) = {α ∈ E∨ | ‖α‖∗ = 1}

be the unit sphere in E, where ‖.‖∗ denotes the dual norm of ‖.‖, which is also a
Hermitian norm. Note that P(E)an identifies with the quotient of S(E∨, ‖.‖∗) by
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the action of the unit sphere S(C) = {z ∈ C | |z| = 1} in C. We equip the univer-
sal invertible sheaf OE(1) with the orthogonal quotient metric induced by ‖.‖ and
equip S(E∨, ‖.‖∗) with the unique U(E∨, ‖.‖∗)-invariant Borel probability measure
ηS(E∨,‖.‖∗) which is locally equivalent to Lebesgue measure. Then the measure

c1(OE(1))dimC(E)−1

identifies with the direct image of ηS(E∨,‖.‖∗) by the projection map from S(E∨, ‖.‖∗)
to P(E)an (see for example [5, (1.4.7)] for more details).

3.5.13. Theorem. — Let L = (L,ϕ), L1 = (L1, ϕ1), . . . , Ld = (Ld, ϕd) be integrable
metrized invertible OX-modules. Let s be a regular meromorphic section of L. Then
g = − log |s|ϕ is integrable with respect to µL1···Ld .

Proof. — The proof of this theorem is same as [10, Théorème 4.1]. We prove it
without using the local intersection numbers.

Clearly we may assume thatX is integral, L,L1, . . . , Ld are ample and L,L1, . . . , Ld
are semi-positive. Let I be the ideal sheaf of OX given by

Ix = {a ∈ OX,x | asx ∈ Lx}.

Choose a positive number m and a non-zero section t1 ∈ H0(X, IL⊗m)\{0}. If we set
t2 = t1⊗s, then s = t2⊗ t−1

1 and t2 ∈ H0(X,L⊗m+1)\{0} and g = − log |t2|(m+1)ϕ+

log |t1|mϕ, so that we may assume that s ∈ H0(X,L) \ {0}. Let ϕ′ be a metric of L
such that either (a) if v is Archimedean, ϕ′ is C∞ and semi-positive, or (b) if v is
non-Archimedean, ϕ′ is a nef model metric. Then − log |s|ϕ+ log |s|ϕ′ is a continuous
function, so that we may assume that ϕ = ϕ′. By Theorem 3.4.6, there is a sequence
(ψn)n∈N of smooth functions on Xan with the following properties:

(1) for all n ∈ N, ψn 6 g, ψn 6 ψn+1.
(2) for each point x ∈ Xan, sup{ψn(x) |n ∈ N} = g(x).
(3) for all n ∈ N, g − ψn is a Green function of D such that either

(3.a) if v is Archimedean, the metric of |.|g−ψn of L is C∞ and semi-positive,
or

(3.b) if v is non-Archimedean, the metric of |.|g−ψn of L is a nef model metric.

We prove the assertion by induction on the number

e := Card{i ∈ {1, . . . , d} | ϕi is not smooth}.

If e = 0, that is, ϕi is smooth for all i, then the assertion is obvious. We assume
that e > 0. Obviously we may assume that ϕ1 is not smooth. Let ϕ′1 be a semi-
positive and smooth metric of L1. If we choose a continuous function ϑ such that
|.|ϕ1

= exp(−ϑ)|.|ϕ′1 , then c1(L1) = c1(L
′
1) + ddc(ϑ), where L

′
1 = (L1, ϕ

′
1).

Let us consider the following integral:

In :=

∫
Xan

ψn c1(L1) · · · c1(Ld).
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Note that ψn and ϑ are locally written by differences of plurisubharmonic functions,
so that, by [10, Proposition 2.3],

In =

∫
Xan

ψn c1(L
′
1) · · · c1(Ld) +

∫
Xan

ψn ddc(ϑ)c1(L2) · · · c1(Ld)

=

∫
Xan

ψn c1(L
′
1) · · · c1(Ld) +

∫
Xan

ϑ ddc(ψn)c1(L2) · · · c1(Ld).

By the hypothesis of induction,

lim
n→∞

∫
Xan

ψn c1(L
′
1) · · · c1(Ld)

exists. Moreover, by the same arguments as the last part of [10, Théorèm 4.1], one
can see

lim
n→∞

∫
Xan

ϑ ddc(ψn)c1(L2) · · · c1(Ld)

=

∫
Xan

ϑ c1(L)c1(L2) · · · c1(Ld)−
∫

div(s)an

ϑ c1(L2) · · · c1(Ld).

Therefore limn→∞ In exists, as required.

3.6. Local intersection number over an algebraically closed field

Let k be an algebraically closed field equipped with a non-trivial absolute value |.|
such that k is complete with respect to the topology defined by |.|. The pair (k, |.|)
is denoted by v. Let X be a projective scheme over k and d be its dimension. Recall
that any element x of Xan consists of a scheme point of X and an absolute value |.|x
of the residue field of the scheme point. We denote by κ̂(x) the completion of the
residue field of the scheme point with respect to the absolute value |.|x, on which the
absolute value extends by continuity.

3.6.1. Definition. — Let (D0, g0), . . . , (Dd, gd) be integrable metrized Cartier di-
visors on X. We assume that D0, . . . , Dd intersect properly, that is, (D0, . . . , Dd) ∈
IPX (see Definition 1.3.2). According to [10], we define the local intersection number(
(D0, g0) · · · (Dd, gd)

)
v
at v as follows.

In the case where d = 0, one has X = Spec(A) for some k-algebra with dimk(A) <

∞. By Remark 1.2.10 and Example 3.4.2,

A =
⊕

x∈Spec(A)

Ax and (D0, g0) =
∑

x∈Spec(A)

(0, ax),

where ax ∈ R for all x ∈ Spec(A). Then(
(D0, g0)

)
v

:=
∑

x∈Spec(A)

lengthAx(Ax) ax. (3.13)

Note that lengthAx(Ax) = dimk(Ax) because k is algebraically closed.
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If d > 0 and
∑n
i=1 aiZi is the cycle associated with Dd (cf. Remark 1.2.11), then

the local intersection number
(
(D0, g0) · · · (Dd, gd)

)
v
is defined in a recursive way with

respect to d = dim(X) as
n∑
i=1

ai

(
(D0, g0)|Zi · · · (Dd−1, gd−1)|Zi

)
v

+

∫
Xan

gd(x)µ(D0,g0)···(Dd−1,gd−1)(dx). (3.14)

For the integrability of gd with respect to the measure µ(D0,g0)···(Dd−1,gd−1), see The-
orem 3.5.13.

3.6.2. Proposition. — Let X1, . . . , X` be irreducible components of X and
η1, . . . , η` be the generic points of X1, . . . , X`, respectively. Then(

(D0, g0) · · · (Dd, gd)
)
v

=
∑̀
j=1

lengthOX,ηj
(OX,ηj )

(
(D0, g0)|Xj · · · (Dd, gd)|Xj

)
v
.

Proof. — In the case where d = 0, the assertion is obvious. We assume that d > 0.
By the definition of µ(D0,g0)···(Dd−1,gd−1) (cf. Section 3.5), if we set

bj = lengthOX,ηj
(OX,ηj ),

then one has∫
Xan

gd(x)µ(D0,g0)···(Dd−1,gd−1)(dx) =
∑̀
j=1

bj

∫
Xan
j

gd(x)µ (D0,g0)|Xj ··· (Dd−1,gd−1)|Xj
(dx).

If
∑n
i=1 aiZi and

∑n
i=1 ajiZi are the cycles associated with Dd and Dd|Xj , respec-

tively, then, by (1.3), ai =
∑`
j=1 bjaji, so that

n∑
i=1

ai

(
(D0, g0)|Zi · · · (Dd−1, gd−1)|Zi

)
v

=

n∑
i=1

∑̀
j=1

bjaji

(
(D0, g0)|Zi · · · (Dd−1, gd−1)|Zi

)
v

=
∑̀
j=1

bj

n∑
i=1

aji

(
(D0, g0)|Zi · · · (Dd−1, gd−1)|Zi

)
v
.

Therefore, since

(
(D0, g0)|Xj · · · (Dd, gd)|Xj

)
v

=

n∑
i=1

aji

(
(D0, g0)|Zi · · · (Dd−1, gd−1)|Zi

)
v

+

∫
Xan
j

gd(x)µ (D0,g0)|Xj ··· (Dd−1,gd−1)|Xj
(dx),
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one has the desired formula.

3.6.3. Proposition. — Let (D0, g0) . . . , (Di, gi), (D
′
i, g
′
i), . . . , (Dd, gd) be in-

tegrable metrized Cartier divisors on X such that (D0, . . . , Di, . . . , Dd) and
(D0, . . . , D

′
i, . . . , Dd) belong to IPX . Then one has the following:

(1) The local intersection pairing is multi-linear, that is,
(
(D0, g0) · · · (Di +D′i, gi + g′i) · · · (Dd, gd)

)
v

=
(
(D0, g0) · · · (Di, gi) · · · (Dd, gd)

)
v

+
(
(D0, g0) · · · (D′i, g′i) · · · (Dd, gd)

)
v
.(

(D0, g0) · · · (−Di,−gi) · · · (Dd, gd)
)
v

= −
(
(D0, g0) · · · (Di, gi) · · · (Dd, gd)

)
v
.

(2) We assume that D0, . . . , Dd are ample and g0, . . . , gd are plurisubharmonic. For
each i, let (gi,n)∞n=1 be a sequence of plurisubharmonic Green functions of Di

such that limn→∞ ‖gi − gi,n‖sup = 0. Then

lim
n→∞

(
(D0, g0,n) · · · (Dd, gd,n)

)
v

=
(
(D0, g0) · · · (Dd, gd)

)
v

(3) The local intersection pairing is symmetric, that is, for any bijection σ :

{0, . . . , d} → {0, . . . , d} one has(
(Dσ(0), gσ(0)) · · · · · · (Dσ(d), gσ(d))

)
v

=
(
(D0, g0) · · · (Dd, gd)

)
v
.

Proof. — Clearly we may assume that X is integral. We prove (1), (2) and (3) by
induction on d. In the case d = 0, the assertion is obvious, so that we assume d > 0.

(1) If 0 6 i < d, the assertions follow from the hypothesis of induction and
the multi-linearity of the measure µ(D0,g0)···(Dd−1,gd−1) with respect to (D0, g0), . . .,
(Dd−1, gd−1), so that we may assume that i = d. Let Dd = a1Z1 + · · · + anZn
and D′d = a′1Z1 + · · · + a′nZn be the decompositions of Dd and D′d as cycles. Then
Dd +D′d = (a1 + a′1)Z1 + · · ·+ (an + a′n)Zn and −Dd = (−a1)Z1 + · · ·+ (−an)Zn, so
that the assertions are obvious.

(2) By (3.14) and the hypothesis of induction, it is sufficient to see

lim
n→∞

∫
Xan

gd,nµ(D0,g0,n)···(Dd−1,gd−1,n) =

∫
Xan

gdµ(D0,g0)···(Dd−1,gd−1),

which follows from [18, Corollary (3.6)] and [11, Corollaire (5.6.5)].

(3) We may assume thatD0, . . . , Dd are ample and g0, . . . , gd are plurisubharmonic.
By (2) together with regularizations of metrics, we may further assume that metrics
|.|g0

, . . . , |.|gd are smooth. It suffices to prove the assertion in the particular case where
σ is a transposition exchanging two indices i and j with i < j. If j < d, then the
assertion follows from the hypothesis of induction, so that we may assume that j = d.
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If i < d− 1, then(
(D0, g0) · · · (Di, gi) · · · (Dd−1, gd−1) · (Dd, gd)

)
v

=
(
(D0, g0) · · · (Dd−1, gd−1) · · · (Di, gi) · (Dd, gd)

)
v
.

by the hypothesis of induction. Therefore we may assume that i = d − 1. Let
Dd = a1Z1 + · · · + anZn and Dd−1|Zi = ai1Zi1 + · · · + ainZin be the decomposition
as cycles. Then(

(D0, g0) · · · (Dd−1, gd−1) · (Dd, gd)
)
v

=
∑
i,j

aiaij
(
(D0, g0)|Zij · · · (Dd−2, gd−2)|Zij

)
v

+
∑
i

ai

∫
Zan
i

gd−1(x)µ (D0,g0)|Zi ··· (Dd−2,gd−2)|Zi
(dx)

+

∫
Xan

gd(x)µ(D0,g0)···(Dd−1,gd−1)(dx).

In the same way, if Dd−1 = a′1Z
′
1 + · · ·+ a′nZ

′
n and Dd|Z′i = a′i1Z

′
i1 + · · ·+ a′inZ

′
in be

the decomposition as cycles, then(
(D0, g0) · · · (Dd, gd) · (Dd−1, gd−1)

)
v

=
∑
i,j

a′ia
′
ij

(
(D0, g0)|Z′ij · · · (Dd−2, gd−2)|Z′ij

)
v

+
∑
i

a′i

∫
(Z′i)

an

gd(x)µ (D0,g0)|Z′
i
··· (Dd−2,gd−2)|Z′

i

(dx)

+

∫
Xan

gd−1(x)µ(D0,g0)···(Dd−2,gd−2)·(Dd,gd)(dx).

By [49, Proposition 5.2 (2)], one has
∑
ij aiaijZij =

∑
ij a
′
ia
′
ijZ
′
ij as cycles, so that it

is sufficient to show that∑
i

ai

∫
Zan
i

gd−1(x)µ (D0,g0)|Zi ··· (Dd−2,gd−2)|Zi
(dx)+

∫
Xan

gd(x)µ(D0,g0)···(Dd−1,gd−1)(dx)

=
∑
i

a′i

∫
(Z′i)

an

gd(x)µ (D0,g0)|Z′
i
··· (Dd−2,gd−2)|Z′

i

(dx)

+

∫
Xan

gd−1(x)µ(D0,g0)···(Dd−2,gd−2)·(Dd,gd)(dx),

which is nothing more than [49, Theorem 5.6] for the Archimedean case and [36,
Proposition 11.5] for the non-Archimedean case.

3.6.4. Proposition. — Let π : Y → X be a surjective morphism of integral pro-
jective schemes over k. We set e = dimX and d = dimY . Let (D0, g0), . . . , (Dd, gd)



3.6. LOCAL INTERSECTION NUMBER OVER AN ALGEBRAICALLY CLOSED FIELD 93

be integrable metrized Cartier divisors on X such that (π∗(D0), . . . , π∗(Dd)) ∈ IPY .
Then one has the following:

(1) If d > e, then (π∗(D0, g0) · · ·π∗(Dd, gd))v = 0.
(2) If d = e and (D0, . . . , Dd) ∈ IPX , then

(π∗(D0, g0) · · ·π∗(Dd, gd))v = (deg π)((D0, g0) · · · (Dd, gd))v.

Proof. — We prove (1) and (2) by induction on e. If e = 0, then (2) is obvious. For
(1), as π∗(D0, g0) = (0, a0), . . . , π∗(Dd, gd) = (0, ad) for some a0, . . . , ad ∈ R, then

(π∗(D0, g0) · · ·π∗(Dd, gd))v =

∫
Xan

adµ(0,a0)···(0,ad) = 0,

as desired.
We assume e > 0. Let Dd = a1Z1 + · · ·+ anZn and π∗(Dd) = b1Z

′
1 + · · ·+ bNZ

′
N

be the decompositions as cycles. By (3.14),

(
π∗(D0, g0) · · ·π∗(Dd, gd)

)
v

=

N∑
j=1

bj
(
π∗(D0, g0)|Z′j · · · π

∗(Dd−1, gd−1)|Z′j
)
v

+

∫
Y an

gd(π
an(y))µπ∗(D0,g0)···π∗(Dd,gd)(dy),

Note that if e < d, then dimπ(Z ′j) < dimZ ′j and π∗(µπ∗(D0,g0)···π∗(Dd,gd)) = 0 by
Proposition 3.5.5, so that one has (1).

Next we assume that e = d. For each i, we set Ji = {j ∈ {1, . . . , N} | π(Z ′j) = Zi}.
We set J0 = {1, . . . , N} \ (J1 ∪ · · · ∪ Jn). By the hypothesis of induction for (1),(
π∗(D0, g0)|Z′j · · · π

∗(Dd−1, gd−1)|Z′j
)
v

= 0 for all j ∈ J0, so that, by the hypothesis
of induction for (2) and Proposition 3.5.5, the above equation implies(

π∗(D0, g0) · · ·π∗(Dd, gd)
)
v

=

n∑
i=1

∑
j∈Ji

bj
(
π∗(D0, g0)|Z′j · · · π

∗(Dd−1, gd−1)|Z′j
)
v

+

∫
Y an

gd(π
an(y))µπ∗(D0,g0)···π∗(Dd,gd)(dy)

=

n∑
i=1

(
(D0, g0)|Zi · · · (Dd−1, gd−1)|Zi

)
v

∑
j∈Ji

bj deg(π|Z′j )

+ deg(π)

∫
Xan

gd(x)µ(D0,g0)···(Dd,gd)(dx).

Therefore, the assertion follows because
∑
j∈Ji bj deg(π|Z′j ) = deg(π)ai (cf. [49,

Lemma 1.12]).

3.6.5. Proposition. — Let f be a regular meromorphic function on X and
(D1, g1), . . . , (Dd, gd) be integrable metrized Cartier divisors on X such that
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(div(f), D1, . . . , Dd) ∈ IPX . If we set D1 · · ·Dd =
∑
x∈X(0)

axx as cycle, then(
d̂iv(f) · (D1, g1) · · · (Dd, gd)

)
v

=
∑

x∈X(0)

ax
(
− log |f |(xan)

)
, (3.15)

where X(0) is the set of all closed point of X and xan is the associated absolute value
at x. Note that in the case where dim(X) = 0, the above formula means that(

d̂iv(f)
)
v

= 0.

Proof. — Let X = a1X1 + · · ·+ anXn be the decomposition as cycles. Then

(
d̂iv(f) · (D1, g1) · · · (Dd, gd)

)
v

=

n∑
i=1

ai
(
d̂iv(f)|Xi · (D1, g1)|Xi · · · (Dd, gd)|Xi

)
v

and

D1 · · ·Dd =

n∑
i=1

ai
(
D1|Xi · · · Dd|Xi

)
,

so that we may assume that X is integral.
We prove the equality (3.15) by induction on d = dim(X). In the case where

dim(X) = 0, the assertion is obvious because f is a unit. We assume that dim(X) > 1.
Let Dd = a1Z1 + · · ·+ anZn be the decomposition as cycles. Let

∑
x∈X(0)

bixx be the
decomposition of D1|Zi · · · Dd−1|Zi = D1 · · ·Dd−1 · Zi as cycles. Then

n∑
i=1

ai
∑

x∈X(0)

bixx =
∑

x∈X(0)

axx,

so that ax =
∑n
i=1 aibix. On the other hand, by hypothesis of induction,(

d̂iv(f)|Zi · (D1, g1)|Zi · · · (Dd−1, gd−1)|Zi
)
v

=
∑

x∈X(0)

bix(− log |f |(xan)).

Therefore,∑
x∈X(0)

ax(− log |f |(xan))

=
∑

x∈X(0)

( n∑
i=1

aibix

)
(− log |f |(xan)) =

n∑
i=1

ai
∑
x∈X

bix(− log |f |(xan))

=

n∑
i=1

ai
(
d̂iv(f)|Zi · (D1, g1)|Zi · · · (Dd−1, gd−1)|Zi

)
v
.

Note that µ
(d̂iv(f)·(D1,g1)···(Dd,gd))

= 0, and hence the assertion follows by (3.14).
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3.6.6. Proposition. — Let (D0, g0), . . . , (Dd−1, gd−1), (0, g) be integrable metrized
Cartier divisors on X with (D0, . . . , Dd−1, 0) ∈ IPX . We assume that D0, . . . , Dd−1

are semiample and g0, . . . , gd−1 are plurisubharmonic. Then(
(D0, g0) · · · (Dd−1, gd−1) · (0, g)

)
v

=

∫
Xan

g(x)µ(D0,g0)···(Dd−1,gd−1)(dx).

In particular,

min{g(x) | x ∈ Xan}(D0 · · ·Dd−1)

6
(
(D0, g0) · · · (Dd−1, gd−1) · (0, g)

)
v

6 max{g(x) | x ∈ Xan}(D0 · · ·Dd−1).

Proof. — This is trivial by the definition.

3.6.7. Corollary. — Let (D0, g0), . . . , (Dd, gd) be integrable arithmetic Cartier divi-
sors on X with (D0, . . . , Dd) ∈ IPX . We assume that D0, . . . , Dd are semiample and
g0, . . . , gd are plurisubmarmonic. Let g′0, . . . , g′d be another plurisubharmonic Green
functions of D0, . . . , Dd, respectively. Then one has∣∣((D0, g

′
0) · · · (Dd, g

′
d)
)
v
−
(
(D0, g0) · · · (Dd, gd)

)
v

∣∣
6

d∑
i=0

max{|g′i − gi|(x) | x ∈ Xan}(D0 · · ·Di−1 ·Di+1 · · ·Dd).

Proof. — By using Proposition 3.6.3,(
(D0, g

′
0) · · · (Dd, g

′
d)
)
−
(
(D0, g0) · · · (Dd, gd)

)
=

d∑
i=0

((D0, g0) · · · (Di−1, gi−1) · (0, g′i − gi) · (Di+1, g
′
i+1) · · · (Dd, g

′
d)
)
,

so that the assertion follows from Proposition 3.6.6.

3.6.8. Proposition. — We assume that X = Pdk and L = OPd(1). Let {T0, . . . , Td}
be a basis of H0(Pdk,OPd(1)) over k. We view (T0 : · · · : Td) as a homogeneous
coordinate of Pdk. Let ‖.‖ be a norm of H0(Pdk,OPd(1)) given by

‖a0T0 + · · ·+ adTd‖ =


√
|a0|2 + · · ·+ |ad|2 if v is Archimedean,

max{|a0|, . . . , |ad|} if v is non-Archimedean.

Let ϕ be the orthogonal quotient metric of OPd(1) given by the surjective homomor-
phism H0(Pdk,OPd(1))⊗OPd → OPd(1) and the above norm ‖.‖. We set Hi = {Ti = 0}
and hi = − log |Ti|ϕ. Then

((H0, h0) · · · (Hd, hd))v =


d̂eg
(
ĉ1(OPdZ

(1), ϕ)d+1
)

if v is Archimedean,

0 if v is non-Archimedean,
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where d̂eg
(
ĉ1(OPdZ

(1), ϕ)d+1
)

is the self-intersection number of the arithmetic first

Chern class ĉ1(OPdZ
(1), ϕ) on the d-dimensional projective space PdZ over Z.

Proof. — If we set

am :=

∫
Pmk
− log |Tm|ϕ(x)µ(OPm (1),ϕFS)m(dx)

for a positive integer m, then

((H0, h0) · · · (Hd, hd))v =

d∑
m=1

am.

In the following, we set xi = Ti/T0.

• Archimedean case : The algorithms of the calculation are exactly same as
one on PdZ, so that we have the assertion.

• non-Archimedean case : If we set |f |∗ = maxi1,...,im{|ci1,...,im |} for

f =
∑

i1,...,im

ci1,...,imx
i1
1 · · ·ximm ∈ k[x1, . . . , xm],

then |.|∗ extends to an absolute value of k(x1, . . . , xm) (cf. Lemma 2.6.3). We set
U = {Tm 6= 0}. Note that if ξ ∈ Uan, then

|Tm|ϕ(ξ) =
|xm|ξ

max{1, |x1|ξ, . . . , |xm|ξ}
.

Let ov be the valuation ring of v. Note that ϕ coincides with the metric of the model
(Pdov ,OPdov

(1)) by [13, Proposition 2.3.12], so that µ(OPm (1),ϕ)m = δ|.|∗ . Thus

am = − log
|xm|∗

max{1, |x1|∗, . . . , |xm|∗}
= 0,

and hence the assertion follows.

3.7. Local intersection number over a general field

In this section, we consider the local intersection product and local height formula
in the non-necessarily algebraically closed case. We fix in this section a complete
valued field v = (k, |.|) such that |.| is not trivial. Let Ck be the completion of an
algebraic closure of k. Note that the absolute value |.| extends naturally to Ck and
the valued field (Ck, |.|) is both algebraically closed and complete. We denote by vac

the couple (Ck, |.|). We also fix a projective morphism π : X → Spec k and we denote
by XCk the fiber product X×Spec kSpecCk. Let d be the Krull dimension of X, which
is also equal to the Krull dimension of XCk .
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3.7.1. Definition. — Let (D0, g0), . . . , (Dd, gd) be a family of metrized Cartier di-
visor on X such that D0, . . . , Dd intersect properly and that g0, . . . , gd are integrable
Green functions. By Remark 1.3.5, the Cartier divisors D0,Ck , . . . , Dd,Ck intersect
properly. Moreover, by Remark 3.4.5, the Green functions g0,Ck , . . . , gd,Ck are inte-
grable. We then define the local intersection number of (D0, g0), . . . , (Dd, gd) as(

(D0, g0) · · · (Dd, gd)
)
v

:=
(
(D0,Ck , g0,Ck) · · · (Dd,Ck , gd,Ck)

)
vac

Several properties of the local intersection number follow directly from the results
of the previous section. We gather them below.

3.7.2. Remark. — Recall that Înt(X) denotes the group of integrable metrized
Cartier divisors on X. Let ÎPX be the subset of Înt(X)d+1 consisting of elements(

(D0, g0), . . . , (Dd, gd)
)

such that the Cartier divisors D0, . . . , Dd intersect properly.

(1) The set ÎPX forms a symmetric multi-linear subset of the group Înt(X)d+1.
Moreover, the function of local intersection number(

(D0, g0) · · · (Dd, gd)
)
7−→

(
(D0, g0) · · · (Dd, gd)

)
v

form a symmetric multi-linear map from ÎPX to R. These statements follow
from Proposition 3.6.3.

(2) Let π : Y → X be a surjective morphism of geometrically integral projective
schemes over k. We set e = dimX and d = dimY . Let (D0, g0), . . . , (Dd, gd)

be integrable metrized Cartier divisors on X such that (π∗(D0), . . . , π∗(Dd)) ∈
IPY . Then one has the following:

(i) If d > e, then (π∗(D0, g0) · · ·π∗(Dd, gd))v = 0.
(ii) If d = e and (D0, . . . , Dd) ∈ IPX , then

(π∗(D0, g0) · · ·π∗(Dd, gd))v = (deg π)((D0, g0) · · · (Dd, gd))v.

We refer to Proposition 3.6.4 for a proof.
(3) Let f be a regular meromorphic function on X and (D1, g1), . . . , (Dd, gd) be

integrable metrized Cartier divisors onX such that (div(f), D1, . . . , Dd) ∈ IPX .
Suppose that

D1 · · ·Dd =
∑

x∈X(0)

axx

as a cycle, then(
d̂iv(f) · (D1, g1) · · · (Dd, gd)

)
v

=
∑

x∈X(0)

ax[κ(x) : k]s
(
− log |f |(xan)

)
,

where [κ(x) : k]s denotes the separable degree of the residue field κ(x) over k.
We refer to Proposition 3.6.5 for more details.
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(4) Let
(
(D0, g0), . . . , (Dd, gd)

)
be an element of ÎPX . We assume thatD0, . . . , Dd−1

are semi-ample, g0, . . . , gd−1 are plurisubharmonic, and Dd = 0. Then one has

δ min
x∈Xan

gd(x) 6
(
(D0, g0) · · · (Dd, gd)

)
v
6 δ max

x∈Xan
gd(x),

where δ = (D0 · · ·Dd−1). See Proposition 3.6.6 for more details.
(5) Let

(
(D0, g0), . . . , (Dd, gd)

)
and

(
(D0, g

′
0), . . . , (Dd, g

′
d)
)
be two elements of ÎPX

having the same family of underlying Cartier divisors. One has∣∣∣((D0, g0) · · · (Dd, gd)
)
v
−
(
(D0, g

′
0) · · · (Dd, g

′
d)
)
v

∣∣∣
6

d∑
i=0

max
x∈Xan

|g′i − gi|(x)(D0 · · ·Di−1 ·Di+1 · · ·Dd).

See Corollary 3.6.7 for more details.

3.8. Local height

In this section, we fix a complete non-trivial valued field v = (k, |.|) and a projective
scheme X over Spec k. Let d be the dimension of X.

3.8.1. Definition. — Let Li = (Li, ϕi), i ∈ {0, . . . , d} be a family of metrized
invertible OX -modules, where each Li is an invertible OX -module, and ϕi is a contin-
uous and integrable metric on Li. For any i ∈ {0, . . . , d}, we let si be a regular mero-
morphic section of Li on X. Assume that the Cartier divisors div(s0), . . . ,div(sd)

intersect properly. We define the local height of X with respect to the family of
metrized invertible OX -modules (Li)

d
i=0 and the family of regular meromorphic sec-

tions (si)
d
i=0 as the local intersection number (see Definition 3.7.1)

hs0,...,sd
L0,...,Ld

(X) :=
(

d̂iv(s0) · · · d̂iv(sd)
)
v
.

3.8.2. Notation. — We often encounter the situation where each Li is the pull-
back by a projective morphism fi : X → Yi of a metrized invertible OYi-module Mi

and si is the pull-back of a regular meromorphic section ti. In such a situation, for
simplicity of notation, we often use the expressions ht0,...,td

M0,...,Md
(X) or ht0,...,td

L0,...,Ld
(X) to

denote hs0,...,sd
L0,...,Ld

(X).

3.8.3. Remark. — We keep the notation of Definition 3.8.1 in assuming that the
field k is algebraically closed. Let X1, . . . , Xn be irreducible components of X, consid-
ered as reduced closed subscheme of X. For any j ∈ {1, . . . , n}, let multXj (X) be the
multiplicity of the component Xj , which is by definition the length of the Artinian
local ring of OX at the generic point of Xj . Then, for any j ∈ {1, . . . , n}, the divisors
on Xj associated with the restricted sections (si|Xj )di=0 intersect properly on Xj .

Assume firstly that d = 0. In this case, each Xj consists of a closed point xj of
X, which is actually a rational point since k is supposed to be algebraically closed.
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Hence Xan
j only contains one point, which we denote by xan

j . Note that s0 does not
vanish at any of the closed points Xj . By definition, hs0

L0
(X) is equal to

−
n∑
j=1

multXj (X) ln |s0|ϕ0
(xan
j ). (3.16)

In the case where d > 1, the induction formula in Definition 3.6.1 for local inter-
section number leads to the following formula for the local height.

hs0,...,sd
L0,...,Ld

(X) =

n∑
i=1

aih
s0,...,sd−1

L0,...,Ld−1
(Zi)

−
∫
Xan

ln |sd|ϕd(x)µ(L0,ϕ0)···(Ld−1,ϕd−1)(dx),

(3.17)

where
∑n
i=1 aiZi is the cycle associated with div(Ld; sd).

3.8.4. Definition. — Let (E, ‖.‖) be a finite-dimensional normed vector space over
k, and r be the rank of E. We denote by ‖.‖det the norm on the one-dimensional
vector space det(E) := Λr(E) such that,

∀ η ∈ det(E), ‖η‖det := inf
(t1,...,tr)∈Er
η=t1∧···∧tr

‖t1‖ · · · ‖tr‖.

Note that, if the norm ‖.‖ is ultrametric or induced by an inner product, for any
complete valued extension k′ of k, one has (see Definition 3.3.3)

‖.‖k′,det = ‖.‖det,k′ , (3.18)

where we identify det(E) ⊗k k′ with det(E ⊗k k′). We refer the readers to [13,
Proposition 1.3.19] for a proof.

3.8.5. Proposition. — Let E be a finite-dimensional vector space over k, equipped
with a norm ‖.‖ which is either ultrametric or induced by an inner product, r =

dimk(E), and L = OE(1) be the universal invertible sheaf on P(E). We equip L with
the orthogonal quotient metric ϕ induced by ‖.‖ (see Definition 3.3.5). Let (sj)

r
j=0 be

a basis of E over k. If |.| is non-Archimedean, then

hs0,...,sr
L,...,L

(P(E)) = − ln ‖s0 ∧ · · · ∧ sr‖det;

if |.| is Archimedean, then

hs0,...,sr
L,...,L

(P(E)) = − ln ‖s0 ∧ · · · ∧ sr‖det + σr,

where

σr =
1

2

r∑
m=1

m∑
`=1

1

`

is the r-th Stoll number.
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Proof. — First, the metric ϕCk identifies with the orthogonal quotient metric induced
by ‖.‖Ck . Therefore, by (3.18) we may assume without loss of generality that k is
algebraically closed.

By Remark 3.5.8, one can find a sequence (‖.‖n)n∈N of orthonormally decomposable
norms such that

lim
n→+∞

d(‖.‖n, ‖.‖) = 0.

By (3.2), if we denote by ϕn the orthogonal quotient metric on L induced by ‖.‖n,
then one has

lim
n→+∞

d(ϕn, ϕ) = 0.

By Corollary 3.6.7, one has

lim
n→+∞

hs0,...,sr(L,ϕn),...,(L,ϕn)(P(E)) = hs0,...,sr
L,...,L

(P(E)).

Moreover, by [13, Proposition 1.1.64] one has

0 6 d(‖.‖n,det, ‖.‖det) 6 rd(‖.‖n, ‖.‖)

and hence
lim

n→+∞
d(‖.‖n,det, ‖.‖det) = 0.

Therefore, without loss of generality, we may assume that the norm ‖.‖ is orthonor-
mally decomposable.

We reason by induction on r. In the case where r = 0, the vector space E is
one-dimensional, and s0 is a non-zero element of E. One has

hs0
L

(P(E)) = − ln ‖s0‖.

We now assume that r > 1. Let G be the quotient vector space of E by ksr. Note
that the quotient norm ‖.‖quot on G is orthonormally decomposable (see Proposition
3.5.9). For j ∈ {0, . . . , r − 1}, let sj be the class of sj in G. We can also view sj as
the restriction of sj to the closed subscheme P(G) of P(E). We apply the induction
hypothesis to (G, ‖.‖quot) and obtain (see Notation 3.8.2)

h
s0,...,sr−1

L,...,L
(P(G)) = − ln ‖s0 ∧ · · · ∧ sr−1‖quot,det

when |.| is non-Archimedean and

h
s0,...,sr−1

L,...,L
(P(G)) = − ln ‖s0 ∧ · · · ∧ sr−1‖quot,det + σr−1

We now compute the integral

−
∫
P(E)an

ln |sr|ϕ dµLr .

We first consider the case where |.| is non-Archimedean. By Proposition 3.5.11 one
has ∫

P(E)an

ln |sr|ϕ dµLr = − ln |sr|ϕ(ξ) = − ln ‖sr‖,
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where ξ denotes the Gauss point of P(E)an. Therefore, by [13, Proposition 1.2.51] we
obtain

hs0,...,sr
L,...,L

(P(E)) = − ln ‖s0 ∧ · · · ∧ sr−1‖quot,det − ln ‖sr‖ = − ln ‖s0 ∧ · · · ∧ sr‖det.

In the case where |.| is Archimedean, by [5, §1.4.3] Remark (iii), one has

−
∫
P(E)an

ln |sr|ϕr dµLr = − ln ‖s‖+
1

2

r∑
`=1

1

`
.

Therefore

hs0,...,sr
L,...,L

(P(E)) = − ln ‖s0 ∧ · · · ∧ sr−1‖quot,det − ln ‖sr‖+
1

2

r∑
m=1

m∑
`=1

1

`

= − ln ‖s0 ∧ · · · ∧ sr‖det +
1

2

r∑
m=1

m∑
`=1

1

`
.

In the remaining of the section, we consider a family

(Ei, ‖.‖i), i ∈ {0, . . . , d}

of finite-dimensional vector spaces over k equipped with norms which are either ul-
trametric or induced by inner products. For each i ∈ {0, . . . , d}, we let (E∨i , ‖.‖i,∗) be
the dual normed vector space of (Ei, ‖.‖i), ri := dimk(Ei)− 1, (si,j)

ri
j=0 be a basis of

Ei over k, and (αi,j)
ri
j=0 be the dual basis of (si,j)

ri
j=0, namely

αi,j(si,j) = 1 and αi,j(si,`) = 0 if j 6= `.

Let P̌ be the product projective space

P(E∨0 )×k · · · ×k P(E∨d ).

For any i ∈ {0, . . . , d}, let πi : P̌ → P(E∨i ) be the morphism of projection to the ith

coordinate, and Li = π∗i (OE∨i (1)). We equip Li with the orthogonal quotient metric
induced by ‖.‖i,∗, which we denote by ϕi. Let (δ0, . . . , δd) be an element of Nd+1,

L = π∗0(OE∨0 (δ0))⊗ · · · ⊗ π∗d(OE∨d (δd)) = L⊗δ00 ⊗ · · · ⊗ L⊗δdd .

We equip L with the metric

ϕ := ϕ⊗δ00 ⊗ · · · ⊗ ϕ⊗δdd .

Let R be a non-zero element of

Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ),

which is considered as a global section of L, and also as a multi-homogenous polyno-
mial of multi-degree (δ0, . . . , δd) on E0 × · · · × Ed. For any i ∈ {0, . . . , d}, let

Li = (Li, . . . , Li︸ ︷︷ ︸
ri copies

), αi := (αi,j)
ri
j=1.
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The purpose of this section is to compute the local height hR,α0,...,αd
L,L0,...,Ld

(P̌).

3.8.6. Proposition. — Assume that the sections R and

αi,j , i ∈ {0, . . . , d}, j ∈ {1, . . . , ri}

intersect property on P̌. If the absolute value |.| is non-Archimedean, then

hR,α0,...,αd
L,L0,...,Ld

(P̌) = − ln |R(s0,0, . . . , sd,0)| −
d∑
i=0

δi ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det;

if the absolute value |.| is Archimedean, then

hR,α0,...,αd
L,L0,...,Ld

(P̌) = − ln |R(s0,0, . . . , sd,0)| −
d∑
i=0

δi
(

ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det − σri
)
.

Proof. — By the same argument as in the beginning of the proof of Proposition 3.8.5,
we may assume without loss of generality that k is algebraically closed and that all
norms ‖.‖i are orthonormally decomposable.

We reason by induction on r0 + · · ·+ rd. Consider first the case where r0 = · · · =
rd = 0. One has

hR
L

(P̌) = − ln |R(s0,0, . . . , sd,0)|.

In the following, we assume that r0 + · · ·+ rd > 0. Let i be an element of {0, . . . , d}
such that ri > 0. We consider the quotient vector space G∨i = E∨i /kαi,ri . For
j ∈ {0, . . . , ri − 1}, let αi,j be the class of αi,j in Gi. Let αi := (αi,j)

ri−1
j=1 and

P̌′ = P(E0)×k · · · × P(Ei−1)×k P(Gi)×k P(Ei+1)×k · · · ×k P(Ed).

By the same argument as in Proposition 3.5.11, we obtain that, in the case where the
absolute value |.| is non-Archimedean, one has

µ
LL

r0
0 ···L

ri−1
i−1 L

ri−1

i L
ri+1
i+1 ···L

rd
d

= δi Diracξ,

where Diracξ denotes the Dirac measure at the Gauss point ξ of P̌an. Hence, by
(3.17), one has

hR,α0,...,αd
L,L0,...,Ld

(P̌) = h
R,α0,...,αi−1,αi,αi+1,...,αd

L,L0,...,Li−1,L
′
i,Li+1,...,Ld

(P̌′)− δi ln |αi,ri |ϕi(ξ)

= h
R,α0,...,αi−1,αi,αi+1,...,αd

L,L0,...,Li−1,L
′
i,Li+1,...,Ld

(P̌′)− δi ln ‖αi,ri‖i,∗,

where

L
′
i := (Li, . . . , Li︸ ︷︷ ︸

ri−1 copies

).
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By the induction hypothesis, we obtain

hR,α0,...,αd
L,L0,...,Ld

(P̌) = − ln |R(s0,0, . . . , sd,0)| −
∑

j∈{0,...,d}\{i}

δj ln ‖αj,0 ∧ · · · ∧ αj,rj‖j,∗,det

− δi ln ‖αi,0 ∧ · · · ∧ αi,ri−1‖i,∗,quot,det − δi ln ‖αi,ri‖i,∗

= − ln |R(s0,0, . . . , sd,0)| −
d∑
j=0

δj ln ‖αj,0 ∧ · · · ∧ αj,rj‖j,∗,det,

where the last equality comes from [13, Proposition 1.2.51].
In the case where |.| is Archimedean, by [5, §1.4.3] Remark (iii) one has

hR,α0,...,αd
L,L0,...,Ld

(P̌) = h
R,α0,...,αi−1,αi,αi+1,...,αd

L,L0,...,Li−1,L
′
i,Li+1,...,Ld

(P̌′)− δi
(

ln ‖αi,ri‖i,∗ −
1

2

ri∑
`=1

1

`

)
.

Thus the induction hypothesis leads to

hR,α0,...,αd
L,L0,...,Ld

(P̌) = − ln |R(s0,0, . . . , sd,0)| −
∑

j∈{0,...,d}
j 6=i

δj
(

ln ‖αj,0 ∧ · · · ∧ αj,rj‖j,∗,det − σrj
)

− δi
(

ln ‖αi,0 ∧ · · · ∧ αi,ri−1‖i,∗,quot,det − σri−1

)
− δi

(
ln ‖αi,ri‖i,∗ −

1

2

ri∑
`=1

1

`

)
= − ln |R(s0,0, . . . , sd,0)| −

d∑
j=0

δj
(

ln ‖αj,0 ∧ · · · ∧ αj,rj‖ − σrj
)
,

as required.

3.9. Local height of the resultant

The purpose of this subsection is to relate local heights of a projective variety and
its resultant. As in the previous section, v = (k, |.|) denotes a complete valued field
such that |.| is not trivial. We fix a projective k-scheme X and we let d be the Krull
dimension of X. Let (Ei)

d
i=0 be a family of finite-dimensional vector spaces over k.

For each i ∈ {0, . . . , d}, we denote by ri := dimk(Ei) − 1 and let ‖.‖i be a norm on
Ei, which is supposed to be either ultrametric or induced by an inner product. Let
fi : X → P(Ei) be a closed immersion. We pick elements s0, . . . , sd of E0, . . . , Ed
respectively, such that

div(s0|X), . . . ,div(sd|X)

intersect properly on X. For simplicity of notation, we denote by

s := (s0, . . . , sd).

Let P̌ := P(E∨0 )×k · · · ×k P(E∨d ), and let

p : X ×k P̌ −→ X and q : X ×k P̌ −→ P̌
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be morphisme of projections. For any i ∈ {0, . . . , d}, let πi : P̌ → P(E∨i ) be the
projection to the i-th coordinate and let qi = πi ◦ q.

For i ∈ {0, . . . , d}, let Li be Li = π∗i (OE∨i (1)) equipped with the pull-back of the
orthogonal quotient metric on OE∨i (1) associated with ‖.‖i,∗, and let

Li := (Li, . . . , Li︸ ︷︷ ︸
ri copies

)

and
(αi,0,αi = (αi,1, . . . , αi,ri))

be a basis of E∨i such that

αi,0(si) = 1 and αi,j(si) = 0 for j ∈ {1, . . . , ri}.

For simplicity, we denote by R the resultant

RX,s0,...,sdf0,...,fd

as in Definition 1.6.9, considered as a global section of

L = π∗0(L0)⊗δ0 ⊗ · · · ⊗ π∗d(Ld)
⊗δd ,

where
δi := deg

(
c1(L0) · · · c1(Li−1)c1(Li+1) · · · c1(Ld) ∩ [X]

)
.

Note that one has R(s0, . . . , sd) = 1. Moreover, the Cartier divisors

div(R),div(π∗0(α0,1)), . . . ,div(π∗0(α0,r0)), . . . ,div(π∗d(αd,1)), . . . ,div(π∗d(αd,rd))

intersect properly.

3.9.1. Lemma. — Assume that the field k is algebraically closed and X is integral.
One has

h
π∗0 (α0),...,π∗d(αd)

L0,...,Ld

(
div(R)

)
= h

q∗0 (α0),...,q∗d(αd)

q∗(L0),...,q∗(Ld)
(IX).

Proof. — The projection q : IX → div(R) is a birational morphism (see the proof of
[24, Proposition 3.1]). Hence the equality follows from the induction formula (3.17)
and [50, Proposition 2.4.11 (4)].

3.9.2. Definition. — Assume that the absolute value |.| is non-Archimedean. We
equip each symmetric power Sδi(E∨i ) with the ε-symmetric power norm of ‖.‖i,∗,
namely the quotient norm of the ε-tensor power of ‖.‖i,∗ (see Remark 3.3.4 for the
definition of the dual norm ‖.‖i,∗). Recall that the ε-tensor power of the norm ‖.‖i,∗
is the norm ‖.‖i,∗,ε on (E∨i )⊗kδi defined as (see [13, Definition 1.1.52])

‖T‖i,∗,ε = sup
(t1,...,tδi )∈E

δi
i

∀ j∈{1,...,δi}, tj 6=0

|T (t1, . . . , tδi)|
‖t1‖i · · · ‖tδi‖i

.

We then equip the vector space Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ) with the ε-tensor product
of the ε-symmetric power norms, which we denote simply by ‖.‖.
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3.9.3. Remark. — Note that, by [13, Definition 1.1.58], the norm ‖.‖ also identifies
with the quotient norm by the canonical quotient map

(E∨0 )⊗kδ0 ⊗k · · · ⊗k (E∨d )⊗kδd −→ Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d )

of the ε-tensor product of δi copies of ‖.‖i,∗, i ∈ {0, . . . , d}. By Propositions 1.3.20
and 1.3.21 of [13], we obtain that, for any complete valued extension k′ of k, the norm
‖.‖k′ on(

Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d )
)
⊗k k′ ∼= Sδ0(E∨0,k′)⊗k′ · · · ⊗k′ Sδd(E∨d,k′)

identifies with the ε-tensor product of δi copies of ‖.‖i,k′,∗, i ∈ {0, . . . , d}.

3.9.4. Lemma. — In the case where |.| is non-Archimedean and k is algebraically
closed, one has

h
π∗0 (α0),...,π∗d(αd)

L0,...,Ld
(div(R)) = h

R,π∗0 (α0),...,π∗d(αd)

L,L0,...,Ld
(P̌) + ln ‖R‖. (3.19)

Proof. — Let ξ be the Gauss point of P̌an. It suffices to observe that

|R|ϕ(ξ) = ‖R‖,

where ϕ is tensor product of orthogonal quotient metrics. In fact, if we consider the
Veronese-Segre embedding

P̌ −→ P(Sδ0(E∨0 ))×k · · · ×k P(Sδd(E∨d )) −→ P(Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d )),

then the metric ϕ identifies with the quotient metric induced by ‖.‖ (see [13, Propo-
sition 1.1.58]). Moreover, one has

µLr00 ···L
rd
d

= Diracξ .

Therefore the equality (3.19) follows from the induction formula (3.17).

3.9.5. Lemma. — In the case where |.| is Archimedean and k = C, one has

h
π∗0 (α0),...,π∗d(αd)

L0,...,Ld
(div(R)) = h

R,π∗0 (α0),...,π∗d(αd)

L,L0,...,Ld
(P̌)

+

∫
S0×···×Sd

ln |R(z0, . . . , zd)| ηS0(dz0)⊗ · · · ⊗ ηSd(dzd),

where Si is the unit sphere of (Ei,C, ‖.‖i,C), and µSi is the U(Ei,C, ‖.‖i,C)-invariant
Borel probability measure on Si.

Proof. — This is a direct consequence of the induction formula (3.17) and Remark
3.5.12.

3.9.6. Lemma. — Assume that the field k is algebraically closed and X is integral.
For any i ∈ {0, . . . , d}, we equip OEi(1) with the orthogonal quotient metric induced by
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‖.‖i, and denote by M ′i the restriction of OEi(1) to X and equip it with the restricted
metric. If |.| is non-Archimedean, then one has

hs0,...,sd
M ′0,...,M

′
d

(X) = h
q∗0 (α0),...,q∗d(αd)

q∗(L0),...,q∗(Ld)
(IX) +

d∑
i=0

δi ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det;

if |.| is Archimedean, then one has

hs0,...,sd
M ′0,...,M

′
d

(X) = h
q∗0 (α0),...,q∗d(αd)

q∗(L0),...,q∗(Ld)
(IX) +

d∑
i=0

δi
(

ln ‖αi,0∧ · · ·∧αi,ri‖i,∗,det−σri−1

)
,

where

σri−1 =
1

2

ri−1∑
m=1

m∑
`=1

1

`
.

Proof. — For i ∈ {0, . . . , d}, let ti be the global section of OEi(1) � OE∨i (1) on
P(Ei)×k P(E∨i ) defining the incidence subscheme. Then ti corresponds to the restric-
tion of the trace element of Ei ⊗k E∨i via the Segre embedding

P(Ei)×k P(E∨i ) −→ P(Ei ⊗k E∨i ).

Let t = (t0, . . . , td). For any i ∈ {0, . . . , d}, let

(si, si,1, . . . , si,ri)

be the dual basis of (αi,j)
ri
j=0. By definition one has

ti = si ⊗ αi,0 + si,1 ⊗ αi,1 + · · ·+ si,ri ⊗ αi,ri .

For i ∈ {0, . . . , d}, let Li := q∗i (OE∨i (1)), Mi = p∗(OEi(1)|X) and Ni = Li ⊗Mi. We
use two methods to compute the following local height of X × P̌ (see Notation 3.8.2)

ht,α0,...,αd
N ,L0,...,Ld

(X ×k P̌),

where N = (N0, . . . , Nd). We will show by induction that

ht,α0,...,αd
N ,L0,...,Ld

(X ×k P̌) = hs0,...,sd
M ′0,...,M

′
d

(X)−
d∑
i=0

δi ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det (3.20)

if |.| is non-Archimedean, and

ht,α0,...,αd
N ,L0,...,Ld

(X×k P̌) = hs0,...,sd
M ′0,...,M

′
d

(X)−
d∑
i=0

δi
(

ln ‖αi,0∧· · ·∧αi,ri‖i,∗,det−σri
)
(3.21)

if |.| is Archimedean. Let i ∈ {0, . . . , d} be such that ri > 0. Let G∨i = E∨i /kαi,ri ,
αi = (αi,j)

ri−1
j=1 , and

P̌′ = P(E0)×k · · · × P(Ei−1)×k P(Gi)×k P(Ei+1)×k · · · ×k P(Ed).

Then, with the notation
L
′
i := (Li, . . . , Li︸ ︷︷ ︸

ri−1 copies

),
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by (3.17) one can write ht,α0,...,αd
N ,L0,...,Ld

(X ×k P̌) as

h
t,α0,...,αi−1,αi,αi+1,...,αd

N ,L0,...,Li−1,L
′
i,Li+1,...,Ld

(X×P̌)−
∫

(X×P̌)an

ln |αi,ri |dµN0···NdL
r0
0 ···L

ri−1
i−1 L

ri−1

i L
ri+1
i+1 ···L

rd
d

,

which is equal to

h
t,α0,...,αi−1,αi,αi+1,...,αd

N ,L0,...,Li−1,L
′
i,Li+1,...,Ld

(X × P̌)−
∫

(X×P̌)an

ln |αi,ri |dµM0···Mi−1Mi+1···MdL
r0
0 ···L

rd
d
.

If |.| is non-Archimedean, it identifies with

h
t,α0,...,αi−1,αi,αi+1,...,αd

N ,L0,...,Li−1,L
′
i,Li+1,...,Ld

(X × P̌)− δi ln ‖αi,ri‖i,∗.

In the case where |.| is Archimedean, it equals

h
t,α0,...,αi−1,αi,αi+1,...,αd

N,L0,...,Li−1,L
′
i,Li+1,...,Ld

(X × P̌)− δi
(

ln ‖αi,ri‖i,∗ −
1

2

ri∑
`=1

1

`

)
.

Hence by induction we obtain (3.20) and (3.21) according to the nature of |.|.
Now let t′ = (t0, . . . , td−1) and N

′
= (N0, . . . , Nd−1), still by (3.17) one can write

ht,α0,...,αd
N ,L0,...,Ld

(X ×k P̌) as

ht
′,α0,...,αd
N
′
,L0,...,Ld

(div(td))−
∫

(X×kP̌)an

ln |td|dµN0···Nd−1L
r0
0 ···L

rd
d

= ht
′,α0,...,αd
N ′,L0,...,Ld

(div(td))−
∫

(X×kP̌)an

ln |td|dµM0···Md−1L
r0
0 ···L

rd
d

Note that for any element z ∈ (X ×k P̌)an represented by

(β, x0, . . . , xd) ∈ E∨d,κ̂(z) × E0,κ̂(z) · · · × Ed,κ̂(z)

one has

ln |td|(z) = ln
|β(xd)|z

‖β‖d,κ̂(z) · ‖xd‖d,κ̂(z)
. (3.22)

In the case where |.| is non-Archimedean, this leads to∫
(X×kP̌)an

ln |td|dµM0···Md−1L
r0
0 ···L

rd
d

= 0

by using (3.12) and ∫
P(E∨

d,κ̂(z)
)an

ln |β|dµOEd (d)
rd = ln ‖β‖d,∗,κ̂(x).

In the case where |.| is Archimedean, by [5, §1.4.3] Remark (iii), (3.22) leads to

−
∫

(X×kP̌)an

ln |td|dµM0···Md−1L
r0
0 ···L

rd
d

=
δd
2

ri∑
`=1

1

`
.

Then by induction we obtain

ht,α0,...,αd
N ,L0,...,Ld

(X ×k P̌) = hα0,...,αd
L0,...,Ld

(IX) (3.23)
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when |.| is non-Archimedean and

ht,α0,...,αd
N ,L0,...,Ld

(X ×k P̌) = hα0,...,αd
L0,...,Ld

(IX) +
1

2
δi

d∑
i=0

ri∑
`=1

1

`
(3.24)

when |.| is Archimedean. Combining (3.23) with (3.20), and (3.24) with (3.21), we
obtain the result.

3.9.7. Theorem. — For any i ∈ {0, . . . , d}, we equip OEi(1) with the orthogonal
quotient metric induced by ‖.‖i, and denote by M ′i the restriction of OEi(1) to X and
equip it with the restricted metric. In the case where |.| is non-Archimedean, one has

hs0,...,sd
M ′0,...,M

′
d

(X) = ln ‖R‖,

where the norm ‖.‖ was introduced in Definition 3.9.2. In the case where |.| is
Archimedean, one has

hs0,...,sd
M ′0,...,M

′
d

(X) =

∫
S0×···×Sd

ln |R(z0, . . . , zd)| ηS0
(dz0)⊗· · ·⊗ηSd(dzd)+

1

2

d∑
i=0

δi

ri∑
`=1

1

`
,

where Si is the unit sphere of (Ei,C, ‖.‖i,C), and ηSi is the U(Ei,C, ‖.‖i,C)-invariant
Borel probability measure on Si,σ.

Proof. — By Remark 1.6.10,

R⊗ 1 ∈ (Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ))⊗k Ck
is the resultant of XCk with respect to f0,Ck , . . . , fd,Ck , which takes value 1 at
(s0, . . . , sd). Therefore, by extension of scalars, we may assume without loss of
generality that k is algebraically closed and X is integral.

We treat first the non-Archimedean case. By Lemma 3.9.6, one has

hs0,...,sd
M ′0,...,M

′
d

(X) = h
q∗0 (α0),...,q∗d(αd)

q∗(L0),...,q∗(Ld)
(IX) +

d∑
i=0

δi ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det.

By Lemma 3.9.1, this is also equal to

h
π∗0 (α0),...,π∗d(αd)

L0,...,Ld
(div(R)) +

d∑
i=0

δi ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det.

By Lemma 3.9.4, it is equal to

h
R,π∗0 (α0),...,π∗d(αd)

L,L0,...,Ld
(P̌) + ln ‖R‖+

d∑
i=0

δi ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det.

By Proposition 3.8.6 and the relation (see Definition 1.6.9)

R(s0, . . . , sd) = 1,

we obtain
hs0,...,sd
M ′0,...,M

′
d

(X) = ln ‖R‖.



3.9. LOCAL HEIGHT OF THE RESULTANT 109

The case where |.| is Archimedean is quite similar. We have

hs0,...,sd
M ′0,...,M

′
d

(X) = h
q∗0 (α0),...,q∗d(αd)

q∗(L0),...,q∗(Ld)
(IX) +

d∑
i=0

δi
(

ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det − σri−1

)
= h

π∗0 (α0),...,π∗d(αd)

L0,...,Ld
(div(R)) +

d∑
i=0

δi
(

ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det − σri−1

)
= h

R,π∗0 (α0),...,π∗d(αd)

L,L0,...,Ld
(P̌)

+

∫
S0×···×Sd

ln |R(z0, . . . , zd)| ηS0(dz0)⊗ · · · ⊗ ηSd(dzd)

+

d∑
i=0

δi
(

ln ‖αi,0 ∧ · · · ∧ αi,ri‖i,∗,det − σri
)

+
1

2

d∑
i=0

δi

ri∑
`=1

1

`

=

∫
S0×···×Sd

ln |R(z0, . . . , zd)| ηS0(dz0)⊗ · · · ⊗ ηSd(dzd) +
1

2

d∑
i=0

δi

ri∑
`=1

1

`
,

where the first equality comes from Lemma 3.9.6, the second one from Lemma 3.9.1,
the third one from Lemma 3.9.5, and the last one from Proposition 3.8.6.

3.9.8. Remark. — Note that the result of Theorem 3.9.7 does not depend on the
choice of the vectors α0, . . . ,αd. If we are only interested in the equalities in the theo-
rem, we could choose α0, . . . ,αd carefully to make the computation simpler. However,
the formulae in the lemmas proving the theorem are of their own interest, especially in
the computations of height of homogeneous hypersurfaces in multi-projective spaces,
and hence are worth to be detailed.

3.9.9. Proposition. — Assume that the absolute value |.| is non-Archimedean. Let
K be an extension of k, on which the absolute value extends. We assume that K is
complete with respect to the extended absolute value. Let X be a projective scheme over
Spec k, d be the dimensional of X, and Di = (Di, gi) be a family of integrable metrised
Cartier divisors, where i ∈ {0, . . . , d}, such that D0, . . . , Dd intersect properly. For
each i ∈ {0, . . . , d}, let Di,K := (Di,k, gi,k). Then the following equality holds:

(D0 · · ·Dd)(k,|.|) = (D0,K · · ·Dd,K)(K,|.|). (3.25)

Proof. — Step 1: In this step, we assume that D0, . . . , Dd are very ample, and, for
each i ∈ {0, . . . , d}, there exist a positive integer mi and an ultrametric norm ‖.‖i on
Ei = H0(X,OX(miDi)), such that ϕgi identifies with the quotient metric induced by
‖.‖i.

For each i ∈ {0, . . . , d}, let fi : X → P(Ei) be the canonical closed embedding.
Note that OX(miDi) ∼= f∗i (OEi(1)). In order to simplify the notation, we let Li be
the line bundle OX(miDi) and si be the canonical regular meromorphic section of
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Li. Let R be the resultant
RX,s0,...,sdf0,...,fd

,

which is considered as an element of

Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ),

and
δi = (D0 · · ·Di−1Di+1 · · ·Dd).

Then, by Theorem 3.9.7, the equality

(D0 · · ·Dd)(k,|.|) = ln ‖R‖

holds, where ‖.‖ denotes the ε-tensor product of ε-tensor powers of ‖.‖i,∗. Similarly,
by Remarks 1.6.10 and 3.9.3, one has

(D0,K , . . . , Dd,K)(K,|.|) = ln ‖R⊗ 1‖K .

By [13, Proposition 1.3.1 (1)], one has ‖R ⊗ 1‖K = ‖R‖. Hence the equality (3.25)
follows.

Step 2: In this step, we still assume that D0, . . . , Dd are very ample. However,
the Green functions g0, . . . , gd are only supposed to be plurisubharmonic.

For any i ∈ {0, . . . , d} and any positive integer m, let g(m)
i be the Green func-

tion associated with the quotient metric ϕ(m)
gi as in Definition 3.3.8, and let D

(m)

i =

(Di, g
(m)
i ). By Proposition 3.3.12, we obtain that, for any i ∈ {0, . . . , d},

lim
m→+∞

sup
x∈Xan

|g(m)
i − gi|(x) = 0, (3.26)

Therefore, by Corollary 3.6.7 (see also §3.7), we obtain

lim
m→+∞

(D
(m)

0 · · ·D(m)

d )(k,|.|) = (D0 · · ·Dd)(k,|.|). (3.27)

Moreover, (3.26) leads to

lim
m→+∞

sup
x∈Xan

K

|g(m)
i,K − gi,K |(x) = 0.

Hence, similarly to (3.27), we have

lim
m→+∞

(D
(m)

0,K · · ·D
(m)

d,K)(K,|.|) = (D0,K · · ·Dd,K)(K,|.|)

Note that, by [13, Proposition 1.3.16], g(m)
i,K is also the Green function associated with

a quotient metric. Therefore, by the result in Step 1, we obtain that

(D
(m)

0 · · ·D(m)

d )(k,|.|) = (D
(m)

0,K · · ·D
(m)

d,K)(K,|.|)
for any m, so that, by passing to limit when m→ +∞, we obtain (3.25).

Step 3: We now treat the general case. For each i ∈ {−1, 0, . . . , d}, we consider
the following condition (Cr):

For any i ∈ {0, . . . , d} such that 1 6 i 6 r, the Cartier divisor Di is very
ample and the Green function gi is plurisubharmonic.
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We will show by inverted induction on r that, under the condition (Cr), the equality
(3.25) holds. Note that the initial case where r = d is proved in Step 2. We suppose
that the equality (3.25) is true under the condition (Cr) and will prove it under the
condition (Cr−1). Since Dr is integrable, there exists very ample Cartier divisors A′r
and A′′r , and plurisubharmonic Green functions h′r and h′′r of A′r and A′′r , respectively,
such that

(Dr, gr) = (A′r, h
′
r)− (A′′r , h

′′
r ).

By Claim 1.3.8 (see also Remark 1.3.9), there exists a very ample Cartier divisor Br
such that

(D0, . . . , Dr−1, Br +A′r, Dr+1, . . . , Dd) ∈ IP(d)
X .

Since IP(d)
X is a multilinear subset of Div(X)n+1, we obtain that

(D0, . . . , Dr−1, Br +A′′r , Dr+1, . . . , Dd) ∈ IP(d)
X .

We pick arbitrarily a plurisubharmonic Green function lr on Br. Let

D
′
r = (Br +A′r, lr + h′r), D

′′
r = (Br +A′′r , lr + h′′r )

Then the induction hypothesis shows that

(D0 · · ·Dr−1D
′
rDr+1 · · ·Dd)(k,|.|) = (D0,K · · ·Dr−1,KD

′
r,KDr+1,K · · ·Dd,K)(K,|.|),

(D0 · · ·Dr−1D
′′
rDr+1 · · ·Dd)(k,|.|) = (D0,K · · ·Dr−1,KD

′′
r,KDr+1,K · · ·Dd,K)(K,|.|).

Taking the difference, we obtain (3.25)

3.9.10. Remark. — If K is a subfield of Ck, the assertion of Proposition 3.9.9
is obvious by its definition (cf. Definition 3.7.1). In particular, the statement of
Proposition 3.9.9 is also true when |.| is Archimedean. Proposition 3.9.9 guarantees
the invariance of intersection number under any field extension.

3.10. Trivial valuation case

In this section, we fix a field k and equip it with the trivial absolute value |.|,
namely |a| = 1 for any a ∈ k×. Let K = k(T ) be the field of rational functions over
k, and u be a positive constant such that u 6= 1. By Lemma 2.6.3, there exists a
non-Archimedean absolute value |.|u on K which extends the above absolute value |.|
on k, such that,

∀ f = a0 + a1T + · · ·+ anT
n ∈ k[T ], |f |u = max

i∈{0,...,n}
|ai|ui.

Note that |.|u is not trivial.

3.10.1. Definition. — Let X be a projective scheme of dimension d over Spec k. If
Di = (Di, gi), i ∈ {0, . . . , d}, is a family of integrable metrized Cartier divisors, such
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that D0, . . . , Dd intersect properly. We denote by (D0 · · ·Dd)(k,|.|) the intersection
number

((D0,K , g0,K) · · · (Dd,K , gd,K))(K,|.|u)

3.10.2. Notation and assumptions. — Let ((Ei, ‖.‖i))di=0 be a family of finite-
dimensional ultrametrically normed vector space over k. For any i ∈ {0, . . . , d}, let
ri = dimk(Ei) − 1, fi : X → P(Ei) be a closed immersion, and si be an element of
Ei, viewed as a global section of OEi(1). We assume that the restriction of si to X
defines a regular meromorphic section of Li := OEi(1)|X and that the Cartier divisors

Di = div(si|X), i ∈ {0, . . . , d}

intersect properly. We equip each Di with the Green function associated with the
quotient metric induced by ‖.‖i. Let R be the resultant

R = RX,s0,...,sdf0,...,fd
∈ Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ),

where
δi = (D0 · · ·Di−1 ·Di+1 · · ·Dd).

3.10.3. Proposition. — Under Notation and assumptions 3.10.2, the following
equality holds

(D0 · · ·Dd)(k,|.|) = ln ‖R‖, (3.28)
where ‖.‖ denotes the ε-tensor product of ε-symmetric power norms of ‖.‖i,∗.

Proof. — Under the isomorphism of K-vector spaces

(Sδ0(E∨0 )⊗k · · · ⊗k Sδd(E∨d ))⊗k K ∼= Sδ0(E∨0,K)⊗K · · · ⊗K Sδd(E∨d,K),

the element R⊗ 1 coincides with the resultant (see Remark 1.6.10)

RXK ,s0⊗1,...,sd⊗1
f0,K ,...,fd,K

.

By Theorem 3.9.7 and Remark 3.9.3, one has

(D0 · · ·Dd)(k,|.|) = ln ‖R⊗ 1‖K .

By [13, Proposition 1.3.1 (1)], one has ‖R⊗1‖K = ‖R‖. Hence we obtain the equality
(3.28).

3.10.4. Corollary. — Let X be a projective scheme of dimension d over Spec k. If
Di = (Di, gi), i ∈ {0, . . . , d}, is a family of integrable metrized Cartier divisors, such
that D0, . . . , Dd intersect properly. Then the intersection number (D0 · · ·Dd)(k,|.|)
does not depend on the choice of u.

Proof. — By the multi-linearity of the intersection number, it suffices to treat the
case where all Cartier divisors Di are very ample and all gi are plurisubharmonic.
Moreover, by Proposition 3.3.12 and Corollary 3.6.7 we can further reduce the problem
to the case of Notation and assumptions 3.10.2. In that case the assertion follows from
(3.28).
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3.10.5. Remark. — By using Remark 3.7.2, one has the following properties.
(1) The set ÎPX forms a symmetric multi-linear subset of the group Înt(X)d+1.

Moreover, the function of local intersection number(
(D0, g0) · · · (Dd, gd)

)
7−→

(
(D0, g0) · · · (Dd, gd)

)
v

form a symmetric multi-linear map from ÎPX to R.
(2) Let π : Y → X be a surjective morphism of geometrically integral projective

schemes over k. We set e = dimX and d = dimY . Let (D0, g0), . . . , (Dd, gd)

be integrable metrized Cartier divisors on X such that (π∗(D0), . . . , π∗(Dd)) ∈
IPY . Then one has the following:

(i) If d > e, then (π∗(D0, g0) · · ·π∗(Dd, gd))v = 0.
(ii) If d = e and (D0, . . . , Dd) ∈ IPX , then

(π∗(D0, g0) · · ·π∗(Dd, gd))v = (deg π)((D0, g0) · · · (Dd, gd))v.

(3) Let f be a regular meromorphic function on X and (D1, g1), . . . , (Dd, gd) be
integrable metrized Cartier divisors onX such that (div(f), D1, . . . , Dd) ∈ IPX .
Then (

d̂iv(f) · (D1, g1) · · · (Dd, gd)
)
v

= 0.

Note that − log |f |(xan) = 0 for any x ∈ X(0) in Remark 3.7.2 because |.| is
trivial.

Let (L0, ϕ0), . . . , (Ld, ϕd) be a family of integrable metrized invertible OX -modules.
By the property (3), the local intersection number

(
(L0, ϕ0) · · · (Ld, ϕd)

)
v
is well-

defined.
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Let K be a field and S = (K, (Ω,A, ν), φ) be a adelic curve the underlying field of
which is K. For any ω ∈ Ω, we denote by Kω the completion of K with respect to |.|ω.
We assume that, either the σ-algebra A is discrete, or there exists a countable subfield
K0 of K which is dense in each Kω, ω ∈ Ω. Let X be a d-dimensional projective
scheme over K. For any ω ∈ Ω, let Xω be the fiber product X ×SpecK SpecKω. Note
that the morphism SpecKω → SpecK is flat. Hence the morphism of projection
Xω → X is also flat (see [33, IV1.(2.1.4)]).

4.1. Reminder on adelic vector bundles

Let E be a finite-dimensional vector space over K. We call norm family on E any
collection ξ = (‖.‖ω)ω∈Ω, where ‖.‖ω is a norm on Eω = E ⊗K Kω. Note that the
dual norms ξ∨ := (‖.‖ω,∗)ω∈Ω form a norm family on the dual vector space E∨. If
all norms ‖.‖ω are either ultrametric or induced by an inner product, we say that the
norm family ξ is Hermitian.

4.1.1. Example. — Let e = (ei)
r
i=1 be a basis of E over K. We denote by ξe the

norm family (‖.‖e,ω)ω∈Ω, where for any (λ1, . . . , λr) ∈ Kr
ω,

‖λ1e1 + · · ·+ λrer‖e,ω =

{
max{|λ1|ω, . . . , |λr|ω}, if |.|ω is non-Archimedean,

(|λ1|2ω, . . . , |λr|2ω)1/2, if |.|ω is Archimedean.

The norm family ξe is Hermitian. We call it the norm family associated with the
basis e.

4.1.2. Definition. — Let E be a finite-dimensional vector space over K and ξ =

(‖.‖ω)ω∈Ω be a norm family on E. If for any s ∈ E, the function

(ω ∈ Ω) 7−→ ‖s‖ω
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is A-measurable, we say that the norm family ξ is measurable (note that under the
assumption on S above, this condition also implies that, for any α ∈ E∨, the function
(ω ∈ Ω) 7→ ‖α‖ω,∗ is A-measurable, see [13] Proposition 4.1.24). We say that the
norm family ξ is strongly dominated if there existes an integrable function A on Ω

and a basis e of E over K such that

∀ω ∈ Ω, d(‖.‖ω, ‖.‖e,ω) 6 A(ω).

If ξ is strongly dominated and measurable, we say that (E, ξ) is a strongly adelic
vector bundle on S.

4.1.3. Definition. — Let X be a projective K-scheme and L be an invertible OX -
module. For any ω ∈ Ω, we denote by Lω the pull-back of L by the morphism of
projection Xω → X. We call metric family of L and family ϕ = (ϕω)ω∈Ω, where each
ϕω is a continuous metric on Lω (see Definition 3.3.1). Note that the dual metrics
(ϕ∨ω)ω∈Ω form a metric family on the dual invertible OX -module L∨, which we denote
by ϕ∨. If L1 and L2 are invertible OX -modules, and ϕ1 and ϕ2 are metric families
on L1 and L2, respectively, then the metrics (ϕ1,ω ⊗ ϕ2,ω)ω∈Ω form a metric family
of L1 ⊗ L2, which we denote by ϕ1 ⊗ ϕ2.

If ϕ and ϕ′ are two metric metrics of the same invertible OX -module L, we define
the local distance function between ϕ and ϕ′ as the function

(ω ∈ Ω) 7−→ dω(ϕ,ϕ′) := sup
x∈Xan

ω

∣∣∣∣ ln |.|ϕω (x)

|.|ϕ′ω (x)

∣∣∣∣
4.1.4. Remark. — In the case where X is the spectrum of a finite extension K ′ of
K, an invertible OX -module L can be considered as a one-dimensional vector space
over K ′, and a metric family on L identifies with a norm family of L if we consider
the adelic curve S ⊗K K ′.

4.1.5. Definition. — Let f : Y → X be a projective K-morphism of projective
K-schemes. Let L be an invertible OX -module, equipped with a metric family ϕ =

(ϕω)ω∈Ω. For any ω ∈ Ω, let fω : Yω → Xω be the Kω-morphism induce by f

by extension of scalars. Then, for any ω ∈ Ω, the metric ϕω induces by pull-back
a continuous metric f∗ω(ϕω) on f∗ω(Lω) such that, for any y ∈ Y an

ω and any ` ∈
Lω(fan(y)), one has

|f∗ω(`)|f∗ω(ϕω)(y) = |`|ϕω (fan(y)).

We denote by f∗(ϕ) the metric family (f∗ω(ϕω))ω∈Ω and call it the pull-back of ϕ by
f . In the case where f is an immersion, f∗(ϕ) is also called restriction of ϕ.

4.1.6. Example. — A natural example of metric family is the quotient metric family
induced by a norm family. Denote by π : X → SpecK the structural morphism. Let
E be a finite-dimensional vector space over K and f : π∗(E) → L⊗n be a surjective
homomorphism of OX -modules, where n is a positive integer. For any ω ∈ Ω, the
homomorphism f induces by pull-back a surjective homomorphism of OXω -modules
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fω : π∗Kω (E) → Lω. Assume given a norm family ξ = (‖.‖ω)ω∈Ω of E. We denote
by ϕξ the metric family of L consisting of quotient metrics associated with ‖.‖ω (see
Example 3.3.2 (1)), and call it the quotient metric family induced by ξ.

Assume that the norm family ξ is Hermitian. For each ω ∈ Ω, let ϕort
ξ,ω be the

orthogonal quotient metric induced by ‖.‖ω (see Definition 3.3.5). Note that this
metric coincides with ϕξ,ω when |.|ω is non-Archimedean or Kω is complex. The
metric family ϕort

ξ is called orthogonal quotient metric family induced by ξ.

4.1.7. Example. — Let X be a projective K-scheme, L be an invertible OX -
module, and ϕ = (ϕω)ω∈Ω be a metric family on L. Let K ′/K be an algebraic
extension of the field K, and

S ⊗K ′ = (K ′, (Ω′,A′, ν′), φ′)

be the corresponding algebraic covering of the adelic curve S (see §2.2). Recall that
Ω′ is defined as Ω×MK ,φMK′ , where MK and MK′ are the sets of all absolute values
of K and of K ′, respectively.

Let X ′ be the fiber product X×SpecK SpecK ′ and L′ be the pull-back of L on X ′.
If ω′ is an element of Ω′ and ω is the image of ω′ in Ω by the projection map

Ω′ = Ω×MK ,φMK′ −→ Ω,

then one has

X ′ω′ := X ′ ×SpecK′ SpecK ′ω′
∼= (X ×K Kω)×Kω K ′ω′ .

Moreover, the pull-back of Lω on X ′ω′ identifies with L′ω′ . We denote by pω′ the
morphism of projection from X ′ω′ to Xω. Then the map

p\ω′ : (X ′ω′)
an −→ Xan

ω ,

sending any point x′ = (j(x′), |.|x′) to the pair consisting of the scheme point pω′(j(x′))
of Xω and the restriction of |.|x′ on the residue field of pω′(j(x′)), is continuous (see
[13, Proposition 2.1.17]), where j : (X ′ω′)

an → X ′ω′ denotes the map sending a point in
the analytic space to its underlying scheme point. Therefore, the continuous metric ϕω
induces by composition with p\ a continuous metric ϕω′ such that, for any x′ ∈ (X ′ω′)

an

and any ` ∈ Lω(p\(x′)), one has

∀ a ∈ κ̂(x′), |a⊗ `|ϕω′ (x
′) = |a|x′ · |`|ϕω (x).

Therefore, (ϕω′)ω′∈Ω′ forms a metric family of L′ which we denote by ϕK′ .

4.1.8. Definition. — Let L be an invertible OX -module and ϕ = (ϕω)ω∈Ω be a
metric family of L.

(1) We say that ϕ is dominated if there exist invertible OX -modules L1 and L2,
respectively equipped with metric families ϕ1 and ϕ2, which are quotient metric
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families associated with dominated norms families, such that L ∼= L1 ⊗ L∨2 and
that the local distance function

(ω ∈ Ω) 7−→ dω(ϕ,ϕ1 ⊗ ϕ∨2 )

is bounded from above by a ν-integrable function (see [13, §6.1.1]);
(2) We say that ϕ is measurable if the following conditions are satisfied (see [13,

§6.1.4]):
(2.i) for any closed point P of X, the norm family P ∗(ϕ) of P ∗(L) is measur-

able,
(2.ii) for any ξ ∈ Xan (where we consider the trivial absolute value on K in

the construction of Xan) whose associated scheme is of dimension 1 and
such that the exponent (1) of the absolute value |.|ξ is rational, and for
any ` ∈ L⊗OX κ̂(ξ), the function

(ω ∈ Ω0) 7−→ |`|ϕω (ξ)

is measurable, where Ω0 is the subset of ω ∈ Ω such that |.|ω is trivial,
and we consider the restriction of the σ-algebra A to Ω0.

If ϕ is both dominated and measurable, we say that the pair L = (L,ϕ) is an adelic
line bundle.

4.1.9. Proposition. — Let π : X → SpecK be a projective scheme over SpecK,
L be an invertible OX-module, ϕ be a metric family of L, and E = H0(X,L). We
equip E with a norm family ξ = (‖.‖ω)ω∈Ω. Consider the following norm family
ξ′ = (‖.‖′ω)ω∈Ω defined as

∀ s ∈ H0(Xω, Lω), ‖s‖′ω := max

{
sup
x∈Xan

ω

|s|ϕω (x), ‖s‖ω
}
.

Then one has the following:

(1) If ϕ and ξ are both measurable, then ξ′ is also measurable.
(2) If ϕ is dominated and ξ is strongly dominated, then ξ′ is strongly dominated.

Proof. — (1) For any ω ∈ Ω, we let ‖.‖ϕω be the seminorm on E⊗KKω = H0(Xω, Lω)

defined as
∀ s ∈ H0(Xω, Lω), ‖s‖ϕω := sup

x∈Xan
ω

|s|ϕω (x).

By [13, Propositions 6.1.20 and 6.1.26], for any s ∈ H0(X,L), the function

(ω ∈ Ω) 7−→ ‖s‖ϕω

1. Since the schematic point associated with ξ is of dimension 1, the absolute value |.|ξ is discrete
and hence is of the form |.|ξ = exp(−t ordξ(.)), where the (surjective) map ordξ(.) : κ̂(ξ)→ Z∪{+∞}
is the discrete valuation corresponding to the absolute value |.|ξ. The non-negative real number t is
called the exponent of the absolute value |.|ξ.
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is measurable. Therefore the function

(ω ∈ Ω) 7−→ ‖s‖′ω = max{‖s‖ϕω , ‖s‖ω}

is also measurable once the norm family ξ is measurable.
(2) We may assume without loss of generality that there exists a basis e = (ei)

r
i=1

of E such that, for any ω ∈ Ω

∀ (λ1, . . . , λr) ∈ Kr
ω, ‖λ1e1 + · · ·+ λrer‖ω = max

i∈{1,...,r}
|λi|ω.

By [13, Remark 6.1.17], for any s ∈ H0(X,L), the function

(ω ∈ Ω) 7−→ ln ‖s‖ϕω
is bounded from above by an integrable function. Let A : Ω → R>0 be a positive
integrable function on Ω such that

∀ω ∈ Ω, max
i∈{1,...,r}

ln ‖ei‖ϕω 6 A(ω).

For any ω ∈ Ω \ Ω∞ and any (λ1, . . . , λr) ∈ Kr
ω, one has

ln ‖λ1e1 + · · ·+ λrer‖ω 6 ln ‖λ1e1 + · · ·+ λrer‖′ω 6 max
i∈{1,...,r}

(ln |λi|ω + ln ‖ei‖′ω).

Note that ‖ei‖ω = 1 and hence

ln ‖ei‖′ω = max{ln ‖ei‖ϕω , ln(1)} 6 A(ω).

Therefore one has
d(‖.‖ω, ‖.‖′ω) 6 A(ω).

In the case where ω ∈ Ω∞, for any (λ1, . . . , λr) ∈ Kr
ω one has

ln ‖λ1e1 + · · ·+ λrer‖ω 6 ln ‖λ1e1 + · · ·+ λrer‖′ω 6 max
i∈{1,...,r}

ln |λi|ω +A(ω) + ln(r).

Finally we obtain that

∀ω ∈ Ω, dω(ξ, ξ′) 6 A(ω) + ln(r)1lΩ∞(ω).

Hence the norm family ξ′ is strongly dominated (see [13, Proposition 3.1.2] for the
fact that ν(Ω∞) is finite).

4.1.10. Lemma. — Let S = (K, (Ω,A, ν), φ) be an adelic curve, K ′ be an algebraic
extension of K and SK′ = S ⊗K K ′ = (K ′, (Ω′,A′, ν′), φ′). Let f be a function on Ω.
Then one has the following:

(1) f is measurable if and only if f ◦ πK′/K is measurable.
(2) f is integrable if and only if f ◦ πK′/K is integrable.

Proof. — Clearly we may assume that f is non-negative, so that it is a consequence
of [13, Proposition 3.4.8 and Proposition 3.4.9].
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4.2. Integrability of local intersection numbers

In this section, we fix a projective K-scheme X. Let d be the dimension of X.

4.2.1. Definition. — Let D be a Cartier divisor on X. For any ω ∈ Ω, let Dω

be the pull-back of D by the morphism of projection Xω → X, which is well defined
since the morphism of projection Xω → X is flat (see Remark 1.2.13 and Definition
1.2.14). We call Green function family of D any family (gω)ω∈Ω parametrized by
Ω, where each gω is a Green function of Dω. We denote by ϕg the metric family
(|.|gω )ω∈Ω of OX(D), where |.|gω is the continuous metric on OXω (Dω) induced by
the Green function gω (see Remark 3.4.3). If the metric family ϕg is measurable, we
say that the Green function family g is measurable. If the metric ϕg is dominated, we
say that the Green function family g is dominated. We refer to Definition 4.1.8 for
the dominancy and measurability of metrics. If g is both dominated and measurable,
we say that (D, g) is an adelic Cartier divisor.

Let D be an invertible OX -module and g be a Green function family of D. If D
is ample and all metrics in the family ϕg are semi-positive, we say that the Green
function family g is semi-positive. We say that (D, g) is integrable if there exist ample
Cartier divisors D1 and D2, together with semi-positive Green function families g1

and g2 of D1 and D2 respectively, such that D = D1−D2 and g = g1− g2. Similarly,
we say that an adelic line bundle (L,ϕ) is integrable if there exists ample invertible
OX -modules L1 and L2, and metric families consisting of semi-positive metrics ϕ1

and ϕ2 on L1 and L2, respectively, such that L = L2 ⊗ L∨1 and ϕ = ϕ2 ⊗ ϕ∨1 .
Let D0, . . . , Dd be a family of Cartier divisors, which intersect properly. For any

i ∈ {0, . . . , d}, let gi be a Green function family of Di such that (Di, gi) is integrable.
Then, for any ω ∈ Ω, a local intersection number

((D0,ω, g0,ω), . . . , (Dd,ω, gd,ω))(Kω,|·|ω)

has been introduced in Definition 3.6.1, which we denote by

(D0 · · ·Dd)ω

for simplicity. Thus the local intersection numbers define a function

(ω ∈ Ω) −→ (D0 · · ·Dd)ω.

4.2.2. Definition. — Let D1 and D2 be Cartier divisors on X, and g1 and g2 be
Green function families of D1 and D2, respectively. We say that (D1, g1) and (D2, g2)

are linearly equivalent and we note

(D1, g1) ∼ (D2, g2)

if OX(D1) is isomorphic to OX(D2) and if there exists an isomorphism of OX -modules
OX(D1)→ OX(D) which identifies the metric ϕg1 to ϕg2 .
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4.2.3. Proposition. — Assume that, for all Cartier divisors E0, . . . , Ed which in-
tersect properly, and measurable (resp. dominated) Green function families h0, . . . , hd
of E0, . . . , Ed respectively, such that all (Ei, hi) are integrable and linearly equivalent,
the function of local intersection number

(ω ∈ Ω) 7−→ (E0 · · ·Ed)ω
is measurable (resp. dominated). Then, for all Cartier divisors D0, . . . , Dd which
intersect properly and measurable (resp. dominated) Green function families g0, . . . , gd
of D0, . . . , Dd respectively, such that all (Di, gi) are integrable (but not necessarily
linearly equivalent), the function of local intersection number

(ω ∈ Ω) 7−→ (D0 · · ·Dd)ω

is measurable (resp. dominated).

Proof. — First of all, by Lemma 4.1.10, we may assume thatK is algebraically closed.
By Lemma 1.3.7, we can choose a matrix

(Di,j)(i,j)∈{0,...,d}2

consisting of Cartier divisors on X such that (Di0,0, . . . , Did,d) ∈ IPX for any
(i0, . . . , id) ∈ {0, . . . , d}d+1, and that Di,j ∼ Di for all (i, j) ∈ {0, . . . , d}2. Let gi,j
be a family of integrable Green functions of Di,j such that (Di,j , gi,j) ∼ (Di, gi). By
Proposition 1.1.4,∑

σ∈S({0,...,d})

(
D0,σ(0) · · ·Dd,σ(d)

)
ω

=
∑

σ∈S({0,...,d})

(
Dσ(0),0 · · ·Dσ(d),d

)
ω

=
∑

∅6=I⊆{0,...,d}

(−1)(d+1)−card(I)

((∑
i∈I

Di,0

)
· · ·
(∑

i∈I
Di,d

))
ω

,

where Di,j = (Di,j , gi,j). Note that
∑
i∈I Di,a ∼

∑
i∈I Di,b, so that

(ω ∈ Ω) 7→
∑

∅ 6=I⊆{0,...,d}

(−1)(d+1)−card(I)

((∑
i∈I

Di,0

)
· · ·
(∑

i∈I
Di,d

))
ω

is measurable (resp. dominant) by our assumption. Moreover, by Proposition 3.6.5,
for each σ ∈ S({0, . . . , d}), there is an integrable function Aσ on Ω such that

(D0,σ(0) · · ·Dd,σ(d))ω = (D0 · · ·Dd)ω +Aσ(ω).

Thus the assertion follows. Note that
∫

Ω

Aσ(ω) ν(dω) = 0 if S is proper.

4.2.4. Theorem. — Assume that Ω∞ = ∅. Let (Li)
d
i=0 be a family of invertible OX-

modules. For each i ∈ {0, . . . , d}, let si be a regular meromorphic section of Li and
Di = div(si). We suppose that D0, . . . , Dd intersect properly. For any i ∈ {0, . . . , d},
let ϕi = (ϕi,ω)ω∈Ω be a measurable metric family on Li such that (Li,ω, ϕi,ω) is
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integrable, and let gi = (gi,ω)ω∈Ω be the family of Green functions of Di corresponding
to ϕi. Then the function of local intersection numbers

(ω ∈ Ω) −→ (D0 · · ·Dd)ω (4.1)

is A-measurable.

Proof. — By Lemma 4.1.10, we may assume that K is algebraically closed. By using
Proposition 3.6.3, we may further assume that L0, . . . , Ld are very ample. For any
i ∈ {0, . . . , d}, we denote by δi the intersection number

deg(c1(L0) · · · c1(Li−1)c1(Li+1) · · · c1(Ld) ∩ [X]).

We introduce, for each r ∈ {−1, . . . , d}, then following condition (Cr):

For each i ∈ {0, . . . , d} such that 0 6 i 6 r, there exist a positive
integer mi and a measurable Hermitian norm family ξi = (‖.‖i,ω)ω∈Ω

on H0(X,L⊗mii ), such that ϕi identifies with the quotient metric family
induced by ξi.

We will prove by inverted induction on r that, under the condition (Cr), the function
(4.1) is A-measurable. Note that the condition (C−1) is always true and hence the
measurability of (4.1) under (C−1) is just the statement of the theorem. We begin
with the case where r = d. For any i ∈ {1, . . . , d}, let Ei = H0(X,L⊗mii ) and
fi : X → P(Ei) be the canonical closed embedding. Note that L⊗mii is isomorphic to
f∗i (OEi(1)). We denote by R the resultant

R
X,s
⊗m0
0 ,...,s

⊗md
d

f0,...,fd
,

which is an element of

Sδ0N0(E∨0 )⊗K · · · ⊗K SδdNd(E∨d ),

where

Ni =
m0 · · ·md

mi
.

We equip this vector space with the family of ε-tensor product of ε-symmetric power
norms of ‖.‖i,ω,∗ (see Definition 3.9.2), which we denote by ξ = (‖.‖ω)ω∈Ω. By [13,
Proposition 4.1.24], the norm family ξ is measurable. By Theorem 3.9.7, one has

m0 · · ·md(D0 · · ·Dd)ω = (m0D0 · · ·mdDd)ω = ln ‖R‖ω.

Hence the function

(ω ∈ Ω) 7−→ (D0 · · ·Dd)ω

is measurable.
We prove the measurability of (4.1) under (Cr−1) in assuming that the measura-

bility of (4.1) is true under (Cr), where r ∈ {0, . . . , d}. For any positive integer m,
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we let g(m)
r be the Green function family of Dr corresponding to the metric family

ϕ
(m)
r = (ϕ

(m)
r,ω )ω∈Ω (see Definition 3.3.8). We first show that the function

(ω ∈ Ω) 7−→ (D0 · · ·Dr−1(Dr, g
(m)
r )Dr+1 · · ·Dd)ω

is measurable. For this purpose, we choose arbitrarily a measurable norm family
ξr = (‖.‖ω)ω∈Ω on the vector space H0(X,L⊗m) (one can choose ξr = ξe, where e
is a basis of H0(X,L⊗m), see Example 4.1.1). For any a > 0 and any ω ∈ Ω, we let
ϕ

(m)
r,a,ω be the quotient metric on Lr induced by the norm

‖.‖a,ω := max{‖.‖mϕr , a‖.‖ω}

onH0(Xω, L
⊗m
ω ), and let g(m)

r,a be the Green function ofDr corresponding to the metric
ϕ

(m)
r,a,ω. By Proposition 4.1.9, the norm family ξr,a := (‖.‖a,ω)ω∈Ω is measurable.

Therefore D0, . . . , Dr−1, (Dr, g
(m)
r,a ), Dr+1 · · ·Dd satisfy the condition (Cr). By the

induction hypothesis, we obtain that the function

(ω ∈ Ω) 7−→ (D0 · · ·Dr−1(Dr, g
(m)
r,a )Dr+1 · · ·Dd)ω

is measurable. Moreover, by Proposition 3.3.11, we obtain that, for any ω ∈ Ω, there
exists aω > 0 such that g(m)

r,a = g
(m)
r when 0 < a < aω. Therefore one has

(D0 · · ·Dr−1(Dr, g
(m)
r )Dr+1 · · ·Dd)ω = lim

a∈Q, a→0+
(D0 · · ·Dr−1(Dr, g

(m)
r,a )Dr+1 · · ·Dd)ω

and hence the function

(ω ∈ Ω) 7−→ (D0 · · ·Dr−1(Dr, g
(m)
r )Dr+1 · · ·Dd)ω

is measurable. Finally, by Proposition 3.3.12 and Corollary 3.6.7, one has

(D0 · · ·Dd)ω = lim
m→+∞

(D0 · · ·Dr−1(Dr, g
(m)
r )Dr+1 · · ·Dd)ω

and therefore the function

(ω ∈ Ω) 7−→ (D0 · · ·Dd)ω

is measurable.

In the following, we study the measurability of the function of local intersection
number over Archimedean places. Let us begin with the following lemma.

4.2.5. Lemma. — Let S = (K, (Ω,A, ν), φ) be an adelic curve such that Ω∞ is not
empty. Suppose that −1 ∈ K admits a square root

√
−1 in K. Then there is a family

(ιω)ω∈Ω∞ of embeddings K → C which satisfy the following conditions:

(1) for any ω ∈ Ω∞, ιω(
√
−1) = i, where i ∈ C denotes the usual imaginary unit,

(2) for any ω ∈ Ω∞, |.|ω = |ιω(.)|,
(3) for any a ∈ K, the function (ω ∈ Ω∞) 7→ ιω(a) is measurable.
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Proof. — Fix a family (σω)ω∈Ω∞ of embeddings K → C such that |.|ω = |σω(.)| for
all ω ∈ Ω∞. Note that σω(

√
−1) ∈ {i,−i} because

σω(
√
−1)2 = σω((

√
−1)2) = σω(−1) = −1.

We define a family (ιω)ω∈Ω∞ of embeddings by

ιω =

σω if σω(
√
−1) = i,

σω if σω(
√
−1) = −i,

where σw denotes the composition of the complex conjugation with σw. Then
ιω(
√
−1) = i for all ω ∈ Ω∞. Thus one can see

ιω(a) =
(
|a+ (1/2)|2ω − |a|2ω − |1/2|2ω

)
+ i
(
|a+ (

√
−1/2)|2ω − |a|2ω − |

√
−1/2|2ω

)
,

as required.

We assume that Ω∞ = Ω. If K contains a square root
√
−1 of −1, then, by

Lemma 4.2.5, for each ω ∈ Ω, there is an embedding σω : K ↪→ C with the following
properties:

(1) |.|ω = |σω(.)| for all ω ∈ Ω.
(2) σω(

√
−1) = i, so that σω(a +

√
−1b) = a + ib for all a, b ∈ Q, where i is the

usual imaginary unit in C.
(3) For a ∈ K, (ω ∈ Ω) 7→ σω(a) is measurable.

4.2.6. Proposition. — We assume that Ω = Ω∞ and
√
−1 ∈ K. Let n and d

be non-negative integers with n > d and π : AnK → AdK be the projection given by
(x1, . . . , xn) 7→ (x1, . . . , xd). Let U be a non-empty Zariski open set of AdK and X be
a reduced closed subscheme of π−1(U) such that π|X : X → U is finite, surjective and
étale.

We assume that either (i) n = d and X = π−1(U), or (ii) K is algebraically closed
field. Let f = (fω)ω∈Ω be a family of functions indexed by Ω, where each fω is a
C∞-function on π−1

ω (Uω) such that, for any K-rational point P ∈ π−1(U)(K), the
function given by (ω ∈ Ω) 7→ fω(Pω) is measurable. If we set gω = fω|Xω for ω ∈ Ω,
then, for any P ∈ X(K) and l ∈ {1, . . . , d},

(ω ∈ Ω) 7→ ∂gω
∂zlω

(Pω) and (ω ∈ Ω) 7→ ∂gω
∂zlω

(Pω)

are measurable, where (z1ω, . . . , zdω) denotes the canonical coordinates of Ad(C)×σωC.

Proof. — Case (i): n = d (so that π = id) and X = π−1(U).
Let xlω (resp. ylω) be the real part (resp. the imaginary part) of zlω. It is sufficient

to show that

(ω ∈ Ω) 7→ ∂fω
∂xlω

(Pω) and (ω ∈ Ω) 7→ ∂fω
∂ylω

(Pω)
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are measurable. We set Pω = σω(P ) = (a1ω+ib1ω, . . . , anω+ibnω). Then, for ε ∈ Q×,{
(P + εel)ω = σω(P + εel) = (a1ω + ib1ω, . . . , (alω + ε) + iblω, . . . , anω + ibnω),

(P + εiel)ω = σω(P + εiel) = (a1ω + ib1ω, . . . , alω + i(blω + ε), . . . , anω + ibnω),

where {e1, . . . , en} is the standard basis of Kn, so that
lim
ε∈Q×
ε→0

fω((P + εel)ω)− fω(Pω)

ε
=

∂fω
∂xlω

(Pω),

lim
ε∈Q×
ε→0

fω((P + εiel)ω)− fω(Pω)

ε
=

∂fω
∂ylω

(Pω).

Note that 
(ω ∈ Ω) 7→ fω((P + εel)ω)− fω(Pω)

ε
,

(ω ∈ Ω) 7→ fω((P + εiel)ω)− fω(Pω)

ε
.

are measurable. Thus the assertion follows.

Case (ii): K is algebraically closed field.
By replacing U and X by U \π(P ) and X \P , we may assume that P = (0, . . . , 0).

If we set Q = π(P ), then (π|X)∗ : OhU,Q
∼−→ OhX,P , where OhU,Q and OhX,P are the

Henselizations of OU,Q and OX,P , respectively. Thus there are ϕd+1, . . . , ϕn ∈ OhU,Q
such that (π|X)∗(ϕj) = xj |X for j ∈ {d+ 1, . . . , n}. We set

ϕj =
∑

e1···ed∈Z≥0

aj,e1···edX
e1
1 · · ·X

ed
d

as an element of K[[X1, . . . , Xd]]. Note that if we set

ϕjω =
∑

e1···ed∈Z≥0

σω(aj,e1···ed)Xe1
1 · · ·X

ed
d ,

then
gω = fω(z1ω, . . . , zdω, ϕd+1ω(z1ω, . . . , zdω), . . . , ϕnω(z1ω, . . . , zdω))

as a function on U around Q. Then, for l ∈ {1, . . . , d},
∂gω
∂zlω

(Pω) =
∂fω
∂zlω

(0, . . . , 0) +

n∑
j=d+1

∂fω
∂zjω

(0, . . . , 0)
∂ϕjω
∂zlω

(0, . . . , 0),

∂gω
∂zlω

(Pω) =
∂fω
∂zlω

(0, . . . , 0).

If we denote aj,e1,...,ed by aj,l in the case where e1 = 0, . . . , el = 1, . . . , ed = 0, then
∂gω
∂zlω

(Pω) =
∂fω
∂zlω

(0, . . . , 0) +

n∑
j=d+1

∂fω
∂zjω

(0, . . . , 0)σω(aj,l),

∂gω
∂zlω

(Pω) =
∂fω
∂zlω

(0, . . . , 0),
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so that the assertions follow from the case (i).

4.2.7. Proposition. — We assume that Ω = Ω∞ and
√
−1 ∈ K. Let U be a non-

empty Zariski open set of AnK . Let h = (hω)ω∈Ω be a family of functions indexed
by Ω such that hω is a C∞-function on Uω and that, for any K-rational point P ∈
U(K), the function given by (ω ∈ Ω) 7→ hω(Pω) is measurable. For each ω ∈ Ω, let
(z1ω, . . . , znω) is the coordinate of An ⊗σω C. If∫

Uω

( i
2

)n
hω(z1ω, . . . , znω) dz1ω ∧ dz̄1ω ∧ · · · ∧ dznω ∧ dz̄nω

exists for any ω ∈ Ω, then

(ω ∈ Ω) 7→
∫
Uω

( i
2

)n
hω(z1ω, . . . , znω) dz1ω ∧ dz̄1ω ∧ · · · ∧ dznω ∧ dz̄nω

is measurable.

Proof. — Shrinking U if necessarily, we may assume that AnK\U is defined by {F = 0}
for some F ∈ K[X1, . . . , Xn] \ {0}. We set

Uω,N =
{

(z1ω, . . . , znω) ∈ Cn
∣∣∣ max
j∈{1,...,n}

|zjω| ≤ N and |F (z1ω, . . . , znω)| > 1/N
}
.

Let xiω (resp. yiω) be the real part (resp. imaginary part) of ziω. Then( i
2

)n
hω dz1ω ∧ dz̄1ω ∧ · · · ∧ dznω ∧ dz̄nω

= hω dx1ω ∧ dy1ω ∧ · · · ∧ dxnω ∧ dynω.

Moreover,∫
Uω,N

hω dx1ω ∧ dy1ω ∧ · · · ∧ dxnω ∧ dynω

= lim
m→∞

∑
a1,b1,...,an,bn∈Z(

a1+ib1
m ,..., an+ibn

m

)
∈Uω,N

1

m2n
hω

(a1 + ib1
m

, . . . ,
an + ibn

m

)
. (4.2)

Note that
(ω ∈ Ω∞) 7−→ hω

(a1 + ib1
m

, . . . ,
an + ibn

m

)
is measurable, so that (4.2) means that

(ω ∈ Ω∞) 7−→
∫
Uω,N

hω dx1ω ∧ dy1ω ∧ · · · ∧ dxnω ∧ dynω

is measurable. Therefore, since

lim
N→∞

∫
Uω,N

hω dx1ω ∧ dy1ω ∧ · · · ∧ dxnω ∧ dynω

=

∫
Uω

hω dx1ω ∧ dy1ω ∧ · · · ∧ dxnω ∧ dynω,
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one has the assertion.

4.2.8. Theorem. — We assume that Ω = Ω∞ and K is algebraically closed. Let
X be a d-dimensional projective and integral variety over K and L be a very ample
invertible OX-module. Let (‖.‖ω)ω∈Ω be a measurable family of Hermitian norms on
H0(X,L). Let ϕ = (ϕω)ω∈Ω be a family of metrics on L induced by the surjective
homomorphism H0(X,L)⊗OX → L and (‖.‖ω)ω∈Ω. For s ∈ H0(X,L) \ {0},

(ω ∈ Ω) 7→
∫
Xω

log |s|ϕωc1(Lω, ϕω)∧d

is measurable.

Proof. — Let n = dimK H
0(X,L) − 1 and X ↪→ PnK be the embedding by L. Note

that L = OPnK (1)
∣∣
X
. SinceH0(PnK ,OPnK (1)) ' H0(X,L), one has t ∈ H0(PnK ,OPnK (1))

with t|X = s. Let ψ = (ψω)ω∈Ω be a family of metics of OPnK (1) induced by the
surjective homomorphism H0(PnK ,OPnK (1)) ⊗ OPnK → OPnK (1) and (‖.‖ω)ω∈Ω. Note
that ψ|X = ϕ. By Proposition 1.7.4, we can choose a linear subspace M in PnK such
that codimM = d + 1, M ∩X = ∅ and M ⊆ {t = 0}, so that, by Proposition 1.7.4
again, the morphism π : X → PdK induced by the projection πM : PnK \M → PdK
with the center M is finite and surjective. We choose a homogenous coordinate
(T0 : . . . : Tn) on PnK such that

t = T0 and M = {T0 = · · · = Td = 0}.

Then πM is given by (T0 : · · · : Tn) 7→ (T0 : · · · : Td). Let U be a non-empty open of
PdK such that π : X → PdK is étale over U . We may assume that U ⊆ {T0 6= 0}. We
set Xj = Tj/T0 (j = 1, . . . , n). Then{

PnK \ {T0 = 0} = Spec(K[X1, . . . , Xn]) = AnK ,
PdK \ {T0 = 0} = Spec(K[X1, . . . , Xd]) = AdK

and πM on PnK \ {T0 = 0} is given by (X1, . . . , Xn) 7→ (X1, . . . , Xd). Let

(z1ω, . . . , znω) and (z1ω, . . . , zdω)

be the coordinates of AnK⊗σω C and AdK⊗σω C, respectively. Note that fω := log |t|ψω
is C∞ on AnK ⊗σω C. Then, by Proposition 4.2.6, if we set

fω|Xω c1(Lω, ϕω)∧d = idhω(dz1ω ∧ dz̄1ω) ∧ · · · ∧ (dzdω ∧ dz̄dω)

on π−1
ω (Uω), then, for P ∈ π−1(U), (ω ∈ Ω) 7→ h(Pω) is measurable. Note that∫
Xω

log |s|ϕωc1(Lω, ϕω)∧d =

∫
π−1
ω (Uω)

fω|Xω c1(Lω, ϕω)∧d

=

∫
π−1
ω (Uω)

idhω(dz1ω ∧ dz̄1ω) ∧ · · · ∧ (dzdω ∧ dz̄dω)

=

∫
Uω

id(πω)∗(hω)(z1ω ∧ dz̄1ω) ∧ · · · ∧ (dzdω ∧ dz̄dω).
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Moreover, (πω)∗(hω) is C∞ over Uω. Further, for P ∈ U(K), if we set π−1(P ) =

{Q1, . . . , Qr}, then

(πω)∗(hω)(Pω) =

r∑
i=1

hω(Qiω),

so that (ω ∈ Ω) 7→ (πω)∗(hω)(Pω) is measurable. Therefore, by Proposition 4.2.7,

(ω ∈ Ω) 7→
∫
Uω

id(πω)∗(hω)(dz1ω ∧ dz̄1ω) ∧ · · · ∧ (dzdω ∧ dz̄dω)

is measurable. Thus the assertion follows.

4.2.9. Theorem. — We assume that Ω = Ω∞. Let X be a projective scheme over
K and L be an ample invertible OX-module. Let ϕ = (ϕω)ω∈Ω be a measurable family
of semipositive metrics. Then, for s ∈ H0(X,L) \ {0},

(ω ∈ Ω) 7−→
∫
Xω

log |s|ϕωc1(Lω, ϕω)d

is measurable.

Proof. — By Lemma 4.1.10, we may assume that K is algebraically closed. We
choose a positive integer N such that L⊗n is very ample for for all n > N . Let ϕn =

(ϕn,ω)ω∈Ω be the quotient metric family of L⊗n induced by H0(X,L⊗n)⊗OX → L⊗n

and ξnϕ = (‖.‖nϕω )ω∈Ω. Moreover, by [13, Theorem 4.1.26], there is a measurable
Hermitian norm family ξHn = (‖.‖Hn,ω)ω∈Ω on H0(X,L⊗n) such that

‖.‖nϕω 6 ‖.‖Hn,ω 6 (h0(L⊗n) + 1)1/2‖.‖nϕω

for ω ∈ Ω. Let ϕHn,ω be the quotient metric family of L⊗n induced by H0(X,L⊗n)⊗
OX → L⊗n and ξHn . Note that

dω

(
1

n
ϕn,

1

n
ϕHn

)
6
d(‖.‖nϕω , ‖.‖Hn,ω)

n
6

ln(h0(L⊗n) + 1)

2n
.

Therefore, if we set ψn,ω = (1/n)ϕHn,ω, then limn→∞ dω(ϕ,ψn) = 0 for all ω ∈ Ω

because limn→∞ dω(ϕ, (1/n)ϕn) = 0. By Theorem 4.2.8,

(ω ∈ Ω∞) 7→
∫
Xω

log |s|ψn,ωc1(Lω, ψn,ω)d =
1

nd+1

∫
Xω

log |sn|ϕHn,ωc1(nLω, ϕ
H
n,ω)d

is measurable. Further, by [18, Corollary 3.6],

lim
n→∞

∫
Xω

log |s|ψn,ωc1(Lω, ψn,ω)d =

∫
Xω

log |s|ϕnc1(Lω, ϕω)d.

Therefore, the assertion follows.

Combining Theorems 4.2.4 and 4.2.9, we obtain the following result.
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4.2.10. Theorem. — Let X → SpecK be a projective scheme over K and d be the
dimension of X. Let D0, . . . , Dd be Cartier divisors on X, which intersect properly.
We equip each Di with a measurable Green function family gi such that (Di, gi) is
integrable. Then the local intersection function

(ω ∈ Ω) 7−→ ((D0, g0) · · · (Dd, gd))ω

is A-measurable.

Proof. — The measurability over Ω \Ω∞ follows directly from Theorem 4.2.4. More-
over, in view of Theorem 4.2.9, the measurability over Ω∞ follows from Proposi-
tion 3.6.6 and the multi-linearity of the local intersection measure.

4.2.11. Theorem. — Let X → SpecK be a projective scheme over K and d be the
dimension of X. Let D0, . . . , Dd be Cartier divisors on X, which intersect properly.
We equip each Di with a dominated Green function family gi such that (Di, gi) is
integrable. Then the local intersection function

(ω ∈ Ω) 7−→ ((D0, g0) · · · (Dd, gd))ω (4.3)

is dominated.

Proof. — By Lemma 4.1.10, we may assume that K is algebraically closed. By using
Proposition 3.6.3, we may further assume that D0, . . . , Dd are very ample. Moreover,
by Proposition 4.2.3, we may assume without loss of generality that there are an
integrable adelic line bundle (L,ϕ) and non-zero rational sections s0, . . . , sd of L such
that OX(Di) = L and gi = − log |si|ϕ for i ∈ {0, . . . , d}. Note that L is very ample.
Thus, by Proposition 1.7.4, there is a finite and surjective morphism π : X → PdK
such that L = π∗(OPd(1)). Let (T0 : · · · : Td) be a homogeneous coordinate of PdK .
We consider (Ti)

n
i=0 as a basis of H0(Pd,OPd(1)). Let ϕFS be the quotient metric on

OPd(1) induced by the universal quotient homomorphism

H0(Pd,OPd(1))⊗K OPd −→ OPd(1)

and the norm family associated with the basis (Ti)
d
i=0 (see Example 4.1.1, see also

Proposition 3.6.8). Moreover, we set hi = − log |Ti|ϕFS
.

First we assume that ϕ = π∗(ϕFS). If Di = π∗(Hi) for i ∈ {0, . . . , d}, then the
dominancy of (4.3) follows from Proposition 3.6.4 and Proposition 3.6.8. In general,
there are non-zero rational functions f0, . . . , fd on X such that Di = π∗(Hi) + (fi)

for i ∈ {0, . . . , d}. Then, by Proposition 3.6.5, there is an integrable function θ on Ω

such that

((D0, g0) · · · (Dd, gd))ω = ((π∗(H0), π∗(h0)) · · · (π∗(Hd), π
∗(hd)))ω + θ(ω).

Thus one has the dominancy of (4.3).
In general, there is a family g of integrable continuous functions such that ϕ =

exp(g)π∗(ϕFS). In this case, the dominancy of (4.3) follows from Corollary 3.6.7.
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Finally, we obtain the following integrability theorem.

4.2.12. Theorem. — Let X be a projective K-scheme of dimension d, and
D0, . . . , Dd be a family of integrable adelic Cartier divisors. Assume that the un-
derlying Cartier divisors D0, . . . , Dd intersect properly. Then the function of local
intersection numbers

(ω ∈ Ω) 7−→ (D0 · · ·Dd)ω (4.4)

is integrable on the measure space (Ω,A, ν).

4.2.13. Definition. — Let X be a projective K-scheme of dimension d, and
D0, . . . , Dd be a family of integrable adelic Cartier divisors, such that D0, . . . , Dd

intersect properly. We define the global intersection number of D0, . . . , Dd as

(D0 · · ·Dd)S :=

∫
ω∈Ω

(D0 · · ·Dd)ω ν(dω).

4.2.14. Remark. — Let X be a projective K-scheme of dimension d. For any
i ∈ {0, . . . , d}, let

(Ei, ξi = (‖.‖i,ω)ω∈Ω)

be a Hermitian adelic vector bundle on S, and fi : X → P(Ei) be a closed embedding.
Let Li be the restriction of OEi(1) to X, which is equipped with the orthogonal
quotient metric family ϕi induced by ξi. We choose a global section si of Li such that
s0, . . . , sd intersect properly. For each i ∈ {0, . . . , d}, let Di be the Cartier divisor
div(si) and gi be the Green function family of Di corresponding to ϕi. By Theorem
3.9.7, if we denote by R the resultant

RX,s0,...,sdf0,...,fd
∈ Sδ0(E∨0 )⊗K · · · ⊗K Sδd(E∨d ),

where δi = (D0 · · ·Di−1Di+1 · · ·Dd), then the following equality holds

(D0 · · ·Dd) =

∫
ω∈Ω\Ω∞

ln ‖R‖ω ν(dω)

+

∫
σ∈Ω∞

ν(dσ)

∫
S0,σ×···×Sd,σ

ln |Rσ(z0, . . . , zd)| ηS0,σ
(dz0)⊗ · · · ⊗ ηSd,σ (dzd)

+ ν(Ω∞)
1

2

d∑
i=0

δi

ri∑
`=1

1

`
,

where
(1) ‖.‖ω is the ε-tensor product of δi-th ε-symmetric tensor power of ‖.‖i,ω,∗,
(2) Rσ is the element of

Sδ0(E∨0,Cσ )⊗Cσ · · · ⊗Cσ S
δd,Cσ (E∨d,Cσ )

indued by R,
(3) Si,σ is the unique sphere of (Ei,Cσ , ‖.‖i,σ,Cσ ),
(4) ηSi,σ is the U(Ei,Cσ , ‖.‖i,Cσ )-invariant Borel probaility measure on Si,σ.
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4.3. Invariance of intersection number by coverings

Let S = (K, (Ω,A, ν), φ) be an adelic curve. Consider a covering

α = (α#, α#, Iα)

from another adelic curve S′ = (K ′, (Ω′,A′, ν′), φ′) to S (see Definition 2.1.2). We
assume that, either both σ-algebra A and A′ are discrete, or there exist countable
subfields K0 and K ′0 of K and K ′ respectively, such that K0 is dense in each Kω with
ω ∈ Ω, and K ′0 is dense in each K ′ω′ with ω

′ ∈ Ω′. Recall that α# : K −→ K ′ is a
field homomorphism,

α# : (Ω′,A′)→ (Ω,A)

is a measurable map, and

Iα : L 1(Ω′,A′, ν′) −→ L 1(Ω,A, ν)

is a disintegration kernel of ν′ over ν such that, for any g ∈ L 1(Ω,A, ν), one has
g ◦ α# ∈ L 1(Ω′,A′, ν′) and Iα(g ◦ α#) = g. In this section, we consider a projective
scheme X of dimension d over SpecK and a family

D0 = (D0, g0), . . . , Dd = (Dd, gd)

of adelic Cartier divisors, such that D0, . . . , Dd intersect properly. The purpose of
this section is to define the extension of scalars Di,α of each adelic Cartier divisor Di

by α and show the following equality

(D0,α · · ·Dd,α)S′ = (D0 · · ·Dd)S .

4.3.1. Definition. — Let D be a Cartier divisor on X and g = (gω)ω∈Ω be a Green
function family of D (see Definition 4.2.1). Let Xα be the fiber product

X ×SpecK,α# SpecK ′

and Dα be the pull-back of D by the morphism of projection Xα → X. If ω′ is
an element of Ω′ and ω = α#(ω′), then the Cartier divisor Dα,ω′ identifies with the
pull-back of Dω by the morphism of projection

Xα,ω′ = Xα ×SpecK′ SpecK ′ω′
∼= Xω ×SpecKω SpecK ′ω′ −→ Xω.

We denote by gα,ω′ the Green function gω,K′
ω′

(see Remark 3.4.5). Then the family
gα := (gα,ω′)ω′∈Ω′ forms a Green function family of the Cartier divisor Dα.

Let L be an invertible OX -module and ϕ = (ϕω)ω∈Ω be a metric family on L.
We denote by Lα the pull-back of L by the morphism of projection Xα → X. If
ω′ is an element of Ω′ and ω = α#(ω′), then the invertible sheaf Lα,ω′ identifies
with the pull-back of Lω by the morphism of projection XK′,ω′ → Xω. We denote
by ϕα,ω′ the continuous metric ϕω,K′

ω′
(see Example 3.3.2 (5)) on Lα,ω′ . Then the

family ϕα := (ϕα,ω′)ω′∈Ω′ forms a metric family of Lα. Note that, if s is a regular
meromorphic section of L, D = div(s) and g = (gω)ω∈Ω is the Green function family
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of D corresponding to the metric family ϕ, then gα is the Green function family of
Dα corresponding to ϕα.

4.3.2. Proposition. — Let π : X → SpecK be a projective K-scheme.

(1) Let L be an invertible OX-module and ϕ be a metric family on L. If ϕ is
dominated, then ϕα is also dominated.

(2) Let D be a Cartier divisor on X and g is a Green function family of g. If g is
dominated, then gα is also dominated.

Proof. — It suffices to prove the first statement. Assume that ψ is another metric
family on L. If ω′ is an element of Ω′ and if ω = α#(ω′), then by (3.4) one has

dω′(ϕα, ψα) = dω(ϕ,ψ).

Therefore, if the function (ω ∈ Ω) 7→ dω(ϕ,ψ) is dominated, so is the function (ω′ ∈
Ω′) 7→ dω′(ϕα, ψα). To prove that the metric family ϕ is dominated, we can assume
without loss of generality that there exist a finite-dimensional vector space over K,
a strongly dominated norm family ξ = (‖.‖ω)ω∈Ω on E, a positive integer n and a
surjective homomorphism f : π∗(E)→ L⊗n such that ϕ identifies with the orthogonal
quotient metric family induced by ξ (see Definition 3.3.5). We may assume further
that ξ is Hermitian and E admits a basis e which is orthonormal with respect to all
norms ‖.‖ω.

For any ω′ ∈ Ω′, let ‖.‖ω′ be the norm ‖.‖ω,K′
ω′
, where ω = α#(ω′). Then ξHα =

(‖.‖ω′)ω′∈Ω′ is a norm family on EK′ . Moreover, if we view e as a basis of EK′ overK ′,
then it is orthonormal with respect to all norms ‖.‖ω′ . In particular, the norm family
ξHα is strongly dominated. Since ϕα coincides with the orthogonal quotient metric
family induced by ξHα , we deduce that the metric family ϕα is also dominated.

4.3.3. Definition. — Let E be a finite-dimensional vector space over K and ξ =

(‖.‖ω)ω∈Ω be a norm family on E. We define ξα = (‖.‖ω′)ω′∈Ω′ as the following norm
family on Eα := E ⊗K,α# K ′. In the case where ω′ is non-Archimedean, the norm
‖.‖ω′ is the ε-extension of scalars of ‖.‖ω, where ω = α#(ω′); in other words, one has

∀ s ∈ Eα,K′
ω′
, ‖s‖ω′ = sup

f∈E∨Kω\{0}

|f(s)|ω′
‖f‖ω,∗

.

In the case where ω′ is Archimedean, the norm ‖.‖ω′ is the π-extension of scalars of
‖.‖ω, in other words, one has

∀ s ∈ Eα,K′
ω′
, ‖s‖ω′ = inf

{
|λ1|ω′ · ‖s1‖ω + · · ·+ |λN |ω′ · ‖sN‖ω

∣∣∣∣∣
N∈N, N>1

(λ1,...,λN )∈(K′
ω′ )

N

(s1,...,sN )∈ENω
s=λ1s1+···+λNsN

}
.

Similarly, we define ξα,ε the norm family on Eα consisting of ε-extension of scalars
(for both non-Archimedean and Archimedean absolute values).
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4.3.4. Lemma. — Let E be a finite-dimension vector space over K and ξ =

(‖.‖ω)ω∈Ω be a measurable norm family on E. Then the norm families ξα,ε and ξα
defined above are also measurable.

Proof. — The proof is very similar to that of [13, Proposition 4.1.24 (1.c)]. The case
where A and A′ are discrete is trivial. In the following, we will treat the case where
K and K ′ admit countable subfields K0 and K ′0 such that K0 is dense in each Kω

with ω ∈ Ω, and K ′0 is dense in each K ′ω′ with ω
′ ∈ Ω′, respectively. We first check

the measurability of ξα,ε. For any ω′ ∈ Ω′, let ‖.‖ω′,ε be the norm indexed by ω′

in the family ξα,ε. Let H0 be a finite-dimensional K0-vector subspace of E∨ which
generates E∨ as a vector space over K. Then H0 \ {0} is dense in E∨Kω \ {0} for any
ω ∈ Ω. If s is an element of Eα, then for any ω′ ∈ Ω′,

‖s‖ω′,ε = sup
f∈H0\{0}

|f(s)|ω′
‖f‖ω,∗

.

Hence it is the supremum of a countable family of A′-measurable function in ω′.
As for the second statement, it suffices to apply the first statement to ξ∨ to obtain
the measurability of (ξ∨)α,ε. Since ξα is the dual norm family of (ξ∨)α,ε (see [13,
Proposition 1.3.20]), by [13, Proposition 4.1.24 (1.c)] we obtain the measurability of
ξα.

4.3.5. Proposition. — Let X be a projective scheme over SpecK.
(1) Let L be an invertible OX-module and ϕ be a metric family on L. We assume

that L is ample and all metrics in the family ϕ are semi-positive If ϕ is mea-
surable, then ϕα is also measurable.

(2) Let D be a Cartier divisor on X and g be a Green function family of g. Assume
that D is ample and g is semi-positive. If g is measurable, then gα is also
measurable.

Proof. — It suffices to prove the first statement. Similarly to the proof of Theorem
4.2.4, for any m ∈ N>1 such that L⊗m is very ample we choose a norm family
ξm = (‖.‖(m)

ω )ω∈Ω on H0(X,L⊗m) such that H0(X,L⊗m) admet a basis which is
orthonormal with respect to each norm ‖.‖(m)

ω . This norm family is clearly measurable.
For any b > 0 and any ω ∈ Ω, let ϕ(m)

b,ω the quotient metric on L induced by the norm

‖.‖(m)
b,ω = max{‖.‖mϕ, b‖.‖(m)

ω }

on H0(Xω, L
⊗m
ω ). By Proposition 4.1.9, the norm family ξ

(m)
b := (‖.‖(m)

b,ω )ω∈Ω is

measurable. By Lemma 4.3.4, we deduce that the norm family ξ(m)
b,α of H0(Xα, L

⊗m
α )

is A′-measurable.
Let ϕ(m)

b be the quotient metric family on L induced by ξ
(m)
b . By [13, Remark

2.2.14], the metric ϕ(m)
b,α identifies with the quotient metric family on Lα induced

by ξ(m)
b,α . Since the norm family ξ(m)

b,α is measurable, by [13, Proposition 6.1.30], the
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metric family ϕ(m)
b,α is measurable. By Proposition 3.3.11, for any fixed ω′ ∈ Ω′ and

ω = α#(ω′), for sufficiently small b one has ϕ(m)
b,ω = ϕ

(m)
ω and hence ϕ(m)

b,α,ω′ = ϕ
(m)
α,ω′ .

Therefore, by [13, Proposition 6.1.29] we obtain that ϕ(m)
α is measurable. By (3.4),

for any ω′ ∈ Ω′ and ω = α#(ω), one has

dω′(ϕ
(m)
α , ϕα) 6 dω(ϕ(m), ϕ).

Since the metric family ϕ is semi-positive, by Proposition 3.3.12, we deduce that, for
any ω′ ∈ Ω′, one has

lim
m→+∞

dω′(ϕ
(m)
α , ϕα) = 0.

Still by [13, Proposition 6.1.29], we obtain that the metric family ϕ is measurable.

4.3.6. Theorem. — Let X be a projective scheme over SpecK and d be the di-
mension of X. Let D0, . . . , Dd be Cartier divisors on X which intersects properly.
We assume that each Cartier divisor Di is equipped with an integrable Green function
family gi. The the following equality holds

((D0,α, g0,α) · · · (Dd,α, gd,α))ω′ = ((D0, g0) · · · (Dd, gd))α#(ω′).

In particular, if all Green function family gi are dominated (resp. measurable), then
the function

(ω′ ∈ Ω′) 7−→ ((D0,α, g0,α) · · · (Dd,α, gd,α))ω′

is dominated (resp. measurable). If all (Di, gi) are adelic Cartier divisors, then the
following equality holds

((D0, g0) · · · (Dd, gd))S = ((D0,α, gd,α) · · · (Dd,α, gd,α))S′ .

Proof. — For any ω′ ∈ Ω′ and ω = α#(ω′), the equality

((D0,α, g0,α) · · · (Dd,α, gd,α))ω′ = ((D0, g0) · · · (Dd, gd))ω

follows from Proposition 3.9.9 (see also Remark 3.9.10).
If g0, . . . , gd are measurable, by Theorem 4.2.10, the function

(ω ∈ Ω) 7−→ ((D0, g0) · · · (Dd, gd))ω

is A-measurable. Since α# is a measurable map, we deduce that the function

(ω′ ∈ Ω′) 7−→ ((D0,α, g0,α) · · · (Dd,α, gd,α)ω′

is A′-measurable.
Assume that the Green function families g0, . . . , gd are dominated. By Theorem

4.2.11, there exists an integrable function F on the measure space (Ω,A, ν) such that

∀ω ∈ Ω, |((D0, g0) · · · (Dd, gd))ω| 6 F (ω).

Hence
∀ω′ ∈ Ω, |((D0,α, g0,α) · · · (Dd,α, gd,α))ω′ | 6 F (α#(ω′)).
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Hence the function

(ω′ ∈ Ω′) 7−→ ((D0,α, g0,α), · · · , (Dd,α, gd,α))ω′

is dominated. Finally, if the function

(ω ∈ Ω) 7−→ ((D0, g0) · · · (Dd, gd))ω

is integrable, then also is the function

(ω′ ∈ Ω′) 7−→ ((D0,α, g0,α) · · · (Dd,α, gd,α))ω′ = ((D0, g0) · · · (Dd, gd))α#(ω′)

is also integrable, and one has

((D0,α, gd,α) · · · (Dd,α, gd,α))S′ =

∫
Ω′

((D0,α, g0,α) · · · (Dd,α, gd,α))ω′ ν
′(dω′)

=

∫
Ω

Iα(ω′ 7−→ ((D0,α, g0,α) · · · (Dd,α, gd,α))ω′) ν(dω)

=

∫
Ω

((D0, g0) · · · (Dd, gd))ω ν(dω) = ((D0, g0) · · · (Dd, gd))S .

4.4. Multi-heights

From now on, we assume that the adelic curve S is proper.

4.4.1. Definition. — Let X be a projective scheme over SpecK. If f is a regular
meromorphic function on X, we denote by d̂iv(f) the following adelic Cartier divisor

(div(f), (− ln |f |ω)ω∈Ω).

If L = (L,ϕ) is an adelic line bundle on X and if s is a regular meromorphic section
of L on X, we denote by d̂iv(s) the following adelic Cartier divisor

(div(s), (− ln |s|ϕω )ω∈Ω).

4.4.2. Proposition. — Let X be a projective K-scheme of dimension d, and
D0, . . . , Dd and D

′
0, . . . , D

′
d be families of integrable adelic Cartier divisors, such

that D0, . . . , Dd and D′0, . . . , D
′
d intersect properly. If there is a family of regular

meromorphic functions f0, . . . , fd on X such that Di = D
′
i+d̂iv(fi) for i ∈ {0, . . . , d}.

Then
(D0 · · ·Dd)S = (D

′
0 · · ·D

′
d)S .

Proof. — It is sufficient to prove that if f is a regular meromorphic function on X

and D1, . . . , Dd are integrable adelic Cartier divisors such that div(f), D1, . . . , Dd

intersect properly, then (d̂iv(f) · D1 · · ·Dd)S = 0. Clearly we may assume that K
is algebraically closed, so that the assertion follows from Proposition 3.6.5 and the
product formula.
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4.4.3. Definition. — Let L0 = (L0, ϕ0), . . . , Ld = (Ld, ϕd) be a family of integrable
adelic line bundles. Let s0, . . . , sd be regular meromorphic sections of L0, . . . , Ld,
respectively such that div(s0), . . . ,div(sd) intersect properly. Then, by Proposi-
tion 4.4.2, the global intersection number

(d̂iv(s0) · · · d̂iv(sd))S

does not depend on the choice of s0, . . . , sd. The global intersection number

(L0 · · ·Ld)S
of L0 · · ·Ld over S is then defined as

(d̂iv(s0) · · · d̂iv(sd))S .

This number is also called the multi-height of X with respect to L0, . . . , Ld and is
denoted by

hL0,...Ld
(X).

In the particular case where L0, . . . Ld are all equal to the same integrable adelic line
bundle L, the number hL,...,L(X) is denoted by hL(X) in abbreviation, and is called
the height of X with respect to L.

4.4.4. Proposition. — (1) The global intersection pairing is a symmetric bilinear
form on the group consisting of integrable adelic line bundle.

(2) Let X1, . . . , X` be irreducible components of X and η1, . . . , η` be the generic
points of X1, . . . , X`, respectively. Then(

L0 · · ·Ld
)
S

=
∑̀
j=1

lengthOX,ηj
(OX,ηj )

(
L0

∣∣
Xj
· · · Ld

∣∣
Xj

)
S
.

(3) Let sd be a regular meromorphic section of Ld and div(sd) = a1Z1 + · · ·+ anZn
be the decomposition as cycles. Then

(L0 · · ·Ld)S =

∫
Ω

(∫
Xan
ω

− log |sd|ϕω (x)µ(L0,ω,ϕ0,ω),···(Ld−1,ω,ϕd−1,ω)(dx)

)
ν(dω)

+

n∑
i=1

ai(L0

∣∣
Zi
· · · Ld−1

∣∣
Zi

)S .

Proof. — They follows from (3.14) and Proposition 3.6.3.

Finally let us consider the projection formula for our intersection theory. For this
purpose, we need three lemmas.

4.4.5. Lemma. — Let (A,m) be a local Artinian ring and B be an A-algebra such
that B is finitely generated as an A-module. Let M be a finitely generated B-module.
Then

lengthA(M) =
∑

n∈Spec(B)

[B/n : A/m] lengthBn
(Mn).
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In particular, if B is flat over A, then

rkA(B) lengthA(A) =
∑

n∈Spec(B)

[B/n : A/m] lengthBn
(Bn).

Proof. — Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of finitely generated
B-modules. Then, both sides of the above first equation are additive with respect to
the exact sequence. Therefore, we may assume that M = B/n for some n ∈ Spec(B).
In this case, it is obvious.

4.4.6. Lemma. — Let A be an integral domain and B be a flat A-algebra. If we
denote the structure homomorphism A → B by φ, then φ−1(P ) = {0} for any P ∈
AssB(B).

Proof. — We set P = ann(b) for some b ∈ B \ {0}. If there is a ∈ φ−1(P ) \ {0},
then φ(a)b = 0. Since B is flat over A, φ(a) is regular, so that b = 0. This is a
contradiction.

4.4.7. Lemma. — Let f : Y → X be a proper and surjective morphism of integral
scheme of finite type over a field k such that dimX = dimY . For an extension filed
k′ of k, if X ′ := X ×Spec(k) Spec(k′), Y ′ := Y ×Spec(k) Spec(k′) and f ′ : X ′ → Y ′ is
the induced morphism, then

f ′∗([X
′]) = [k(Y ) : k(X)][Y ′].

Proof. — By Lemma 4.4.6, any irreducible component of X ′ (resp. Y ′) maps sur-
jectively to X (resp. Y ) by X ′ → X (resp. Y ′ → Y ). Moreover, we can find a
non-empty Zariski open set U of X such that f−1(U) → U is finite and flat. Note
that if we set U ′ := U ×Spec(k) Spec(k′), then f ′

−1
(U ′) = f−1(U) ×Spec(k) Spec(k′)

and f ′−1
(U ′) → U ′ is finite and flat. Therefore, we may assume that f is finite and

flat, so that the assertion is a consequence of the second formula in Lemma 4.4.5.

4.4.8. Definition. — Let Z = a1Z1 + · · · + arZr be an l-dimensional cycle on X
and L0, . . . , Ll be integrable adelic line bundles. Then (L0 · · ·Ll | Z)S is defined to
be

(L0 · · ·Ll | Z)S :=

r∑
j=1

aj

(
L0

∣∣
Zj
· · · Ll

∣∣
Zj

)
S
.

In the case where L0, . . . , Ll are all equal to the same adelic line bundle L, we call it
the height of the cycle Z with respect to L, and denote it by hL(Z).

4.4.9. Theorem (Projection formula). — Let f : Y → X be a morphism of
projective schemes over K and L0, . . . , Ll be integrable adelic line bundles on X. For
an l-cycle Z on Y ,

(f∗(L0) · · · f∗(Ll) | Z)S = (L0 · · ·Ll | f∗(Z))S .

Proof. — First let us see the following:
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4.4.10. Claim. — If f is a surjective morphism of projective integral schemes over
K, then

(f∗(L0) · · · f∗(Ll))S =

{
deg(f)(L0 · · ·Ll)S if dimX = dimY ,

0 if dimX < dimY .

In other words,

(f∗(L0) · · · f∗(Ll) | Y )S = (L0 · · ·Ll | f∗(Y ))S .

Proof. — We choose rational sections s0, . . . , sd of L0, . . . , Ld, respectively such that
div(s0), . . . ,div(sd) intersect properly on X and f∗(div(s0)), . . . , f∗(div(sd)) intersect
properly on Y . Let Kω be the completion of K with respect to ω ∈ Ω, Xω :=

X ×Spec(K) Spec(Kω), Yω := Y ×Spec(K) Spec(Kω) and fω : Yω → Xω be the induced
morphism. Further let πX,ω : Xω → X and πY,ω : Yω → Y be the projections. Then
the following diagram is commutative.

Yω
fω //

πY,ω

��

Xω

πX,ω

��
Y

f
// X

Since X and Y are integral, f∗(div(si)) is well defined as a Cartier divisor. Moreover,
π∗Y,ω(f∗(div(si))) and div(si)ω := π∗X,ω(div(si)) are defined because πY,ω and πX,ω are
flat. Therefore, f∗ω(div(si)ω) is defined as a Cartier divisor on Yω for each i = 0, . . . , d.
Let Yω,1, . . . , Yω,mω (resp. Xω,1, . . . , Xω,nω ) be irreducible components of Yω (resp.
Xω).

First we assume that dimX < dimY . Then, by Proposition 3.6.4,(
f∗ω(div(s0)ω,− log |s0|ϕω )|Yω,j · · · f

∗
ω(div(sd)ω,− log |sd|ϕω )|Yω,j

)
ω

= 0

for all j = 1, . . . ,mω. Therefore,(
f∗ω(div(s0)ω,− log |s0|ϕω ) · · · f∗ω(div(sd)ω,− log |sd|ϕω )

)
ω

= 0,

and hence the assertion follows.
Next we assume that dimX = dimY . For each i ∈ {1, . . . , nω}, let

Jω,i := {j ∈ {1, . . . ,mω} | fω(Yω,j) = Xω,i}

and
Jω,0 := {1, . . . , nω} \ (Jω,1 ∪ · · · ∪ Jω,nω ).

By Proposition 3.6.4, if j ∈ Jω,i (i ∈ {1, . . . , nω}), then(
f∗ω(div(s0)ω,− log |s0|ϕω )|Yω,j · · · f

∗
ω(div(sd)ω,− log |sd|ϕω )|Yω,j

)
ω

= deg(fω|Yω,j )
(

(div(s0)ω,− log |s0|ϕω )|Xω,i · · · (div(sd)ω,− log |sd|ϕω )|Xω,i
)
ω
.
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Moreover, if j ∈ Jω,0, then(
f∗ω(div(s0)ω,− log |s0|ϕω )|Yω,j · · · f

∗
ω(div(sd)ω,− log |sd|ϕω )|Yω,j

)
ω

= 0.

Thus, by Lemma 4.4.7, one has(
f∗ω(div(s0)ω,− log |s0|ϕω ) · · · f∗ω(div(sd)ω,− log |sd|ϕω )

)
ω

= deg(f)
(

(div(s0)ω,− log |s0|ϕω ) · · · (div(sd)ω,− log |sd|ϕω )
)
ω
.

Therefore,

(f∗(L0) · · · f∗(Ll))S

=

∫
Ω

(
f∗ω(div(s0)ω,− log |s0|ϕω ) · · · f∗ω(div(sd)ω,− log |sd|ϕω )

)
ω
ν(dω)

= deg(f)

∫
Ω

(
(div(s0)ω,− log |s0|ϕω ) · · · (div(sd)ω,− log |sd|ϕω )

)
ω
ν(dω)

= deg(f)(L0 · · ·Ll)S .

as required.

In general, if we set Z = a1Z1 + · · ·+ arZr, then, by Claim 4.4.10,

(f∗(L0) · · · f∗(Ll) | Z)S =

r∑
j=1

aj(f
∗(L0) · · · f∗(Ll) | Zj)S

=

r∑
j=1

aj(L0 · · ·Ll | f∗(Zj))S = (L0 · · ·Ll | f∗(Z))S .

4.5. Polarized adelic structure case

Let K be a finitely generated field over Q and n be the transcendental degree of
K over Q. Let (B; H 1, . . . ,H n) be a polarization of K and S = (K, (Ω,A, ν), φ) be
the polarized adelic structure by (B; H 1, . . . ,H n) (for details, see Section 2.8).

Let X be a d-dimensional projective and integral scheme over K. We choose a
projective arithmetic variety X and a morphism π : X → B such that the generic
fiber of X → B is X. Let L0, . . . , Ld be invertible OX -modules. We assume that
there are C∞-metrized invertible OX -modules L 0 = (L , h0), . . . ,L d = (Ld, hd) in
the usual sense on arithmetic varieties such that L0, . . . ,Ld coincides with L0, . . . , Ld
on X. Note that, for each ω ∈ Ω, L i yields a smooth metric ϕi,ω of Li,ω, that is, if
ω ∈ Ω∞, then ϕi,ω = hi|π−1(ω); if ω ∈ Ω \Ω∞, then ϕi,ω is the model metric induced
by the model (X ,Li). We denote {(Li,ω, ϕi,ω)}ω∈Ω by Li.

4.5.1. Proposition. — (L0 · · ·Ld)S = (L 0 · · ·L d · π∗(H 1) · · ·π∗(H n))
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Proof. — We prove the assertion by induction on d. Clearly we may assume that X

is normal. If d = 0, that is, dim X = n + 1, then it is an easy consequence of [49,
Lemma 1.12, Lemma 1.15, Proposition 5.3, Lemma 5.15 and Theorem 5.20].

We assume that d > 0. Let us choose a non-zero rational section s0 of L0. Let
div(s0) = a1Z1 + · · ·+ arZr be the decomposition as a cycle. Then one has

(L 0 · · ·L d · π∗(H 1) · · ·π∗(H n))

=

r∑
i=1

ai(L 1 · · ·L d · π∗(H 1) · · ·π∗(H n) · (Zi, 0))

+

∫
X (C)

− log |s0|h0
c1(L1) ∧ · · · ∧ c1(Ld) ∧ c1(π∗H1) ∧ · · · ∧ c1(π∗Hn).

Note that∫
X (C)

− log |s0|h0
c1(L1) ∧ · · · ∧ c1(Ld) ∧ c1(π∗H1) ∧ · · · ∧ c1(π∗Hn)

=

∫
B(C)

(∫
X (C)/B(C)

− log |s0|h0c1(L1) ∧ · · · ∧ c1(Ld)

)
c1(H1) ∧ · · · ∧ c1(Hn).

Here we consider the following claim:

4.5.2. Claim. — Let ψ : Y → C be a surjective morphism of projective arithmetic
varieties. Let M 1, . . . ,M d (resp. D1, . . . ,Dn) be metrized integrable invertible OY -
modules (resp. OC -modules) such that d+ n = dim Y . Let Yη be the generic fiber of
ψ : Y → C . Then

(M 1 · · ·M d · π∗D1 · · ·π∗Dn)

=

{(
M1|Yη · · ·Md|Yη

)
(D1 · · ·Dn), if d = dim Yη,

0, if d < dim Yη.

Proof. — This is a consequence of the projection formula (cf. [49, Theorem 5.20]).

By the above claim, if Z is a prime divisor on X with π(Z) 6= B, then(
L 1 · · ·L n · π∗(H 1) · · ·π∗(H d) · (Z, 0)

)
=

{(
L1|Zη · · · Ln|Zη

)
(H 1 · · ·H d · (π(Z), 0)), if codim(π(Z); B) = 1,

0, if codim(π(Z); B) > 2,

where Zη is the generic fiber of Z → π(Z). Therefore, if we set{
Ih := {i ∈ {1, . . . , r} | π(Zi) = B},
IΓ := {i ∈ {1, . . . , r} | π(Zi) = Γ}
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for Γ ∈ Ω \ Ω∞, and denote
r∑
i=1

ai(L 1 · · ·L d · π∗(H 1) · · ·π∗(H n) · (Zi, 0))

by T , then, by Example 3.5.2 and hypothesis of induction on d, one has

T =
∑
i∈Ih

ai(L 1 · · ·L d · π∗(H 1) · · ·π∗(H n) · (Zi, 0))

+
∑

Γ∈Ω\Ω∞

∑
i∈IΓ

ai(L 1 · · ·L d · π∗(H 1) · · ·π∗(H n) · (Zi, 0))

=
∑
i∈Ih

ai
(
L1

∣∣
Zi
· · · Ld

∣∣
Zi

)
S

+
∑

Γ∈Ω\Ω∞

(H 1 · · ·H d · (Γ, 0))

∫
Xan

Γ

− log |s0|ϕ0,Γc1(L1, ϕ1,Γ) · · · c1(Ld, ϕd,Γ),

where Zi is the generic fiber of Zi → B for i ∈ Ih. Thus, by (3.14),

(L 0 · · ·L d · π∗(H 1) · · ·π∗(H n)) =
∑
i∈Ih

ai
(
L1

∣∣
Zi
· · · Ld

∣∣
Zi

)
S

+

∫
Ω

(∫
Xan
ω

− log |s0|ϕ0,ω
c1(L1, ϕ1,ω) · · · c1(Ld, ϕd,ω)

)
ν(dω) = (L1 · · ·Ld)S ,

as required.
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