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CONTENTS 1

Abstract. — We establish an arithmetic intersection theory in the framework of
Arakelov geometry over adelic curves. To each projective scheme over an adelic curve,
we associate a multi-homogenous form on the group of adelic Cartier divisors, which
can be written as an integral of local intersection numbers along the adelic curve.
The integrability of the local intersection number is justified by using the theory of
resultants.






INTRODUCTION

Since the seminal work of Dedekind and Weber [17], the similarity between num-
ber fields and fields of algebraic functions of one variable has been known and has
deeply influenced researches in algebraic geometry and number theory. Inspired by
the discovery of Hensel and Hasse on embeddings of a number field into diverse local
fields, Weil [65] considered in the same time all places of a number field, finite or
infinite, in his theory of adéles, which made a decisive step toward the unification of
number theory and algebraic geometry. Many works have then been done along this
direction. On the one hand, the analogue of Diophantine problems (notably Mordell’s
conjecture) in the function field setting has been studied by Manin [47], Grauert [30]
and Samuel [60]; on the other hand, through Weil’s height machine [64] and the
theory of Néron-Tate’s height [51], methods of algebraic geometry have been system-
atically applied to the research of Diophantine problems, and it has been realized
that the understanding of the arithmetic of algebraic varieties over a number field,
which should be analogous to algebraic geometry over a smooth projective curve,
is indispensable in the geometrical approach of Diophantine problems. Under such
a circonstance Arakelov [I, [2] has developed the arithmetic intersection theory for
arithmetic surfaces (namely relative curves over SpecZ). Note that the transcription
of the intersection theory into the arithmetic setting is by no means automatic. The
key idea of Arakelov is to introduce transcendental objects, notably Hermitian met-
rics or Green functions, over the infinite places, in order to “compactify” arithmetic
surfaces. To each pair of compactified arithmetic divisors, he attached a family of
local intersection numbers parametrized by the set of places of the base number field.
The global intersection number is obtained by taking the sum of local intersection
numbers. Arakelov’s idea has soon led to spectacular advancements in Diophantine
geometry, especially Faltings’ proof [19] of Mordell’s conjecture.

The fundament of Arakelov geometry for higher dimensional arithmetic varieties
has been established by Gillet and Soulé, where an arithmetic intersection theory [25),
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27| for general arithmetic varieties has been established and an “arithmetic Riemann-
Roch theorem” [26] has been proved. They have introduced the notion of arithmetic
Chow groups, which is a hybride construction of the classic Chow group in algebraic
geometry and currents in complex analytic geometry. Applications of arithmetic
intersection theory in Diophantine geometry have then been developed, notably to
build up an intrinsic height theory for arithmetic projective varieties (see for example
[20, [5]). Arakelov’s height theory becomes now an important tool in arithmetic
geometry. Upon the need of including several constructions of local heights (such
as canonical local height for subvarieties in an Abelian variety) in the setting of
Arakelov geometry, Zhang [68] has introduced the notion of adelic metrics for ample
line bundles on a projective variety over a number field, which could be considered as
uniform limit of Hermitian line bundles (with possibly different integral models).

Inspired by the similarity between Diophantine analysis and Nevanlinna theory,
Gubler [34] has proposed a vast generalization of height theory in the framework of
M-fields. Recall that a M-field is a field K equipped with a measure space M and
a map from K x M to Ry which behaves almost everywhere like absolute values on
K. Combining the intersection product of Green currents in the Archimedean case
and the local height of Chow forms, he has introduced local heights (parametrized
by the measure space M) for a projective variety over an M-field. Assuming the
integrability of the function of local heights on the measure space M, he has defined
the global height of the variety as the integral of local heights. Interesting examples
have been discussed, which show that in many cases the function of local heights is
indeed integrable.

In [12], we have developed an Arakelov geometry over adelic curves. Our framework
is similar to M-field of Gubler, with a slightly different point of view: an adelic curve is
a field equipped with a family of absolute values parametrized by a measure space (in
particular, we require the absolute values to be defined everywhere). These absolute
values play the role of places in algebraic number theory. Hence we can view an
adelic curve as a measure space of “places” of a given field, except that we allow
possibly equivalent absolute values in the family, or even copies of the same absolute
value. Natural examples of adelic curves contain global fields, countably generated
fields over global fields (as we will show in the second chapter of the current article),
field equipped with copies of the trivial absolute value, and also the amalgamation of
different adelic structures of the same field. Our motivation was to establish a theory
of adelic vector bundles (generalizing previous works of Stuhler [63], Grayson [31],
Bost [6] and Gaudron [23]), which is analogous to geometry of numbers and hence
provides tools to consider Diophantine analysis in a general and flexible setting. By
using the theory of adelic vector bundles, the arithmetic birational invariants are
discussed in a systematic way.
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The first contribution of the current article is to discuss transcendental coverings
of adelic curves. Let S = (K, (Q, A, v), ¢) be an adelic curve, where K is a countable
field, (2,4, v) is a measure space, and ¢ : w — ||, is a map from 2 to the set of all
absolute values of K, such that, for any a € K*, the function (w € Q) — Inlal, is
measurable. In [12] Chapter 3], for any algebraic extension L/K, we have constructed
a measure space (2, Ar,vr), which is fibered over (2,.4,v) and admits a family of
disintegration probability measures. For each w € (2, we correspond the fiber {1y, , to
the family of all absolute values of L extending |-|,,. Thus we obtain a structure of
adelic curve on L which is called an algebraic covering of S.

In [12] §3.2.5], we have illustrated the construction of an adelic curve structure
on Q(T), which takes into account the arithmetic of Q and the geometry of P!. In
the current article, we generalizes and systemize such a construction on a purely
transcendental and countably generated extension of the underlying field K of the
adelic curve S. For simplicity, we explain here the case of rational function of finitely
many variables. Let n be an integer such that n > 1 and T = (T3, ...,T,) be variables.
Let L be the rational function field K(T') = K(11,...,T,), which is by definition the
field of fractions of the polynomial ring K[T| = K[T1,...,T,]. For each w € Q such
that the absolute value ||, is non-Archimedean, by Gauss’s lemma, we extends ||,
to be an absolute value on L such that

Vf=)_ aaNT* € K[T], |flo = max |aal..
deNn

We then take Qf, ., to be the one point set {w}, which is equipped with the natural
probability measure. In the case where the absolute value ||, is Archimedean, we
fix an embedding ¢, : K — C such that ||, is the composition of the usual absolute

value |-| on C with ¢, (by a measurable selection argument, we can arrange that the
family of ¢,, parametrized by Archimedean places is A-measurable). We let

QL7w = {(tl,,tn) S [0, 1]"

(e(t1),...,e(tn)) is algebraically
independent over ¢, (K) ’

where for each t € [0, 1], e(t) denotes e* . Note that, if we equip [0,1]" with the
Borel o-algebra and the uniform probability measure, then €y ., is a Borel set of
measure 1. Moreover, each element t = (t1,...,t,) € Qr, gives rise to an absolute
value |-|¢ on L such that

V=) a(/)T*e K[T], |fle=

deN»

3 wolaa(f))e(t)™ - efta)

deN»

It turns out that the disjoint union Qr, of (214, )weq forms a structure of adelic curve
on the field L, which is fibered over that of S, and admits a family of disintegration
probability measures. We denote by Sy, = (L, (2, Aq,,vL), ¢1) the corresponding
adelic curve.
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In the case where the adelic curve S is proper, namely the following equality holds
for any a € K*

/ In |al, v(dw) = 0,
Q

it is not true in general that the adelic curve Sy, is also proper. In the article, we
propose several natural “compactifications” of the adelic curve. Here we explain one
of them which has an “arithmetic nature”. We say that two irreducible polynomials
Pand Q in K[T1,...,T,] are equivalent if they differ by a factor of non-zero element
of K. This is an equivalence relation on the set of all irreducible polynomials. In
each equivalence class we pick a representative to form a family & of irreducible
polynomials. Then every non-zero element f of K can be written in a unique way as

f=a(f) I] Fo4r,
Fez

where a(f) € K*, and ordp(-) : L — Z U {400} is the discrete valuation associated
with F, we denote by |-|p = e~ °rdr () the corresponding absolute value on L. More-
over, the degree function on K[T'] extends naturally to L so that — deg(-) is a discrete
valuation on L. Moreover, the following equality holds (see Proposition

VfeK(T), . deg(F)ordp(f)= deg(f).
Fez

We let |-|oo be the absolute value on L such that ||, = e48(). Note that, for any
F € 22, one has

hs, (F) := / V(dw)/ In|F|,vp w(dz) > 0.
Q Qr.w

We fix a positive real number . Let (2},.47,v7) be the disjoint union of (Qz,, Az, vr)
and & U {0}, which is equipped with the measure VZ\ extending vy, and such that
v ({o0}) = A and

VE €2, vp({F})=hs,(F)+ Adeg(F).

Let (b% be the map from QE to the set of absolute values on L, sending = € Q% to
||z~ Then we establish the following result (see notably Propositions [2.7.10[and

2.7.14] see also Proposition for the general construction).

Theorem A. — Assume that the adelic curve S is proper.

(1) For any A > 0, the adelic curve S = (L, (Q},A},v3), ¢}) is proper.
(2) If the adelic curve S satisfies the Northcott property, namely, for any C > 0,
the set

{a €K ’ /Qmax{ln lalo, 0} v(dw) < c}

is finite, then, for any X > 0, the adelic curve S? satisfies the Northcott property.
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Together with the algebraic covering of adelic curves mentioned above. This con-
struction provides a large family of adelic structures for finitely generated extensions
of Q, which behave well from the view of geometry of numbers. Note however that the
compactification S 2 is not fibered over S, but rather fibered over the amalgamation
of S with copies of the trivial absolute value on K. This phenomenon suggest that it
is a need of dealing with the trivial absolute value in the consideration of the relative
geometry of adelic curves.

To build up a more complete picture of Arakelov geometry over an adelic curve, it
is important to develop an arithmetic intersection theory and relate it to the heights of
projective varieties over an adelic curve. Although the local intersection theory is now
well understood, thanks to works such as [34}, [35], 10, [50], it remains a challenging
problem to show that the local intersection numbers form an integrable function over
the parametrizing measure space. In this article, we resolve this integrability problem
and thus establish a global intersection theory in the framework of Arakelov geometry
over adelic curves. Recall that the function of local heights for an adelic line bundle
is only well defined up to the function of absolute values of a non-zero scalar. One
way to make explicit the local height function is to fix a family of global sections of
the line bundle which intersect properly. Note that each global section determines
a Cartier divisor on the projective variety, and the adelic metrics of the adelic line
bundle determine a family of Green functions of the Cartier divisor parametrized by
the measure space of “places”. For this reason, we choose to work in the framework
of adelic Cartier divisors.

Let S be an adelic curve, which consists of a field K, a measure space (2, .4,v)
and a family (||w)weq of absolute values on K parametrized by Q. Let X be a
projective scheme over Spec K and d be the Krull dimension of X. By adelic Cartier
divisor on X, we mean the datum D consisting of a Cartier divisor D on X together
with a family ¢ = (gw)weq parametrized by 2, where g, is a Green function of
D,,, the pull back of D on X, = X ®k K,, with K, being the completion of K
with respect to |-|,. Conditions of measurability and dominancy (with respect to
w € Q) for the family g are also required (see § for more details). We first
introduce the local intersection product for adelic Cartier divisors. More precisely, if
D; = (Di,gi), i €{0,...,d}, form a family of integrable metrized Cartier divisors on
X (namely a Cartier divisor equipped with a Green function, which is the difference
of two plurisubharmonic Green functions) such that Dy, ..., Dy intersect properly, we
define, for any w € , a local intersection number

(E(),...,Dd)w eR

in a recursive way by using Bedford-Taylor theory [3] and its non-Archimedean ana-
logue [10]. In the case where ||, is a trivial absolute value, we need a careful definition
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of the local intersection number (see Definition for details). Note the local in-
tersection number is a multi-linear function on the set of (d + 1)-uplets (Do, ..., Dg)
such that Dy, ..., Dy intersect properly.

To establish a global intersection theory, we need to show that the function of local
intersection numbers

(we Q) (Do,...,Da)w

is measurable and integrable with respect to v, where the measurability part is more
subtle. Although the Green function families of Dy, ..., Dy are supposed to be mea-
surable, the corresponding products of Chern currents (or their non-Archimedean
analogue) depend on the local analytic geometry relatively to the absolute values |-|,,.
It seems to be a difficult (but interesting) problem to precisely describe the mea-
surability of the local geometry of the analytic spaces X2". For places w which are
Archimedean, as we can embed all local completions K|, in the same field C, by a mea-
surable selection theorem one can show that the family of Monge-Ampére measures
is measurable with respect to w (see Theorem . However, for non-Archimedean
places, such embeddings in a common valued field do not exist in general, and the
classic approach of taking a common integral model for all non-Archimedean places
is not adequate in the setting of adelic curves, either.

To overcome this difficulty, our approach consists in relating the local intersection
number to the local length of the mixed resultant and hence reduce the problem to the
measurability of the function of local lengths of the mixed resultant, which is known
by the theory of adelic vector bundles developed in [12]. This approach is inspired by
previous results of Philippon [55] on height of algebraic cycles via the theory of Chow
forms and the comparison [56, 57, 62, (5] between Philippon’s height and Faltings
height (defined by the arithmetic intersection theory). Note that the similar idea has
also been used in [34] to construct the local height in the setting of M-fields.

Let us briefly recall the theory of mixed resultant. It is a multi-homogeneous
generalization of Chow forms, which allows to describe the interactions of several em-
beddings of a variety in projective spaces by a multi-homogeneous polynomial. One of
its original forms is the discriminant of a quadratic polynomial, or more generally the
resultant of n 4+ 1 polynomials Py, ..., P, in n variables over an algebraically closed
field, which is an irreducible polynomial in the coefficients of Fy, ..., P,, that van-
ishes precisely when these polynomials have a common root. The modern algebraic
approach of resultants goes back to the elimination theory of Cayley [9], where he
related resultant to the determinant of Koszul complex. We use here a geometric re-
formulation as in the book [24] of Gel’fand, Kapranov and Zelevinsky. In Diophantine
geometry, mixed resultant has been used by Rémond [58] to study multi-projective
heights.

We assume that the Cartier divisors D; are very ample and thus determine closed
immersions f; from X to the projective space of the linear system FE; of the divisor
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D;. By incidence variety of (fo,..., fa), we mean the closed subscheme I'x of X X
P(Ey) Xk - -+ xx P(E)) parametrizing points (z, oo, ..., ®q) such that
ap(z) =+ = ag(z) =0.

One can also consider Ix as a multi-projective bundle over X (of E quotient by the
tautological line subbundle). Therefore, the projection of Ix in P(Ey )X i+ - -x k P(E})
consists of a family of hyperplanes in P(Ejy),...,P(E,) respectively, which contain
at least one common point of X. It turns out that this projection is actually a
multi-homogeneous hypersurface of P(Ey) Xk -+ xx P(EY), which is defined by a
multi-homogeneous polynomial R}f) .1 called a resultant of X with respect to the
embeddings of fo,..., f4. We refer the readers to [24], §3.3] for more details, see also
[16] for applications in arithmetic Nullstellensatz. When K is a number field, the
height of the polynomial Ri{ .1, can be viewed as a height of the arithmetic variety
X, and, in the particular case where the image of D; in the Picard group are colinear,
an explicit comparison between the height of resultant and the Faltings height of X
has been discussed in [5], Theorem 4.3.2] (see also §4.3.4 of loc. cit.).

Usually the resultant is well defined up to a factor in K*. In the classic setting
of number field, this is anodyne for the study of the global height, thanks to the
product formula. However, in our setting, this dependence on the choice of a non-
zero scalar could be annoying, especially when the adelic curve does not satisfy a
product formula. In order to obtain a local height equality, we introduce, for each
vector

(50,...,Sd)€EOX"'XEd

such that div(sg),...,div(sq) intersect properly on X, a specific resultant R;Zg(’fdgd

of X with respect to the embeddings, which is the only resultant such that

Rﬁ’f?:};‘gd (807 ey Sd) = 1.

We then show that the local height for this resultant coincides with the local height
of X defined by the local intersection theory. By using this comparison of local height
and properties of adelic vector bundles over an adelic curve (see [13], §4.1.4]), we prove
the integrability of the local height function on non-Archimedean places. Moreover,
the integral of the local height equalities leads to an equality between the global
height of the resultant and the arithmetic intersection number (see Remark 7
which generalizes the height comparison results in [56], 5]. In resume, we obtain the

following result (see Theorems and 4.2.12)).

Theorem B. — Let S = (K,(Q,A,v),¢) be an adelic curve, X be a projective
scheme over S, d be the dimension of X, Dy, ..., Dg be Cartier divisors on X, which
are equipped with Green function families go, . . ., ga, respectively, such that (D; ., i)
is integrable for any w € Q and i € {0,...,d}.
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(1) Assume that the Cartier divisors Dy,...,D4 are very ample. For any i €
{0,...,d}, let B; = H°(X,0x(D;)), fi : X — P(E;) be the closed embed-
ding and s; € E; be the regular meromorphic section of Ox(D;) corresponding
to D;. Assume that the continuous metric family @4, corresponding to the Green
Sfunction family g; consists of the orthogonal quotient metrics induces by a Her-
mitian norm family & = (||||iw)wea on E;. Then, for any w € Q, then following
equalities hold.

(1.a) In the case where ||, is non-Archimedean, one has

)

d w,e

(Do~ D) = In HR;E,?,’}.,M

where the norm ||-||w.e on the space of multi-homogeneous polynomials is

the e-tensor product of e-symmetric power of ||-||:,w -
(1.b) In the case where |-|, is Archimedean, one has
(Do Dg)w = / In ‘Rﬁ)é"f:d(zo, e zd)’ dzg - - -dzg

S(Eo,w) X+ XS(Eq,w) w

d i
0
i=0 (=1
where S(E; ,) denotes the unit sphere of (E;w, | lliw), dz; is the Borel
probability measure on S(E; ) invariant by the unitary group, r; is the

1
g?

N | =

+

dimension of E;, and d; is the intersection number
(Do Di1Dis1 -+ Dy).

(2) Assume that, either the o-algebra A is discrete, or the field K admits a countable
subfield which is dense in each K. If all couples D; = (D;,g;) are integrable
adelic Cartier divisors on X, the the function

(weQ) — (Do Da)e
s v-integrable.

As an application, we can define the multi-height of the projective scheme X with
respect to Dy, ..., Dq as

hﬁo“‘ﬁd(X) :/Q(Eobd)w V(dw),

and, under the assumptions of the point in the above theorem, we can relate the
multi-height with the height of the resultant, by taking the integral of the local height
equalities.

From the methodological point of view, the approach of [56] works within PV (C)
and uses elimination theory and complex analysis of the Fubini-Study metric; that
of [5] relies on a choice of integral model and computations in the arithmetic Chow
groups. In our setting, we need to deal with general non-Archimedean metrics. Hence
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these approaches do not fit well with the framework of adelic curves. Our method
consists in computing the local height of

XXK]P’(E(\)/) XK e XK]P)(EC\I/)

in two ways (see Lemmafor details). We first consider this scheme as a fibration
of multi-projective space over X and relate this local height to that of X by taking the
local intersection along the fibers. We then relate the height of this product scheme
to that of the incidence subscheme Ix and then use the identification of Iy with a
multi-projective bundle over X to compute recursively the height of Ix. Our method
allows to obtain a local height equality in considering the Archimedean case and the
non-Archimedean case in a uniform way.

It is worth mentioning that an intersection theory of arithmetic cycles and a
Riemann-Roch theory could be expected for the setting of adelic curves. However,
new ideas are needed to establish a good formulation of the measurability for various
arithmetic objects arising in such a theory.

The rest of the article is organized as follows. In the first chapter, we remind several
basic constructions used in the article, including multi-linear subsets and multi-linear
functions, Cartier divisors on general scheme, proper intersection of Cartier divisors
on a projective scheme, multi-homogeneous polynomials, incidence subscheme and re-
sultants, and linear projections of closed subschemes in a projective space. The second
chapter is devoted to the construction of adelic structures. After a brief reminder on
the definition of adelic curves and their algebraic covers, we introduce transcendental
fibrations of adelic curves and their compactifications. These constructions provide
a large family of examples of adelic curves. In the third chapter, we consider the
local intersection theory in the setting of projective schemes over a complete valued
field. We first remind the notions of continuous metrics on an invertible sheaf and its
semi-positivity. Then we explain the notion of Green functions of Cartier divisors and
their relation with continuous metrics. The construction of Monge-Ampére mesures
and local intersection numbers is then discussed. The last sections are devoted to
establish the link between the local intersection number and the length (in the non-
Archimedean case) or Mahler measure (in the Archimedean case) of the corresponding
resultant, respectively. In the fourth and last chapter, we prove the integrability of
the local height function and construct the global multi-height.






CHAPTER 1

MULTILINEAR ALGEBRA AND RESULTANTS

The purpose of this chapter is preliminaries of this book, especially, we review
basics of a multilinear algebra and resultants.

1.1. Symmetric and multi-linear subsets
In this section, we fix a commutative and unitary ring k&, and a non-negative integer

d.

1.1.1. Definition. — Let V be a k-module. We say that a subset S of V4! is
multi-linear if, for any j € {0,...,d} and for any (2o,...,2j—1,Tjt1,...,2q) € V,
the subset

{Ij S V| (1‘0,. ce s TG 1, Ty Ty e ,Id) S S}
of V is either empty or a sub-k-module. If in addition
(CL‘O7. .. ,:Ed) esS = (;CU(O),. .. ,l‘g(d)) es
for any bijection o : {0,...,d} — {0,...,d}, we say that the multi-linear subset S is

symmetric.

1.1.2. Proposition. — Let V be a k-module and S be a multi-linear subset of V411,
For any j € {0,...,d}, let I; be a non-empty finite set, (x;:)ic1, be a family of el-
ements of V., (Nji)ier; be a family of elements of k, and y; = Zielj Aji%ji. As-

sume that, for any (ig,...,iq) € Iy X --- X Iy, one has (zo,iy,---,%diy) € S. Then
(yo,...,yd) € S
Proof. — We reason by induction on d. In the case where d = 0, S is a sub-k-module

of V' when it is not empty. Since yq is a k-linear combination of elements of S, we
obtain that yo € S.
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We now assume that d > 1 and that the statement holds for multi-linear subsets
of V¥, Let

S = {(ZO7 ey Zd_1) S Vd | (Zo, ey Zd—hyd) c S}
Since S is a multi-linear subset of V4*!, for any (ig,...,iq_1) € Iox---xI4_1, one has
(Tigs- s Tiy_,,ya) € S and hence (z;,,...,z;, ,) € S’. Moreover, S’ is a multi-linear

subset of V4. Hence the induction hypothesis leads to (yo,...,%4—1) € S" and thus
(Yo,---+ya) €S. [

1.1.3. Definition. — Let V and W be two k-modules, and S be a multi-linear
subset of V41, We say that amap f : S — W is multi-linear if, for any j € {0, ...,d}
and for any (zo,...,2j_1,Zj41,...,7q) € V%, the map

{l‘j S V| (xo,...,xj_l,xj,xj_,_l,...,xd) S S} — VV, Tj— f(l‘o,...,]}d),
is k-linear once
{l‘j S V| (a:o,...,a:j_l,a:j,xj_,_l,...,xd) S S}

is not empty. If in addition S is symmetric and f(xo,...,zq) = f(T5(0),. - To(a)) for
any (zg,...,xq) € S and any bijection o : {0,...,d} — {0,...,d}, we say that f is a
symmetric multi-linear map.

1.1.4. Proposition. — Let V and W be two k-modules, S be a multi-linear subset
of VI and f : S — W be a multi-linear map. Let (75,1) (j,i)e{0,...,
consisting of elements of V' such that (zo,y,-..,%a:,) € S for any (ig,...,1q) €
{0,...,d}**L. Then

Z f(ffo,a(o), e 7fcd,a(d))

0€6({0,...,d})
— E _1\d+1—%1 E . E .
- ( 1) f( 7,'0611:0’207.'.’ idelxd,ld)a

@#I1CH0,...,d}

where S({0,...,d}) is the permutation group of {0,...,d}.

ayz be a matriz

(1.1)

Proof. — By the multi-linearity of f, we can rewrite the right-hand side of the equal-

ity as
> (e S @0 Taiy)

@£1C{0,...,d} (1050 yig) ET4H1
- Z < Z (1)d+1#1> f(x(%iov s axd,id)'
(i0yeria)€{0,...,d}d+1 N {ig,...,ig }CIC{O,...,d}
Note that, for (ig,...,iq) € {0,...,d}**! such that {ig,...,iq} € {0,...,d}, one has

Z (_1)d+17#1 — (_1)d+17#{i0 ..... iq} Z (_1)7#J -0

{i0,..-,ia} C1CHO,...,d} JC{0,....d}\{io,... ia}
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since
Z (_1)—#J =1+ (_1))d+1—#{i07~--7id} —=0.
JC{0,...,d}\ {0, ia}
Therefore the equality holds. O

1.1.5. Lemma. — Let P be a subset of an abelian group G with the following prop-
erties:

(1) Forz,ye€ P, x+y € P.

(2) Forxz € G, there exist x',2" € P such that x = 2’ — z".
Let d be a positive integer, A be an abelian group and f : P* — A be a map such that

f(zla"'vxi+yi7"'7xd):f(xlv"'7xi7"'7xd)+f(zla"'ayi7"'7zd)

forallie{l,...,d} and x1,...,2;,Yi,-..,xq € P. Then there exists a unique multi-
linear map f : G* — A such that f|Pd = f.

Proof. — For z1,...,2q € G, we canfind o, 27, ..., 2}, 2/ € Psuchthat x; = 2} -z
for all i € {1,...,d}. We would like to define f(x1,...,z4) to be

far,.za) = > (=)™ Dy, za),

IC{1,....d}

2 ifiel,
Ti,l = o .
xf ifie{l,....,d}\ 1.

K2

where

: : : !/ 1 / 1! !/ 1 / 1 / 1 / 1
It is sufficient to show that if 7, =7, y1, y7, ..., &, 2}, v, y; € Pand o, —2] =y, —v;

for all i € {1,...,d}, then
> ) D f@rr,xan) = Y (D™D fyus - yan)
IC{1,...,d} IC{1,....d}

We prove it by induction on d. We assume that d = 1. As 2} + v} = 2/ +y], one has
f@) + f) = (&) + f(y}). Thus the assertion follows. We assume that d > 1.
Then, by using the hypothesis of induction,

> (=)D fay g, 3 )

IC{1,....d}

_ Z (—1)Card(1)f($1,l7~wmd,l)+ Z (_1)card(1)f(x1’l7.”7$d7l)

IC{L,....d} IC{1,....d}
g1 del

= Z (*UCMd(I/)(f(!Cu', s xa 1, ) — f@Lrs s e, 7))
'c{l,...d—1}

= > Oy, Yaerrs 7)) = FYnrs - Yao1, )
I'c{l,...d—1}

= > OO (f e yarryh) = L@ Ya1eYd)
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= Z (=1 D f(yy 1, yan),

IC{1,....d}

as required. O

1.2. Cartier divisors

In this section, let us recall the notion of Cartier divisor on a general scheme. The
main references are [33], IV, §§20-21] and [43].

1.2.1. Definition. — Let X be a locally ringed space. We denote by Ox the
structural sheaf of X. Let .#Zx be the sheaf of meromorphic functions on X. Recall
that .#x is the sheaf of commutative and unitary rings associated with the presheaf

U— Ox(U)[Sx(U)™Y],

where Sx(U) denotes the multiplicative sub-monoid of Ox (U) consisting of local
non-zero-divisors of Ox (U), that is, s € Ox (U) such that the homothety

Oxqs — Ox,z, G+ asg

is injective for any x € U (here s, denotes the canonical image of s in the local ring
Ox ). We refer the readers to [43] for a clarification on the construction of the sheaf
of meromorphic functions comparing to [33] IV4.(20.1.3)].

1.2.2. Remark. — Note that, for any = € X, .#x , identifies with OX,Z(S}}}E)7
where Sx , denotes the direct limit of Sx(U) with U running over the set of open
neighbourhoods of z, viewed as a multiplicative submonoid of Ox ., which is contained
in the sub-monoid of non-zero-divisors. Therefore, .#x , could be considered as a sub-
ring of the total fraction ring of Ox ,, namely the localization of Ox , with respect to
the set of non-zero-divisors. In general the local ring .#x , is different from the ring
of total fractions of Ox , even if X is an affine scheme. The equality holds notably
when X is a locally Noetherian scheme or a reduced scheme whose set of irreducible
component is locally finite. We refer the readers to [43] for counter-examples and
more details.

1.2.8. Definition. — Let X be a locally ringed space. We denote by .#5 the
subsheaf of multiplicative monoids of .Zx consisting of invertible elements. In other
words, for any open subset U of X, . (U) is consisting of sections s € .#5 (U) such
that, for any z € U, the homothety

Mx g — Mx,z, G+ aSy

is an isomorphism of .#x ,-modules. An element of .Z (U) is called a regular mero-
morphic function on X. Similarly, let O% be the subsheaf of multiplicative monoids
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of Ox consisting of invertible elements : for any open subset U of X, O% (U) consists
of sections s € Ox (U) such that, for any x € U, the homothety

Oxqs — Oxz, a+— asg

is an isomorphism of Ox ,-modules. Note that, for each s € Ox(U), the homothety
sz 1 Ox 4 — Ox . induces by passing to localisation an homothety #x , — x5,
which is an isomorphism of .#x ;-modules if s; : Ox ; = Ox , is an isomorphism.
Therefore, the canonical morphism Ox — .#x induces a morphism of sheaves of
abelian groups Oy — 5.

1.2.4. Definition. — We call Cartier divisor on X any global section of the sheaf
M5 |O%. By definition, a Cartier divisor D is represented by the following data: (i)
an open cover X = J, U; of X and (ii) f; € 4 (U;) for each i such that f;/f; € O%
on U; NUj for all 4, j. The regular meromorphic function f; is called a local equation
of D over U;. The group of Cartier divisors is denoted by Div(X) and the group law
of Div(X) is written additively. Note that the exact sequence

1 0% Ve MO —0

induces an exact sequence of cohomological groups
1 —TI(X,0%) —=T(X,.#5) —Div(X) — H'(X,0%) — H (X, #3) . (1.2)

We denote by div(-) the group homomorphism I'(X, .Z5) — Div(X) in this exact
sequence. Since the group law of Div(X) is written additively, one has

div(fg) = div(f) + div(g)

for any couple of regular meromorphic functions f and g on X. A Cartier divisor
belonging to the image of div(-) is said to be principal. If Dy and Ds are two Cartier
divisors such that D — D, is principal, we say that D, and D5 are linearly equivalent,
denoted by Dy ~ Ds.

1.2.5. Remark. — Recall that H' (X, O%) identifies with the Picard group Pic(X)
of X, namely the group of isomorphism classes of invertible Ox-modules (see [32]
0.(5.6.3)|). Similarly, H'(X, #<) identifies with the group of isomorphism classes
of invertible .#x-modules. If L is an invertible Ox-module, then .#x ®o, L is an
invertible .#x-module. The homomorphism H!(X,0%) — H'(X,.#<) sends the
isomorphism class of an invertible O x-module L to that of the invertible .# x-module
Mx @0, L.

1.2.6. Definition. — Let L be an invertible Ox-module and U be a non-empty
open subset of X. We call regular meromorphic section of L on U any element of
U, #x @0 L) which defines an isomorphism from .#; to .#y ®o,, L|y. Therefore,
Mx ®p, L is isomorphic as .#x-module to .#x if and only if L admits a regular
meromorphic section on X.
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1.2.7. Remark. — Let X be alocally Noetherian scheme or a reduced scheme whose
set of irreducible component is locally finite. For any = € X, the local ring .#x ,
identifies with the ring of total fractions of Ox ;. Therefore, if L is an invertible Ox-
module and if U is an open subset of X, an element s € T'(U, #x ®o, L) is a regular
meromorphic section of L on U if and only if it defines an injective homomorphism
from Oy to Ay ®o, L. In particular, an element s € I'(U,L) defines a regular
meromorphic section of L on U if and only if, for any z € U, s, € Ox ; ®o, L is of
the form f;s0,,, where f; is a non-zero-divisor of Ox ;, and s, is a local trivialization
of L at x. This condition is also equivalent to s(y) # 0 for any associate point y € U.
Recall that a point y € X is called an associated point if there exists a € Ox , such
that the maximal ideal of Ox , identifies with

ann(a) := {f € Oxy|af =0}.

Let 2 be a point of X. Assume that s, = f;s0,, where f; is a zero-divisor in Ox , then
fz belongs to an associated prime ideal of Ox ,, which corresponds to an associated
point y € X such that 2 € {y} and s(y) = 0.

By [33] IV,4.(21.3.5)], if X is a Noetherian scheme, which admits an ample invertible
Ox-module, then the set of all associated points of X is contained in an affine open
subset of X, and any invertible O x-module admits a regular meromorphic section.

1.2.8. Definition. — Let D be a Cartier divisor on X. The homomorphism
Div(X) — H'(X,0%) in the exact sequence sends D to an isomorphism class
of invertible Ox-modules. One can actually construct explicitly an invertible Ox-
module Ox (D) in this class as follows. Let (U;);er be an open cover of the topolog-
ical space such that D is represented on each U; by a regular meromorphic function
fi € F(Ui,%Lfi). For any couple (i,j) € I?, filv.nu, fj|L_,3mUj defines an isomorphism

(fiflOUi)

Moreover, these isomorphisms clearly satisfy the cocycle condition. Thus the gluing
of the sheaves fi_l(’)Ui leads to an invertible sub-O x-module of .#Zx which we denote
by Ox (D). Note that the gluing of meromorphic sections

fi® f;t € DU, My, @ Ox (D))

leads to a global regular meromorphic section of Ox (D), which we denote by sp
and call canonical regular meromorphic section of Ox (D). Hence M x @0, Ox(D)
is canonically isomorphic to .#x. Note that two Cartier divisors D; and D, are
linearly equivalent if and only if the invertible O x-modules Ox(D;) and Ox (D3) are

U;NU; — (fjilOUj)

UiﬂUj-

isomorphic.

Conversely, the exactness of the diagram shows that, an invertible O x-module
L is isomorphic to an invertible O x-module of the form Ox (D) if and only if it admits
a regular meromorphic section on X. One can also construct explicitly a Cartier
divisor from a regular meromorphic section s of L. In fact, let (U;);cr be an open
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cover of X such that each L
let f; be the unique regular meromorphic function on U; such that s = f;s;. Then the

U, is trivialized by a section s; € L(U;). For any ¢ € I,

family (f;)ier of regular meromorphic functions defines a Cartier divisor on X which
we denote by div(L; s), or by div(s) for simplicity.

1.2.9. Remark. — In the case where X is a quasi-projective scheme over a field,
any invertible O x-module admits a global regular meromorphic section and therefore
is isomorphic to an invertible O x-module of the form Ox (D), where D is a Cartier
divisor. Hence one has an exact sequence

1 —TI(X,0%) —=I(X, #5) —=Div(X) —= H'(X,0%) —=1.

1.2.10. Remark. — Let X be a 0-dimensional projective scheme over a field k.
Then there is a k-algebra A which is finite-dimensional as a vector space over k, and
such that X = Spec(4). Note that the canonical homomorphism A — @,y A, is
an isomorphism. Let f, be a regular element of A,. As the homotethy map A, — A,,
a — fga,isinjective and A, is a finite-dimensional vector space over k, this homothety
map is actually an isomorphism, that is, f, € AX. Thus .#5 = O%. Therefore, every
Cartier divisor on X can be represented by 1 € A.

1.2.11. Remark. — Let X be a Noetherian scheme. We denote by X (V) the set of
all height 1 points of X, that is, z € X with dim(Ox,) = 1. For x € X and a
regular element f of Ox ,, we set

ord,(f) := lengthe | (Ox,0/fOx 4).

Then ord, (fg) = ord, (f)+ord;(g) for all regular elements f, g of Ox , (cf [49, the last
paragraph of Section 1.3]), so that ord,(-) extends to a homomorphism .Z5 , — Z.
Let D be a Cartier divisor on X and f be a local equation of D at x. Then it is easy
to see that ord, (f) does not depend on the choice of f, so that ord,(f) is denoted by
ord; (D). We call the cycle

Z ord, (D){z}

zeX (1)
the cycle associated with D, which is denoted by z(D). Let Xi,..., X, be the irre-
ducible components of X and 7y,...,n; be the generic points of X1,..., Xy, respec-
tively. Then
¢
z(D) = Zlengthox)"j (OX,nj)Z(D|Xj)~ (1.3)
j=1

Indeed, by [49, (6) of Lemma 1.7|, ord;(D) = > .. ; b; ordx(D|X]_), where b; =
lengthy  (Ox,n;) and Jp = {j | z € X;}. Thus if we set

ord;(Dl]y ) ifz e Xj,
Ay = J )
! 0 ifx & Xy,
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then ord, (D) = Z§:1 ag,jbj. Thus

2D)= Y ord(D)ay= 3 (fjax,jbj){x}

zeX @) rex@ j=1
4 L 4 L 4
=Y b D> an{e} =) b > ordu(D|x ){z} =D bz(Dlx,),
=1 gexm Tl ex® =1
J

as required.

Let L be an invertible O x-module and s be a regular meromorphic section of L
over X. For x € X, ord,(s) is defined by ord,(f), where f is given by s = fw for
some local basis w of L around x. Note that ord,(s) does not depend on the choice of
the local basis w around z. Then the cycle z(L; s) associated with div(L;s) is defined
by

z2(L;s) := Z ord, (s){z}.

zeX 1)

1.2.12. Definition. — Let ¢ : X — Y be a morphism of locally ringed space. If
U is an open subset of Y, we denote by S, (U) the preimage of Sx (¢~ (U)) by the
structural ring homomorphism

Oy (U) — Ox (¢~ 1(U)).

We denote by .#, the sheaf of commutative and unitary rings associated with the
presheaf

U — Oy (U)[S,(U) 7.

It is a subsheaf of .#y. Moreover, the structural morphism of sheaves Oy — .(Ox)
induces by localization a morphism .#, — ¢.(.#x), which defines a morphism of
locally ringed spaces (X, #x) — (Y, .#,).

1.2.13. Remark. — There are several situations in which .#, identifies with .#y-,
notably when one of the following conditions is satisfied (see [33], IV4.(21.4.5)]):

(1) ¢ is flat, namely for any 2 € X, the morphism of rings ¢, : Oy,,@m) = Ox.
defines a structure of flat Oy, ,(,)-algebra on Ox 4,

(2) X and Y are locally Noetherian schemes, and f sends any associated point of
X to an associated point of Y,

(3) X and Y are schemes, the set of irreducible components of Y is locally finite,
X is reduced, and any irreducible component of X dominates an irreducible
component of Y.

1.2.14. Definition. — Let ¢ : X — Y be a morphism of locally ringed spaces, and
D be a Cartier divisor on Y. Assume that both D and —D are global sections of
(A N M,)]O%, or equivalently, for any local equation f of D over an open subset
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U of Y, one has {f, f~'} C .#,(U). Then the canonical regular meromorphic section
sp of Oy (D) actually defines an isomorphism

My — My 0, Oy (D).
which induces an isomorphisme
¢*(sp) : Mx — Mx oy ¢*(Oy(D)).

We denote by ¢*(D) the Cartier divisor div(¢*(Oy(D));¢*(sp)) corresponding to
this regular meromorphic section, and call it the pull-back of D by . In the case
where ¢ is an immersion, the Cartier divisor ¢*(D) is also denoted by D|x.

Finally let us consider the following lemmas.

1.2.15. Lemma. — Let o be an integral domain, A be an 0-algebra and S := 0\ {0}.
If A is flat over o, then we have the following:

(1) For s € S, the homomorphism s- : A — A given by a — s - a 1is injective.
In particular, the structure homomorphism o — A is injective, so that in the
following, o is considered as a subring of A.

(2) The natural homomorphism A — Ag is injective.

(3) Fora € A, a is a non-zero-divisor in A if and only if a/1 is a non-zero-divisor
in Ag. In particular, a non-zero-divisor of Ag can be written in the form of
a/s, where a is a non-zero-divisor of A and s € S.

(4) Let Q(A) and Q(Ag) be the total quotient rings of A and Ag, respectively. The
homomorphism Q(A) — Q(Ag) induced by A — Ag is well-defined and bijective.
In particular, Q(A)* = Q(Ag)*.

Proof. — (1) is obvious because o is an integral domain and A is flat over 0. (2)
follows from (1).
(3) The assertion follows from (1) and the following commutative diagram:
A — AS

al la.

A — AS
(4) By (3), if a € A is a non-zero-divisor, then a/1 is a non-zero-divisor in Ag, so
that Q(A) — Q(Ag) is well-defined. The injectivity of Q(A) — Q(Ag) follows from
(2). For its surjectivity, observe the following:

b/t (st/)(b/)  sb/1

a/s  (st/1)(a/s) ta/1

O

1.2.16. Lemma. — Let X be an integral projective scheme over a field k, L be
an invertible Ox-module and F be a coherent Ox-module. We assume that there
exist a surjective morphism f : X — Y of integral projective schemes over k and an
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ample invertible Oy -module A such that f*(A) = L. Then R = @, , H°(X,L®")
s a finitely generated algebra over k and M = @ZO:O HY(X,F ® L®") is a finitely
generated R-module.

Proof. — By [49], §1.8], there exist positive integers d and ng such that
HOY, A%4) @ HO(Y, A" 0 £.(F)) — HO(Y, A%+ @ £, (F))
is surjective for all n > ng, and hence
HY(X,L%Y) @ HO(X,L®" ® F) — H°(X,L®?@") g F)

is surjective for all n > ng because f.(L®") = A®" @ f.(Ox), f«(L®" @ F) =
AP @ £ (F), Oy C f.(Ox). Thus, by the arguments in [49] §1.8|, one can see the
assertion. O

1.3. Proper intersection

Let d be a non-negative integer and X be a d-dimensional scheme of finite type
over a field k. Let D be a Cartier divisor on X. We define the support of D to be

Supp(D) :={z € X | f. ¢ O% .},

where f, is a local equation of D at x. Note that the above definition does not depend
on the choice of f, since two local equations of D at z differ by a factor in O% .

1.3.1. Proposition. — (1) Supp(D) is a Zariski closed subset of X.
(2) Supp(D + D') € Supp(D) U Supp(D’).

Proof. — (1) Clearly we may assume that X is affine and D is principal, that is,
X = Spec(A) and D is defined by a regular meromorphic function f on X, which could
be considered as an element of the total fraction ring of A (that is, the localization of
A with respect to the subset of non-zero-divisors). By [43], for any prime ideal p of
A, there is a canonical ring homomorphism from the total fraction ring of A to that
of Ay. Weset a={a € A|af € A} and b = af. Then a and b are ideals of A. Note
that, for p € Spec(A4),

ap ={uec A, |uf € Ap}.

In fact, clearly one has a, C {u € A, |uf € A,}. Conversely, if u =a/s (witha € A
and s € A\ p) is an element of A, such that uf € A,, then there exists ¢ € A\ p such
that at € a and hence u = at/st € a,. Thus

p & Supp(D) <= f e Ay <=a, = Ay and by, = Ay <= p & V(a) UV(b),

that is, Supp(D) = V(a) UV (b), as desired.
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(2) Let f, and f. be local equations of D and D’ at z, respectively. Then
x ¢ Supp(D) USupp(D') = fu, f, € Ox , = fufs € Ox,
= ¢ Supp(D + D),

as required. O

1.8.2. Definition. — Let n be an integer such that 0 < n < d. Let Dy, ..., D, be
Cartier divisors on X. We say that Dy, ..., D,, intersect properly if, for any non-empty
subset J of {0,...,n},

1 ) <d-— .
dim (ijJ Supp(Dj)) < d — card(J)
By convention, dim(@) is defined to be —1. We set
IPE?) .= {(Do,...,D,) € Div(X)"*! | Dy,..., D, intersect properly}.
In the case where n = d, we often denote IPE?) by ZPx.

1.8.3. Lemma. — Let k'/k be an extension of fields. Let A be a k-algebra and
A := A®p k'. Let m: Spec(A’) — Spec(A) be the morphism induced by the natural
homomorphism A — A’. Let Q(A) (resp. Q(A")) be the total fraction ring of A (resp.
A). Let a € Q(A)* and o == a®, 1 € Q(A) @i k. If we set

{Supp(a) .= {P € Spec(A) | a ¢ A%},
Supp(a’) := {P" € Spec(A’) | o/ ¢ Alp},

then Supp(a’) = 7~ 1(Supp(a)).

Proof. — First of all, note that Q(A4)®rk C Q(A") and o € (Q(A)@ik')* C Q(A")*
because 7 is flat. Let I :=={a € A|aa € A}, J:=Ia, I' :={a' € A’ | d’a’ € A’} and
J' :=I'a/. Then one has the following.

1.8.4. Claim. — (1) Supp(ar) = Spec(A/I) U Spec(A/J) and Supp(a’) =
Spec(A’/I") U Spec(A’/J).
(2) I' =1k kK and J = J Qi K .
(3) Spec(A’/I") = =1 (Spec(A/I)) and Spec(A’/J') = 7= (Spec(A/J)).

Proof. — Let {zx}xea be a basis of & over k. Note that V @y k' = @, ., V @4 kv
for any k-module V.

(1) It is sufficient to prove the first equality. The second is similar to the first.
Note that Ip = {a € Ap | ac € Ap}. Thus, if @ € AF, then Ip = Jp = Ap, so that
P ¢ Spec(A/I)USpec(A/J). Conversely, we assume that P & Spec(A/I)USpec(A/J),
that is, I ¢ P and J € P. Thus Ip = Jp = Ap, and hence o € A¥.

(2) Obviously I ® k' C I'. We assume a’ € I’. Then there exists (ax)rea € AN
such that o’ =37, ax ® xx. By our assumption, we can find (bx)xea € AN such that

Z)\ ooy =ddo = Z)\ by ® xy,
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so that aya = by € A for all \. Thus ay € I. Therefore the first assertion follows.

The second is a consequence of the first.
(3) follows from (2). O

By using (1) and (3) of the above claim,
7 (Supp(@)) = 7 (Spec(A/I) U Spec(A/J))

= 7Y (Spec(A/I)) U (Spec(A/J))

= Supp(A'/I") U Supp(A'/J") = Supp(a’),
as required. O
1.3.5. Remark. — Let k'/k be an extension of fields, X = X Xgpeck Speck’
and m : Xpr — X be the morphism of projection. Since the canonical morphism
Speck’ — Speck is flat, so is the morphism of projection 7 (see [33], IV;.(2.1.4)]).
Therefore, for any Cartier divisor D on X, the pull-back 7*(D) is well defined as a

Cartier divisor on X}/, which we denote by Djy..
By Lemma [1.3.3] one has

Supp(Dy) = ©~(Supp(D)).

In particular, if Dy,..., D, are Cartier divisors on X, which intersect properly, then,
for any subset J of {0,...,n}, one has (see for example |28, Proposition 5.38] for the
equality in the middle)

dim (mjeJ Supp(Dj,k/)) = dim (ﬂ'_l ( ﬂjeJ Supp(Dj)))
= dim (ijJ Supp(Dj)) < d — card(J).

Therefore, the Cartier divisors Dg g/, ..., Dy on X intersect properly.
1.8.6. Lemma. — The set IP%) forms a symmetric and multi-linear subset of

Div(X)"*! in the sense of Definition|1.1.1]
Proof. — It is sufficient to show that if (Dg, D1, ..., Dy), (D}, D1,...,D,) € IP(;)7
then (Do + D}, Dy, ..., Dy,) € TPY. We set
L [Do+Dp ifi=0,
! D;, ifi>1.

If (Dy,DY,...,D!) & IPE?), then there is a non-empty subset J of {0,...,n} such
that

dim (njeJ Supp (D;’)) > d— #(J).

Clearly 0 € J. We can find a schematic point P € X such that dim {P} > d — #(J)
and P € Supp (D;’) for all j € J, so that P € Supp(Dy + D;)) and P € Supp(D,) for
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j € J\ {0}. Thus, by Proposition P € Supp(Dy) or P € Supp(Dy), which is a
contradiction. O

1.3.7. Lemma. — We assume that X is projective. Let n be an integer such that
0<n<d.

(1) Let Lg,...,L, be invertible Ox-modules. Then there are regular meromor-
phic sections Sq,...,Sn of Lo,..., Ly, respectively, such that, if we set D; =
div(L;; s;) fori € {0,...,n}, then Dy,..., D, intersect properly.

(2) If (Do, D1, ..., Dy), (Db, D}, ..., D) € IPY and Dy ~ D}y, then there is Dl
such that DY ~ Dy (~ D})) and (D, D, ...,D,), (D!, D},...,D.) e IPW.

Proof. — (1) We prove it by induction on n in incorporating the proof of the initial
case in the induction procedure. By the hypothesis of induction (when n > 1), there
are regular meromorphic sections sg, ..., S,—1 of Ly, ..., L,_1, respectively, such that
if we set D; = div(L;; s;) for ¢ € {0,...,n—1}, then Dy, ..., D,_1 intersect properly.

We now introduce the following claim, which (in the case where n = 0) also proves
the initial case of induction.

1.8.8. Claim. — There exist very ample invertible Ox-modules L, and L!!, and
global sections s, and s! of L!, and L',
(i) Ln=L,® Ly,
(ii) s., and s/ define regular meromorphic sections of L], and L!!, respectively,

(iil) if we set DI, = div(L];s)) and D! = div(L!;s"), then both families of Cartier

n’n n’en

which satisfy the following conditions :

divisors Dy, ...,Dp_1, D), and Dy, ..., D,_1, D! intersect properly.

Proof of Claim — Since X is projective, there exists a very ample O x-module
L. By [33] II.(4.5.5)], there exists an integer ¢, € N3 such that both invertible
Ox-modules L®% and L®% @ L' are generated by global sections. Let ¥ be the set
of generic points of

n—1
() Supp(D;).
=0

We equip the set ¥ U Ass(X) with the order > of generalization, namely x > y if and
only if y belongs to the Zariski closure of {x}. We denote by {y1,...,yp} the set of
all minimal elements of the set ¥ U Ass(X) .

For any ¢ € {1,...,b}, one has

viex\ U {yh
je{lv“'vb}
Ji
By [33| II.(4.5.4)], for any ¢ € {1,...,b}, there exists ¢{; € N>; and a section
t; € H°(X, L®%) such that t;(y;) # 0 and that t;(y;) = 0 for any j € {1,...,b}\ {i}.
Moreover, by replacing the global sections t1,...,t, by suitable powers, we may as-
sume, without loss of generality, that all ¢1,...,¢, are equal to a positive integer £.
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For any i € {1,...,b}, let u; € H°(X,L®%) and v; € H°(X,L®% ® L;!) be such
that u;(y;) # 0 and v;(y;) # 0. These sections exist since the invertible O x-modules
L®% and L®% ® L ! are generated by global sections. Now we take

L;L _ L®(Z0+€)’ L/é _ L; ®L7:1 _ (Lfo ®L;1) ®L®€’

and

b b
1 2 : " E :
Sy = ’U,iti, Sy = Ul'ti.
i=1 i=1

Then, for any ¢ € {1,...,b}, one has s, (y;) # 0 and s//(y;) # 0. In particular, s},
and s/ do not vanish on any of the associated points of X and hence are regular
meromorphic sections (see Remark [[.2.7). Moreover, since these sections do not
vanish at any point of ¥, we obtain the condition above. O

Thus, by Lemma[I.3.6] we can see that Dy, ..., D,_1, D, intersect properly, where
D,, = D!, — D! = div(Ly; s, ® s, 1), as required.
(2) We can find very ample Cartier divisors A and B on X such that Dg = A — B.

Then, by the same argument as the induction procedure in the proof of (1), we obtain
that there are A’ and B’ such that A’ ~ A, B’ ~ B and

(A", D1,...,D,), (A", Dy,...,Db), (B, Di,...,Dy), (B, Dj,..., D) € TPY.
Thus if we set Dj = A’ — B’, then, by Lemma one has the conclusion. O

1.8.9. Remark. — Claim has its own interest and will be used in further
chapters in the following way. Let X be a d-dimensional projective scheme over
Speck and Dy, ..., Dy be Cartier divisors on X. We suppose that Dy, ..., Dy intersect
properly. Let Dy = Ay — A{) be a decomposition of Dy into the difference of two very
ample Cartier divisors. A priori Ay, D1, ..., D4 do not intersect properly. However, by
Claim[I.3:8] one can find a very ample invertible O x-module L and a global section s
of L& Ox(Ap) defining a regular meromorphic section, such that div(L; s), Dy, ..., Dy
intersect properly. Let B = div(L;s) — Ag. This is a very ample Cartier divisor
since Ox (B) is isomorphic to L. Moreover, both (Ag + B, D1,...,Dy) and (A} +
B, Dy,...,D,) belong to I’Pg?) since the former one and their difference do.

1.3.10. Lemma. — We assume that Dy, ..., D, are effective and ample. Then
Dy, ..., D, intersect properly if and only if dim(ﬂ?zo Supp(Di)) <d-—n-—1.

Proof. — Obviously if Dy,..., D, intersect properly, then dim(ﬂ?zo Supp(Di)) <
d—n — 1. Conversely, let J be a subset of {0,...,n}. If we set Z = [, ; Supp(D;)
and I ={0,...,n}\ J, then

dlm(Z N ﬂiel Supp(Di)) > dim Z — card(])
because D; is effective and ample for all ¢ € I. Thus, by our assumption, one has

d—n—12>dimZ — card(]),



1.4. MULTI-HOMOGENEOUS POLYNOMIALS 27
which implies dim Z < d — card(J). O

1.4. Multi-homogeneous polynomials

Let k be a field and (E;)?_, be a family of finite-dimensional vector spaces over k.
Let (dg,...,0q4) be a multi-index in N¢+L,
1.4.1. Definition. — We call multi-homogeneous polynomial of multi-degree
(60, -.,04) on Ey X - -+ X B4 any element of
S*(Eg) @ -+~ @k $™(Ey),

where S%(E)) denotes the §;-th symmetric power of the vector space E)'.

Recall that the dual vector space of S%(E)) is given by
I (B,) 1= (BP9,
where G5, is the symmetric group on {1,...,d;}, which acts on Efwi by permuting

tensor factors (see [7, Chapitre IV, §5, no. 11, proposition 20]). Therefore, the dual
vector space of S%(Ey) ®y -+ - ® S%(EY) is given by

% (Ey) ® - - - @k T%4(Ey).

If R € S%(EY)®y - ®; S%(EY) is a multi-homogeneous polynomial of multi-degree
(0, .-+ ,04), for any (sg,...,S4) € Egx -+ x Eg4, we denote by R(so,...,sq) the value
R(s§™ @+ @ 57°)
in k. Thus R determines a function on Eg X - - - X Ey valued in K (which we still denote
by R by abuse of notation). In the case where the field k is infinite, as an element of
S%(Ey) @ -+ - @k S%(EY), R is uniquely determined by the corresponding function
on Ey x --- x E, since each vector space ' (E;) is spanned over k by elements of the
form SZ@‘S", s; € E; (see [7, Chapitre IV, §5, no. 5, proposition 5]). Moreover, for any

i €40,...,d} and s; € F;, we denote by

R(-+ i)
T
i-th coordinate

of R at s; as an element of
S%(Ey) @y, - - @k SO (EL) @ SO (B @y - - @ S%(EY)
or as a multi-homogeneous polynomial function on
EO Xoee XEi—l XEi—l—l Xoee XEd,

according to the context.
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1.4.2. Remark. — Note that an element of S%(EY) ®y, -+ ® S%(EY) yields a
multi-homogeneous polynomial function on A(Ey) xj, --- x, A(E)) and the set of
k-rational points of A(Ey) Xy - -+ X A(E)) is naturally isomorphic to Eg x - -+ X Eg,
where A(E}) = Spec(P;e, S°(EY)) for each i.

1.5. Incidence subscheme

Let k be a field and E be a finite-dimensional vector space over k. We denote
Proj(@;e, S°(E)) by P(E). Recall that the projective space P(E) represents the
contravariant functor from the category of k-schemes to that of sets, which sends
a k-scheme ¢ : S — Speck to the set of isomorphism classes of invertible quotient
Og-modules of ¢*(E) (cf. [33, EGA2, Théorém 4.2.4]). In particular,

P(E)(k) = (EY \{0})/~,

where, for 61,05 € EV \ {0}, 6; ~ 05 if and only if §; = afy for some a € k*.
Thus an element of S°(E) yields a homogeneous polynomial of degree § on P(E)(k).
Moreover, if we denote by mg : P(E) — Speck the structural scheme morphism,
then the universal object of the representation of the above functor by P(E) is the
isomorphism class of a quotient Op(g)-module of 7% (F), which we denote by Og(1)
and which we call universal invertible sheaf on P(E). For any positive integer n,
we let Og(n) = Og(1)®" and Og(—n) := (Og(1)V)®". Note that the quotient
homomorphism 7% (E) — Og(l) induces by passing to dual modules an injective
homomorphism

Og(-1) — 7p(EY).
We now consider the fibre product of projective spaces P(E) xj P(EY). Let
p1:P(E) x, P(EY) — P(E) and py:P(E) xx P(EY) — P(EY)

be morphisms of projection. Note that the following diagram of scheme morphisms
is cartesian

P(E) xx P(EY) —2> P(EY)

P(E) — Speck
The composition of the homomorphisms
Pi(Op(=1)) — pi(rp(EY)) = p3(rpy (EY)) — p3(Opv (1)) (1.4)

determines a global section of the invertible sheaf

Or(1) R Ogv (1) :=pi(0p(1)) © p3(Opv(1)).
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1.5.1. Definition. — We call incidence subscheme of P(E) X, P(EY) and we denote
by Ig the closed subscheme of P(E) xj P(EY) defined by the vanishing of the global
section of Og(1) X Ogv (1) determined by (L.4). In particular, the cycle class of I
modulo the linear equivalence is

Cl(OE(l) X OEv(l)) N [P(E) Xk P(E\/)]

The following proposition shows that the incidence subscheme can be realized as a
projective bundle over P(E).

1.5.2. Proposition. — Let Qv be the quotient sheaf of 7 (EY) by the canonical
image of Og(—1). Then the incidence subscheme Ig is isomorphic as a P(E)-scheme
to the projective bundle P(Qrv ® Og(l)). Moreover, under this isomorphism, the
restriction of Og(1) K Ogv (1) to Ig is isomorphic to the universal invertible sheaf of
the projective bundle P(Qgv & Og(1)).

Proof. — Tt suffices to identify p; : P(E) x;P(EY) — P(F) with the projective bundle
P(r;(EY) ® Op(1)) — P(E).

Note that the universal invertible sheaf of this projective bundle is isomorphic to
Op(1)KOgv(1). Under this identification, the vanishing locus of (|1.4) coincides with
the projective bundle P(Qgv ® Og(1)). O

1.5.3. Remark. — As a scheme over P(E), the incident subscheme I also identifies
with the projective bundle P(Qgv). However, the universal invertible sheaf of this
projective bundle is the restriction of p3(Ogv(1)). Moreover, we can also consider
the morphism of projection from the incidence subscheme to P(EVY). By the duality
between E and EV, the incidence subscheme Ir also identifies with the projective
bundle of Qg = 7 (E)/Opv(—1) over P(EY). In particular, if z is a point of
P(EY), then the fibre of the incidence subscheme I over x identifies with

P((E @ #(z)) /2" Op(-1)),

which is a hyperplane in P(F ®, x(x)) defined by the vanishing locus of any non-zero
element of the one-dimensional x(x)-vector subspace of F ®y, x(x) defining the point
x.

1.6. Resultants

Let k be a field and X be an integral projective k-scheme, and d be the Krull
dimension of X. For any ¢ € {0,...,d}, we fix a finite-dimensional vector space E;
over k and a closed embedding f; : X — P(FE;), and we denote by L; the pull-back of
Og, (1) by f;. For eachi € {0,...,d}, we let r; be the Krull dimension of P(E;), which
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identifies with dimg(E;) — 1. For each ¢ € {0,...,d}, we let §; be the intersection
number

deg (c1(Lo) - -~ c1(Li1)er(Liga) - - - e1(Lg) N [X]

Let P = P(Ep) X - - - X, P(E,) be the product of k-schemes (P(E;))%,. The family
(fi)L, induces a closed embedding f : X — P. Let

P:=P(Ey) Xk - xx P(EY)
be the product of dual projective spaces. We identify P x P with
(P(Eo) xx P(Eg)) X -+ xx (P(Eq) xx P(Ey))

and we denote by
I[p = IEO X Xk IEd

the fibre product of incidence subschemes, so that the class of Ip modulo the linear
equivalence coincides with the intersection product

c1(r5(0p, (1) B Opy (1)) - e1(17,(Op, (1) B Opy (1)) N [P x5 P,

where 7; : P x;, P — P(E;) x;, P(E)) is the i-th projection. By Proposition m (see
also Remark , Ip is isomorphic to a fiber product of projective bundles

P<QE0> X Xk ]P)(QEd)'

1.6.1. Definition. — We denote by Ix the fibre product X xp Ip, called the inci-
dence subscheme of X x; P. As an X-scheme, it identifies with

P(Qr,|x) xx - xx P(Qp,|x)-
and hence is an integral closed subscheme of dimension
d+(ro—1)+--+(rq—1)=rg+---+rs—1
of P x; P. In particular, for any extension K of k and any element
(r,00,...,04) € X(K) x P(E))(K) x --- x P(E))(K),

if we denote by H; the hyperplane in P(E; k) defined by the vanishing of «;, then
(z,q0,...,aq) belongs to Ix(K) if and only if f; x(x) € H; for any ¢ € {1,...,d}.
In addition, the cycle class of Ix modulo the linear equivalence is the intersection
product

& (0" (Lo) @ 4" 05 Oy (1)) -+ er (0 (La) © 4" 03(Opy (1)) N X =i B, (L5)
where p: X x, P — X, ¢: X x;, P — P and ¢ : P — P(E)) are the projections.

1.6.2. Proposition. — The direct image by the projection q : X x, P — P of Ix is
a multi-homogeneous hypersurface of multi-degree (g, . ..,04).
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Proof. — Tt is sufficient to see that ¢.(Ix) belongs to the cycle class
c1(Opy (60) B -+ - & Oy (84)) N [P
Note that, for any (i1,...,4,) € {0,...,d}" such that iy,...,1i, are distinct,
¢u(c1(p*(Liy)) - er(p*(Li, ) N [X xx P])

is equal to
c1(Opy (1) ¥+~ B Opy (1)) N [P

if n = d, and is equal to the zero cycle class otherwise. Therefore, the assertion follows

from (1.5). O

1.6.3. Proposition. — For (ag,...,aq) € (Eo\{0}) x---x (E4\{0}), the following
are equivalent:
(1) For all i, fi(X) € Supp(div(ey)), and div(f§(ao))),--.,div(fi(aq))) intersect

properly on X.
(2) One has ([ao), - - -, [@a]) € q(Ix), where [o;] denotes the class of o in P(EY)(k).

Proof. — (1) = (2) is obvious.

(2) = (1) : Weset J={j€{0,...,d} | f;(X) C Supp(div(e;))}. We assume
that J # @. Then, as f;(a;) = 0 for all j € J and div(f;(a;)) is ample for all i ¢ J,
one has ﬂ?:o Supp(div(f(a;))) # @. If we choose z € ﬂ?:o Supp(div(f(a;))),

then (z,[ao],...,[aq]) € Ix, which is a contradiction. Therefore J = &. Note
that div(f(a;)) is ample for every ¢ and ﬂ?:o Supp(div(f/(«;))) = @. Thus, by
Lemma div(fg(a0)))s - ., div(f5(aq))) intersect properly on X. O
1.6.4. Definition. — Let X be an integral projective k-scheme of dimension d.
We call resultant of X with respect to (f;)%_, any multi-homogeneous polynomial of
multi-degree (Jg,...,04) on Ey X - -+ X Ey4, whose vanishing cycle in

P(Ey) Xp -+ xx P(EY)

identifies with the projection of the cycle associated with the incidence subscheme
Ix. Note that the resultant of X with respect to (f;)%, is unique up to a factor of
scalar in k \ {0} as an element of S%(Ey) @y, - - - ®j S%(EY).

In general, if X is a projective k-scheme of dimension d and if

n
E m; X
i=1

is the d-dimensional part of the fundamental cycle of X, where Xi,..., X, are d-
dimensional irreducible components of X, and m; is the local multiplicity of X at
the generic point of X;, we define the resultant of X with respect to (f;)%L, as any
multi-homogeneous polynomial of the form

(RX1 )m1 "'(RX" )mn7

folxq s falxy folxp s falx,
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x.)L,. Note that, in
the case where X is equidimensional, the projection to IP of the incidence subscheme
X xp Ip, is the hypersurface defined by the resultant of X.

where each R;f)"xl Falx. is a resultant of X; with respect to (f;

i

1.6.5. Example. — We consider the particular case where d = 0. Let fy : X —
P(Ey) be a close embedding. We first assume that X is integral. In this case fo sends
X to a closed point x of P(Ey). Let k() be the residue field of  and dyg = [k(x) : k] be
the degree of x. Let sg be an element of Ey. We assume that, if we view sq as a global
section of O, (1), one has sg(x) # 0. We construct an element R;f)’so € S%(Ey) as
follows. Let

@0 Eo @k K(z) — Opy(1)(2)
be the surjective x(x)-linear map corresponding to the closed point z, and
0 Op,(—1)(2) — Ej ®x k()

be the dual x(z)-linear map of g, which is an injective linear map. Let sq(x)Y be
the unique x(x)-linear form on Og,(1)(x) taking the value 1 at so(x). We let

RE* = Ny (08 (s0(2)")) € S%(EY),

which is defined as the determinant of the following homothety endomorphism of the
free module Sym(Ey) @k x(x) of rank dy over the symmetric algebra Sym(Ey )

g (so(x)”

Sym(EY) ®x #() L Sym(EY) 0 k(x).

Note that
0 (s0(2)")(50 ® 1) = s0(x)" (s0(2)) = 1.
Therefore the following equality holds
Ry (s9) = 1.

Assume that X is not irreducible. We let X1, ..., X,, be irreducible components of
X (namely points of X). For each i € {1,...,n}, let x; = fo(X;) and a; be the local
multiplicity of X at X;. Then

a1xr1 + -+ anTy

is the decomposition of f(X) as a zero-dimensional cycle in P(Ey), where x1,..., 2,
are closed points of P(Ey) and ay, .. ., a, are positive integers. If s is a global section
of Og, (1), which does not vanish on any of the points 1, ..., x,, we define

n
X,s0 . Xi,50\a;
Rfo T H(Rfo\x,;) :
i=1
Then Rff;’so is a resultant of X with respect to the closed embedding fo, which satisfies

Ry (s9) = 1.
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1.6.6. Example. — Let n and m be positive integers, and let
f:PL— Py, (zo: 1) —> (2 s 2y twy oo al)
and
g:PL — P (zo:xy) — (2 ad ey o2l

be the Veronese embeddings of degree n and m, respectively. Note that the standard
resultant of IP’,lC with respect to f and g is the Sylvester resultant RSY! . that is,

n,m?

Syl n n—1 n m m—1 m
R (aoxy + arxg™ a1 + - + anx?, boxg +bixg’ T @1+ -+ bmal’) =

ao ai - an
a ai - an O
O m rows
ao ai e an
det
€ bo by - bin
bo by --- bom O
O n rOws
bo bi  --- b

Note that RS} (zf,27") = 1.
1.6.7. Example. — Let n,dy, . ...d, be positive integers and
Py = Proj(k[To, ..., Ta])-

7L+d,i)

For each i € {0,...,n}, let ¢, : P} <—>IP’,(C "
d;. Let R be a resultant with respect to 1y, ...,%,. If we give the normalization
condition R(Tg"7 ...,T9) =1, then R is uniquely derterminded. It is denoted by
4, and is called the multipolynomial resultant or the Macaulay resultant (cf.

" be the Veronese emdedding of degree

,,,,,

.....

where §; = (do---dy,)/d; for i € {0,...,0}. In the case where n =1, Ry, 4, = RSZ}dl.
The following facts are well known (cf. [15], §3.2]):

(1) ¥ Lo = Z?:o agixsy +-., Lg = Z?:o agix; are linear forms, then
Rl,.“,l(L07 ey Ld) = det(aij).

(2) Let F! and F}' be homogeneous polynomials of degree d; and df

i, respectively
such that d; + d = d;, then

Anll
Rag,...udioosn (Fo, - FLE L Fy)
/ 1"
= Rag,...d),sdy (F0s - F oo Fa) Ry ard, (Fos - FY' oo Fa).
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1.6.8. Remark. — Let R} , be a resultant of X with respect to (f)Ll,. If
K /k is an extension and if s is an element of Fq ®; K, defining a global section of
Op(E,2,k)(1), which intersects properly with all irreducible components X Xgpec
Spec K, then, viewed as a multi-homogeneous polynomial on

(E()@kK)X"-X(Ed@kK)

by extension of scalars, the resultant RJ}% ..t Specified on the last coordinate at s, is
a resultant of div(s) N X with respect to (f; x)%=;. This observation motivates the
following explicit construction of the resultant polynomial by induction.

1.6.9. Definition. — Let (sg,...,8q4) € Ep X -+ X Eq. We assume that, for any

irreducible component Z of X, the divisors div(sp),...,div(sq) intersect properly on
Z. We denote by R;isofds”' the unique resultant of X with respect to fo,..., fq such
that
RS0 8 (g 5q) =1
foseesfa 0y crod) = &

1.6.10. Remark. — Let k'/k be an extension of fields. For any ¢ € {0,...,d},
the morphism f; : X — P(E;) induces by base change a closed embedding f! from
X' = X Xgpeck Speck’ to P(E}), where E] := E; @ k’. Note that the incidence
subscheme of

X/ X! HD(E(I)V) Xt oo Xt P(E(Iiv)
identifies with Ix XgpecxSpec k’. Therefore, if R}i,...,fd is a resultant of X with respect
to (fi)L,, then

RY ;. @1 (S™(EY) @k @ S™(EY)) @k k' = S%(EY) @ - @ S(E))

is a resultant of X’ with respect to (f/)%,. Similarly, if (so,...,sq) is an element of

Ey x --- x Eg such that the divisors div(sp),...,div(sq) intersect properly on each
irreducible component of X, then the following equality holds

X/,s(/J,...,szi X,80,---58d
Rfé,unf(} - Rfo»---7fd ®1,

where for each i € {0,...,d}, s, denotes the element s; ® 1 in E! = E; ® k'

1.7. Projection to a projective space

Let k£ be an infinite field, n be an integer such that n > 1, and V be a vector
space of dimension n+ 1 over k. Let P(V') be the projective space associated with the
k-vector space V and Oy (1) be the universal invertible sheaf on P(V'). Recall that for
any k-algebra A, any k-point of P(V') valued in A corresponds to a quotient invertible
A-module of V ®; A. In particular, if = is a scheme point of P(V) and x(z) is the
residue field of z, then the scheme point x corresponds to a non-zero x(x)-linear map
Do V ® k(x) — k(x), which is unique up to a unique homothety x(z) — x(x) by an
element of x(z)*.
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1.7.1. Definition. — We call rational linear subspace of P(V') any Zariski closed
subset of P(V) defined by the vanishing of sections in a k-linear subspace of V =
HO(P(V),0y(1)). If Y is a rational linear subspace of P(V') which is of codimension
1, we say that Y is a rational hyperplane in P(V).

1.7.2. Example. — (1) The scheme P(V) is a rational linear subspace of P(V).

It is defined by the vanishing of the zero vector in V.

(2) Let x be a rational point of P(V'), which corresponds to a non-zero k-linear map
7y : V. — k. Then {z} is the vanishing locus of sections in Ker(r,) and hence
is a rational linear subspace of P(V).

(3) The empty subset of P(V) is a rational linear subspace, which identifies with
the vanishing locus of all sections in V. By convention, the dimension of the
empty subset of P(V) is defined as —1.

1.7.3. Remark. — If Y is a rational linear subspace of P(V') which is the vanishing
locus of a k-vector subspace W of V, then the k-scheme Y is isomorphic to P(V/W).
We call linear projection with center Y the k-morphisme 7y : P(V)\Y — P(W)
which sends, for any commutative k-algebra A, any quotient invertible A-module
prL: V@, A— Lin (P(V)\Y)(A) to the composition

WerA— Ve, AL L,

which is an element of P(W)(A).

We assume that Y = {y} is the set of one rational point of P(V'), which corresponds
to a non-zero k-linear map p, : V — k whose kernel is W. Let z be a scheme point
of P(V), k(z) be the residue field of z, and p, : V ®; £(z) — £(2) be the non-zero
k(z)-linear map corresponding to the scheme point z. Note that x(z) is generated by
elements of the form p,(f ® 1)/p.(g ® 1), where f and g are elements of V' such that
p.(g ®1) # 0. Assume that y does not belong the Zariski closure of {z}. Then there
exists at least an element s € V' \ W such that p,(s®1) = 0. Let 2’ be the image of z
by the linear projection my. The residue field of 2’ identifies with the sub-extension
of k(z)/k generated by elements of the form p.(f' ®1)/p.(¢’ ®1), where f' and ¢’ are
elements of W such that p,(¢’ ® 1) # 0. As W is of codimension 1 in V and s is an
element of V' \ W such that p,(s®1) = 0, we obtain that, for any f € V, there exists
f € W such that p,(f ® 1) = p.(f’ ® 1). Therefore we obtain that x(z) = x(2’). In
particular, if X is a closed subset of P(V') which does not contain y, then 7y (X) has
the same dimension as X.

1.7.4. Proposition. — Let d € {0,...,n}. Let X be a Zariski closed set of P(V)
such that dim(X) < d. Then we have the following:

(1) There is a rational linear subspace M of P(V') such that dim(M) =n—-1—d
and XN M =g.
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(2) Let T be a rational linear subspace of P(V') such that dim(T) >n —d —1, and
that X and T meet properly. Then there is a rational linear subspace M of P(V')
such that M CT, dim(M)=n—1—-d and XNM = &.

(3) We assume that X is irreducible and dim(X) = d. Let M be a rational linear
subspace of P(V) such that dim(M) = n—1—d and M N X = &, which is
the vanishing locus of a vector space W of V.. Let mp : P(V)\ M — P(W)
be the projection with the center M. Then 7 = mp|y + X — Pg 1s finite and
surjective and 7 (Opa (1)) = OPZ(1)|X'

Proof. — (1) We prove the assertion by induction on n — d. If n = d, then the
assertion is obvious by choosing M as the empty set, so that we assume that n > d.
Since X # P(V) and k is an infinite field, there is a rational point x € P(V') which does
not belong to X. Let W be the set of sections s € V = H*(P(V'), Oy (1)) which vanish
at x. This is a vector subspace of V. Let w : P(V) \ {z} — P(W) be the projection
with center {z}. Since z ¢ X, by Remark we obtain that X and X’ have the
same dimension. In particular, dim(X’) < d. As (n—1)—d < n—d, by the hypothesis
of induction, there is a linear subspace M’ in P(W) such that dim(M’) =n -2 —d
and X’ N M’ = @. Thus if we set M = 7~ }(M’) U {z}, then one has the desired
subspace.

(2) Assume that T is defined by the vanishing of sections in a k-vector subspace
Wof V. If weset X’ = XNT and t = dim7T, then dim X’ < d — (n — t) and
T ~P(V/W). As

t—(d—(n—1t)=n—-d=>0,
by (1), there is linear subspace M in T such that dimM =t—1— (d — (n —t)) and
M N X' = @. Thus one has (2).

(3) Let T be a linear subspace of P(V') such that M C T and dim(7T) =n —d. It
is sufficient to show that dim(7"N X) = 0. Note that M is a rational hyperplane in
T, so that if dim(7' N X) > 1, then M N X # &. Therefore dim(7T N X) = 0. O



CHAPTER 2

ADELIC CURVES AND THEIR CONSTRUCTIONS

In this chapter, we recall an adelic structure of a field, and give a “standard”
construction of an adelic structure for a countable field of characteristic zero.

2.1. Adelic structures

Let K be a field. An adelic structure of K consists of data ((£2, .4, v), ¢) satisfying
the following properties:

(1) (Q,A,v) is a measure space, that is, A is a o-algebra of 2 and v is a measure
on (92, A).

(2) The last ¢ is a map from 2 to Mg, where My is the set of all absolute values
of K. For any w € Q, we denote the absolute value ¢(w) by |-|..

(3) For any w € Q and any a € K*, the function (w € Q) — In|al, is v-integrable.

The field K equipped with an adelic structure is called an adelic curve. Moreover,
the adelic structure ((Q, A, v), ¢) is said to be proper if

/ In|al, v(dw) =0 (2.1)
Q

holds for all @ € K*. If the adelic structure ((Q2,.4,v), @) is proper, we also say
that the adelic curve (K, (Q,.A,v), ¢) is proper. The equation is called product
formula. For details, see [13, Chapter 3]. We denote the set of all w € Q with ||,
Archimedean (resp. non-Archimedean) by Q. (resp. Qgn). The restriction of A to
Qoo (resp. Qgy) is denoted by A (resp. Aspn). Note that Q4 and Qg, belong to A
(see [I3l Proposition 3.1.1]). For each w € 0y, there exist an embedding ¢, : K — C
and K, € (0,1] such that |al, = |, (a)|® for all a € K, where || is the usual absolute
value of C. Note that the exponent k,, does not depend on the choice of the embedding
tw : K — C. From now on, we always assume that x, = 1 for all w € Q.
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For (a1,...,an) € K™\ {(0,...,0)}, the height hg(as,...,an) of (a1,...,a,) with
respect to the adelic curve S = (K, (Q, A, v), ¢) is defined to be

hs(a,...,ay) := / In(max{|ai|w,-- -, |an|w})v(dw). (2.2)
Q
Note that if S is proper, then hg(a) =0 for all a € K*.

2.1.1. Remark. — Many classic constructions in algebraic geometry and arithmetic
geometry, such as algebraic curves, rings of algebraic integers, polarized projective
varieties and arithmetic varieties, can be interpreted as adelic curves. For example,
on the filed Q of rational numbers there is an adelic structure consisting of all places
of Q@ (namely the set Qg of all prime numbers and oo) equipped with the discrete
o-algebra and the measure v such that v({w}) =1 for any w € Qg, where |-| is the
usual absolute value on Q and |-|, is the p-adic absolute value for any prime number
p. The product formula for this adelic curve is just the logarithmic version of the
usual product formula for rational numbers

VaeQ, o - H\a|p =1.
P

We call this adelic structure the standard adelic structure on Q. We refer the readers
to [13 §3.2] for more examples.

2.1.2. Definition. — Let S = (K, (2, A,v),¢) and S’ = (K', (Y, A", '), d") be two
adelic curves. We call morphism from S’ to S any triplet o = (a#, oy, I,), where

(1) a# : K — K’ is a field homomorphism,
(2) ag : (U, A) = (Q,A) is a measurable map, such that, for any w’ € ',

|| oa? = |'|a#(w’)7
and that the direct image of v/ by ax coincides with v, namely, for any A-

measurable function g : © — R which is non-negative (resp. integrable), the
function g o ai is also non-negative (resp. integrable), and one has

| stastn @) = [ gwyvia)

If in addition v’ admits a disintegration with respect to the fibration oy, namely
there exists an R-linear map

Io: LYY A W) — LD, A, v)

sending positive integrable functions on (€', A’, V') to positive integrable functions on
(9, A, v) such that

Vi e LN AL, / L) vid) = [ )0/,

Vg EXI(Q,A,V), In(goay) =y,

we say that a: 8" — S is a covering of adelic curves.
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2.2. Algebraic coverings of adelic curves

Adelic curves are very flexible constructions. On a field there exist many adelic
structures. It is also possible to construct new adelic structures from given ones. Let
S = (K, (Q,A,v),¢) be an adelic curve. In [13] §3.2] it has been explained how to
construct, for any algebraic extension L/K, a natural adelic curve

S®@x L= (L,(Q,AL,vL), 1)

on L such that Q= Q X, ¢ M. The projection map 7y, : Q1 — ) satisfies the
relation

v=(mr/K)«(VL).
Moreover, for any w € €, the fibre WE}K({w}) is equipped with a natural o-algebra
and a probability measure vy, ,, such that, for any positive Aj-measurable function
f on Qp, one has

/QL g(x) vr(dz) :/Qz/(dw) -/TFZ}K(M) g(z) v o (dz).

In other words, the family of measures (vr ., )weo form a disintegration of vy, over v.
If the adelic curve S is proper, then also is S ® g L, see [13| Proposition 3.4.10]. If
we denote by ik 1, : K — L the inclusion map, and

IL/K : gl(QL,AL,VL) — fl(Q,.A, V)
the linear map of fiber integrals, which sends g € L'(Qp, Ar,vr) to the function

(weQ)r— / g(x) v ,(d),
7";/11(("")

then the triplet (ix.r,7r/x, r/Kx) forms a covering of adelic curves in the sense of
Definition [2.1.2)

2.2.1. Lemma. — Let K' be an algebraic extension of K and S @ K' :=
(K, (Y, A" V), ¢").  Suppose that K and Qan are countable sets. If (Qgn, Afn)
is discrete, so is (Qf,, Af,)-

Proof. — Since K'/K is an algebraic extension, and K and Qg, are countable sets,
we obtain that the sets K’ and €, are countable, so that it is sufficient to see that
{w'} € A, for all W' € Qf .

First we consider the case where K’ is finite over K. Let w’ € ' and w = 7(w'),
where 7 : ' —  is the canonical map. Then as {w} is Ag,-measurable and 7 is
measurable, 77'({w}) € Af,. If ||, is trivial, then 77! ({w}) = {w'}, so that the
assertion is obvious. Next we assume that |-|,, is non-trivial. Let us see that, for any
(z,2') € 7 ({w})? with x # 2/, |-|; is not equivalent to |-|,». Otherwise, there is
k € Rsg such that |-|,» = |-|%. As ||, is non-trivial, there is a € K such that |a|, < 1.
Then

lalo = laler = |al; = a5,
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and hence x = 1, which is a contradiction. Therefore, there is ' € K’ such that
la’|,s < 1and |a’|, > 1forall z € 7~ ({w})\{w'} (cf. [62] the proof of Theorem 3.4]).
Note that

A={xe :|d], <1}
is Ay -measurable, so that {w'} = 771 ({w}) N A is A} -measurable.
In general, for a € K', let

(K(a), Qg (a)s Ak (a), VK (), PK(a)) = S ® K(a)

and let mg/ k@) @ @ — Qg be the canonical map. By the previous case,
{7k /K ()W)} € Ak (a), sO that W;}/K(a)({wK//K(a) (w)}) € A’. Therefore, as K’ is
countable,

ﬂ 7Tlr_(}/z((a)(WK’/K(CL)(W/))'

acK'’

belongs to A’. Thus it suffices to prove

{W/} = m W}}}/K(a) (WK’/K(a) (w/))- (2-3)

acK’
Indeed, if x € (¢ ﬂ'I_(}/K(a)({ﬂ'K//K(a)(w/)}), then, for any a € K', g/ /k(a)(7) =
Tk /K(a)(@w'), so that |a|, = |al|.s, which means that z = w'. O

2.3. Transcendental fibrations of adelic curves

The purpose of this section is to discuss the extension of an adelic structure to a
transcendental extension of the field. We fix an adelic curve S = (K, (Q, A,v), ¢).
For any w € Q, let K, be the completion of K with respect to the absolute value |-,.
We begin with an example which illustrates a construction of pure transcendental
fibration of transcendence degree 1 over the adelic curve.

2.3.1. An illustrative example. — Assume that the field K is countable when
Qoo is not empty. For w € Qg,, we extend the absolute value ||, to K(T) by taking
the Gauss norm. Recall that for any polynomial

F(T)=ay+auT+ - +a,T" € K[T],

one has
|F|w = max{|ag|w, - -, |an|w}-

If Q4 is not empty, for any w € Q,, K, identifies with R or C. We let ¢, : K —
C be corresponding embedding (in the case where K, = C we need to choose an
embedding between two conjugated ones), and let Qk ,, be the set of ¢ € [0,1] such
that 2™ is transcendental over K with respect to the embedding t,. Note that the
complementary of Qg (1), in [0, 1] is countable since K is assumed to be countable
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in the case where Q. # &. Note that For each t € Qg (1), the evaluation of
polynomials

(F = Zaﬂﬂe € K[T]) — F,(e*™) .= Z Lo (ag)e®™* € C
=0 =0
defines a ring homomorphism from K[T] to C which is injective since €*™ is tran-

scendental over K. Thus it induces a field embedding from K(T) to C, which we
denote by
(f € K(T)) — fu(e®™™).
Therefore, the usual absolute value on C induces by restriction an absolute value on
K(T) which we denote by |-|+.
We denote by (7 the disjoint union

Qg 11 H Qr(T)w-
WEN o
Clearly the set Qg (7y is fibered over €2, where the projection map sends the elements
of Qg ()W to w. We equip Qg (1), (which is a subset of measure 1 of [0, 1]) with
the Borel o-algebra and the Lebesgue measure. Then the fiber integral defines a o-
algebra Ag (1) as follows. A real-valued function f on Qg (7) is Ak r)-measurable if
it satisfies the following conditions:

(1) for any w € Q, the restriction of f to Qg (7)., is Borel measurable,
(2) the fibre integral of f, which is defined as

f(w), if we Qgn,

(we D) —
/ F)dt, ifwe O,
Qi (1,0

is A-measurable.

Moreover, the fibre integral also defines a measure vg () on (g (r), Ak (1)) such that,
for any non-negative function f on {2 (7, one has

/QK(T) (@) v (dez) = fw)v(dw) +/QOO /QK(TW f(t)dt v(dw).

Qfin
Thus we obtain an adelic curve with K(T') as its underlying field. Moreover, the
canonical embedding K — K(T') and the projection map Qg )y — € defines a
covering of adelic curves as described in Definition

Note that, in the case where the adelic curve S is proper, it is not true in general
that the adelic curve constructed above is also proper. However, it admits a natural
compactification that we will explain below. We denote by & the set of irreducible
monic polynomials in K[T]. For any P € &, let |-|p be the absolute value on the
field K(T) of rational functions defined as

| p = e ordr(),
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We denote by (Q}(T)V A}(T), V}"((T)) the disjoint union of (Qx (1), Ax(r), VK (1)) With
P, where & is equipped with the discrete o-algebra and the measure such that

VPe 2, u}‘((T)({P}):/ ln|P|w1/(dw)+/ﬂ /Oln|Pw(eQ““)|dtu(dw).

Qfin
Then the measure space (Q;((T), Ak () I/;((T)) together with the family (||2)ze0s 1
form a proper adelic curve.

The above compactification is not unique. Let us consider its A-twisted variant as
follows. Let |-|o be the absolute value on K (T') such that, for any F' € K[T], one has

|Floe = edes(F)

Let A be a positive real number. We denote by (Q}\((TVAE\((T)W?((T)) the disjoint
union of (Qg (1), Ak (1), Vi (1)) With 211 {oo}, where & 11 {oo} is equipped with the
discrete o-algebra and the measurable such that

VPe P, viq{P} =i {P})+Adeg(P)
vieery({oe}) = A

Then the measure space (Q?((T), A?{(T), I/?{(T)) together with the family of absolute
values (|~|w)w€9;( - form a proper adelic curve, which is called the A-twisted com-

pactification of (K(T'), (Qk (1), Ak (1), Vi (1)) (||w)wes r) )-

2.3.2. A general construction of transcendental fibration. — Let B be a K-
algebra. Note that B is not necessarily of finite type over K. We assume that B is a
unique factorization domain and the set B* of units in B coincides with K*. We say
that two irreducible elements of B are equivalent if they differ by a unit as a factor.
This defines an equivalence relation on the set of all irreducible elements of B. We
pick a representative in each of the equivalence classes to form a subset #pg of B
consisting of non-equivalent irreducible elements. Let L be the field of fractions of B.
Recall that any non-zero element g € L can be written in a unique way as

cg) [ Forir@,

FeZp
where ¢(g) is an element of K* = B*, and for each F € &g, ordr(g) is an integer.

Note that ordp(-) is a discrete valuation on the field L, and ordp(a) = 0 for any
a € K* =B*.

2.8.1. Definition. — For any w € Q, let S = (L, (Qpw, AL w, VLw): PLw) be
an adelic curve such that vy, is a probability measure. We say that the family
(SL.w)weq is an admissible fibration with respect to (B, &g) over the adelic curve S
if the following conditions are satisfied:

(a) for any w € Q and any x € Qr ,, the absolute value ¢r, ,,(z) on L is an extension
of p(w) on K,
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(b) for any element g € B\ {0}, any finite family (F};)7_, of elements of ¥p
containing {F' € g | ordr(g) # 0} and any (C;)}_; € RL,, the function

is A-measurable,
(¢) for any w € © and any element F of &g, the function

(we Q) — In|F|,; v . (dz)
QL,w

is integrable with respect to v.

Let (SLw)weq be an admissible fibration over the adelic curve S. We define €, as
the disjoint union of (Qr, ., )weq and let ¢, be the map from €2y, to the set of all absolute
values on L, whose restriction on each €1, is equal to ¢ . Let 7/ : Qp — Q
be the projection map, sending the elements of Qp ., to w. We equip {1; with the
o-algebra Ay, generated by the projection map 7,k and all functions of the form
(r € Q) — |g|s, where g runs over the set L.

2.8.2. Proposition. — Let f be a non-negative Ar-measurable function on Q.
For any w € Q, the function f is Ap .-measurable on Qr, ,. Moreover, the function

(weN)— A f(x)vr w(dz) € [0, 400

1s A-measurable.

Proof. — Let H be the set of all bounded non-negative A -measurable functions g
on €7, which is Ar ,-measurable on  ,, for any w € £ and such that the function

(weQ)r— f(z) v (dz)
Qr.w
is A-measurable. Note that, for any non-negative bounded A-measurable function ¢
on (2, one has ¢ o € H since it is constant on each fiber Qy, ,, and

/Q el (i) = / (@) L (dz) = p(w).

QL,w

In particular, all non-negative constant functions belong to H. Clearly, for any
(91,92) € H x H and any (a1,a2) € R>g X Rxg, one has ajg1 + azgo € H. For
any increasing sequence of functions (gn)nen in H, the pointwise limit of (g, )nen
belongs to H. Moreover, for functions g; and go in H such that go > g1, one has
g2 — g1 € H.

Let S be the set of functions of the form

(x € QL) ¥ |9leNimy o<, Polo<on (T (2)),
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where g is an element of B\{0}, (F};)}_, is a finite family of elements of &5 containing
{F € Zp|ordr(g) # 0}, (C;)}_; is a family of positive constants and ¢ is a non-
negative and bounded A-measurable function on ). Clearly the set S is stable by
multiplication. Note that the function sending w € €2 to

/Q 191217y <0, P o< 00 P(T(2)) Vi 0 (d)
L,w

= SD(W)/ 9l Fy <O | Fu o <Cn VL0 ()
Qr

takes real values and is A-measurable by the condition @ above. Therefore, S is a
subset of . Since the o-algebra Ay, is generated by S, by monotone class theorem (see
[66] §2.2], see also 13| §A.1]), H contains all bounded non-negative Ay -measurable
functions. Finally, since any non-negative .4y -measurable function f can be written as
the limit of an increasing sequence of bounded non-negative Ay -measurable functions,
the assertion of the proposition is true. O

2.3.3. Definition. — Let (SL )wen be an admissible fibration over S (see Defi-
nition 7 where St = (L, (Qws ALws VLw)s Lw). By Proposition there
is a measure vy, on the measurable space (2,.4r,) such that, for any non-negative
Ap-measurable function f on Qp, one has

o f@)vp(de) = /Qu(dw) /QL’W f(z)vew(de).

Therefore Sy, := (L, (Qr, AL, vL), ¢1) is an adelic curve, called the adelic curve asso-
ciated with the admissible fibration (SL .)weq. Since vy, are probability measures,
if we denote by ix 1 : K — L the inclusion map, by 77k : 2 — € the map sending
the elements of Qf, ., to w, and by

IL/K : gl(QL,AL,I/L) — 31(9,,4, l/)

the linear map of fiber integrals, then the triplet (ix 1,71 k, 1 /x) forms a covering
of adelic curves in the sense of Definition 2.1.21

2.4. Intrinsic compactification of admissible fibrations

Let S = (K,(Q,A,v),¢) be a proper adelic curve, B be a K-algebra which is
a unique factorization domain, and g be a representative family of irreducible
elements as in the previous section. Let L be the field of fractions of B and

(SL,w = (L7 (QL,wa AL,w; VL,w)y (bL,w))weQ

be an admissible fibration with respect to (B, #g). In the previous section, we
have constructed an adelic curve Sy, := (L, (2, AL, v1), ¢1) which fibers over S and
such that the measure vy, disintegrates over v by the family of measures (v, )wen
on the fibers. This construction looks similar to algebraic coverings of adelic curves.
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However, even in the case where the adelic structure ((2, A, v), ¢) is proper, the adelic
structure ((Qr,.A,vr), ¢r) is not necessarily proper. In this section, we show that,
under a mild condition on the admissible fibration (S, ),cq over S, we can naturally
“compactify” the adelic structure ((Qr,Ar,vr),¢r). For any element F € &g, we
denote by |-| the absolute value on K(7T') such that

VgeL*, |glp:=e rl)

Thus we obtain a map ¢} from g to My, sending F to |-|p. Let (2},.4}) be the
disjoint union of the measurable spaces (Q2r,.Ar) and £g equipped with the discrete
o-algebra. Let ¢F : Qf — My, be the map extending ¢, on Q, and ¢} on .

2.4.1. Proposition. — Let (S,)uco be an admissible fibration over S. We assume
that, for any element F' € Pp,
hs, (F) := / V(dw)/ In|F|,vp w(dz) > 0. (2.4)
Q QL.

Let v} be the measure on (5, A}) which coincides with vy, on (Qr, Ar) and such
that

VF e Zp, vi({F}) =hs, (F).
Then S5 := (L, (%, A%, vy), ¢1) is a proper adelic curve.

Proof. — For any g € L™, one has

/QL In g, vr(dz) = /Qu(dw) /S;L,w In |g|. vr o (dz)

(2.5)
= Y ordrly) / v(dw) / W |Flvpu(dz) = 3 ordp(g)hs, (F).
FePp Q QL0 FePp
Thus
[ wlglevitan) = [ wiglovi@n) + Y hs, (F)inlgle = 0.
Q7 Qr FeZp
O

2.4.2. Definition. — Under the assumption ([2.4), the adelic curve S is called the
canonical compactification of Sy,.

2.4.3. Remark. — Let Ap be the discrete o-algebra on &g, vg be the measure
on (Zp, Ap) such that

ve({F}) = hs, (F)

for any F € &g, and ¢p : g — My be the map sending any element of g to
the trivial absolute value on K. Then Sp := (K, (%g, Ap,vB), ¢5) forms an adelic
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curve having K as the underlying field. Let S* be the amalgamation of S and Sp.
Then, the inclusion map K — L, the projection

WL/KHIdk@B :QZZQLHQZBHQ*:QHQZB

and the integral along fibers form a covering of adelic curves.

2.5. Non-intrinsic compactification of admissible fibrations

We keep the notation of the previous section. In this section, we assume that
the family of absolute values (|-|r)rew, can be included in a proper adelic struc-
ture. We will show that a weaker positivity condition than would be enough
to ensure the existence of (non-intrinsic) compactifications of the adelic structure
((Qr,Ar,vr), ¢1). In the rest of the subsection, we assume that there exists a proper
adelic structure ((Q7, A7, v} ), ¢} ) on L which satisfies the following conditions:

(1) Q) contains &g as a discrete measurable sub-space and v, ({F}) > 0 for any

F e &g,

(2) for any F' € Pp, one has ¢7(F) = |-|r.
Note that the existence of such an adelic structure is is true when K is of characteristic
0 and Spec B is a smooth K-scheme of finite type. In this case there exists a projective
K-scheme X and an open immersion from B into X. Then one can construct an adelic
structure consisting of prime divisors of X, by choosing a polarization on X. We refer
the readers to [13] §3.2.4] for more details.

2.5.1. Proposition. — Let (S,)weca be an admissible fibration over S. For any
element F' € Pp, let

hs, (F) := / V(dw)/ In|F|,; vp o (de). (2.6)
Q Qr.w
Let 6 be a positive constant. We assume that
VF e Py, hs, (F)+ov,({F})>0.
Let (Y], A) be the disjoint union of (U, Ar) and (Q, Ar), ¢ : Q) — My, be the

map extending ¢1, and ¢, and v3 be the measure on (¥}, A”) which coincides with
vy on (Qr, Ar) and coincides with

dvy, + Z hs, (F') Diracp
FePp
on (Qy,v}), where Diracr denotes the Dirac measure at F. Then (], A%, v2),¢7)

is a proper adelic structure on L.

Proof. — For any g € L*, one has

/ In |gl, 4 (dz) = / In |gl, vz (dz) + 0 / gl v, (d2) + 3 s, (F)InJglr.
Q; QL Q)

L FeZp
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By (2.5)), one has

/ gl vo(d2) + 3 hs, (F)InJgle = 0.
Qr

FeZp

Moreover, since ((Q7, A7, v}), ¢} ) is a proper adelic structure, one has

/ In|g|, v} (dz) = 0.

QL
Therefore we obtain

/ In g, ¢ (dz) = 0.
Q

1"
L

2.6. Purely transcendental fibration of adelic curves

In this section, we apply the results obtained in previous sections to the study of
adelic structures on a purely transcendental extension of the underlying field of an
adelic curve. Let S = (K, (R, 4,v),®) be an adelic curve and I be a non-empty set.
We consider the polynomial ring K [T7] spanned by I, where T; = (T});ecs denotes the
variables. Let N®! be the set of vectors d = (d;);c; € N such that d; = 0 for all but
a finite number of 4 € I. For any vector d = (d;);c; € N®!, we denote by T? the

monomial
I
i€l,d; >0
If g is an element of K[T7], for any d € N® we denote by aq(g) the coefficient of T'¢
in the writing of g as a K-linear combination of monomials. For convenience, K [T7]
means K in the case where I = @.

2.6.1. Lemma. — (1) Let J be a subset of I. If f and g are two elements of
K|[Ty] such that fg belongs to K[T], then both polynomials f and g belong to
K[Ty].

(2) The ring K[T}] is a unique factorization domain and K[Tj]* = K*.

Proof. — (1) For i € I and ¢ € K[Ty], the degree of ¢ with respect to T; is denoted
by deg; (). Note that the function deg;(-) satisfies the equality deg;(fg) = deg,;(f) +
deg,(g), so that deg,(f) = deg;(g) = 0 once i € I\ J, which means that g and h
belong to K[TY].

(2) For any finite subset J of I, it is well known that K[T] is a unique factorization
domain. Moreover, for f € K[Ty] \ {0}, there is a finite subset J of I such that
f € K[Ty]. Thus the first assertion follows from (1). The second assertion is a direct
consequence of (1) in the particular case where J = @. O
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Let L = K(T7) be the field of fractions of K[Ty]. As in we pick in each
equivalence class of irreducible polynomials in K[T7}], a representative to form a subset
P ;- For each element F' € Pk(r,), we let ordp(-) be the discrete valuation on L
defined by F and let || := e~ °"47(") be the corresponding absolute value. Let deg(-)
be the degree function on K[T7]. Note that for any (f,g) € K[T7]? one has

deg(f + g) < max{deg(f),deg(g)}, deg(fg) = deg(f)+ deg(g).

Therefore the function — deg(-) extends to a discrete valuation on L. Denote by ||
the corresponding absolute value, defined as

oo = 50,
Note that the following product formula holds

Vge L\{0}, Inlgls+ > deg(F)ln|glr =0.
FG@K[T{]

In other words, if we equip Q7 := Pk, I1 {oo} with the discrete o-algebra A7} and
the measure v} such that

vi({oo}) = 1 and v, ({F}) = deg(F)
for any I' € Pk r,), then (L, (7}, A}, 1), ¢7) forms a proper adelic curve, where
QS/L : @K[TI] I {OO} — My,

sends z to ||,

2.6.2. Remark. — Let X 1oy = {Xitier U{Xo} be the variables indexed by
I'U{oo}. Let ¢ : K[X1y{s}] — K[T7] be the homomorphism given by ¢(f) =
f((T3)ier,1). If f is an irreducible homogeneous polynomial in K[X{o}] and
f # Xoo, then ¢(f) is an irreducible polynomial in K[T}]. Moreover, for any ir-
reducible polynomial g in K[T7y], there is an irreducible homogeneous polynomial f in
K[X1U{o0}] such that ¢(f) = g. Note that the above |-|o, comes from the irreducible
polynomial X, so that the corresponding element is 1 = p(Xo,).

2.6.3. Lemma (Gauss’s Lemma). — Let |-| be a non-Archimedean absolute value
on K. We fize = (e;)icr € RL,. For d = (d;)ic; € N®!, we set e® :=[],,; edi. We
denote by |-|e,r the function on K[Ty| sending f € K[Ty] to

d
max |(a e .
NG | d(f)|

Then, for any (f,g) € K[T1]* one has

|f9le,. = |fle,r - |gle,  and | f 4 gle,r < max{|fle,r,|gle,r}-

In particular, |-|e.r. extends to an absolute value on L = K (T7).
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! 17
Proof. — If we set f = yenor aaT? and g =Y 4 cyor bar T, then

fg = Z Z aq bgr Td and f +g= Z (ad + bd)Td

dGNEBI d/.dHENEBI, dENEDI
d'+d’=d

Thus it is easy to see

< . ,
?nml fle.s - 9le.r .

|f + g‘e,L < maX{|f|e,L7 ‘9|e,L}-
Let ¥ = {d' € N® | jag|e? = |fle.r} and B, = {d” € N® | |bar|e?" = |gle.s.}-
Let <jex be the lexicographic order on N®Z. We choose (f) € Y and 8(g) € X, such
that d’ <iex 0(f) and d” <jex 0(g) for all d’ € £y and d” € .

26.4 Claim. — One has |ad/\ : |bd//| < |a5(f)| : |b6(g)| fOT’ all d/,d” € N®I with
d +d’" = 8(f)+8(g). Moreover, the equality holds if and only if d' = 6(f) and
&' = b(g).

Proof. — As |ag/|e? < |fle.. and |bgr|e?” < |gle.r, one has

fle.clgle.r  lasr|e® D |bs(g)[e®?)
|ad/| : |bd”| < eed/+d//e = ed/—‘rd”g - |a5(f)| . |b6(g)|

We assume that the equality holds. Then d’ € ¥y and d” € £, so that d’ <iex 6(f)
and d” <jex 6(g). Therefore, one has the assertion because d' +d” =§(f)+68(g). O

The above claim implies that

Yo awbar| @D = |ag)e® D |bs(g) D = | fle,Llgle,r,
d/,d”GN@I,
&'+ =5(f)+b(9)

which means that |fg

e.. = |fle,r|gle,r, as required. O

For any w € Q\ Qo, let ||y, be the absolute value on L such that

Vg= > aal@)Tf € K[T1], |glor:= sup |aa(g)l-
dene! deN®!

By Lemma [2.6.3} this absolute value is an extension of |-|,, on K. Let
((QL,wa -AL,wa VL,w)a ¢L,w)

be the adelic structure on L which consists of a single copy of the absolute value ||, 1,
equipped with the unique probability measure. We denote by St ., the adelic curve
(La (QL,uM AL,U.M VL,w)» ¢L,w)~

2.6.5. Proposition. — If Q. = @, then family (St )wea s an admissible fibration
over S.
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Proof. — Let g be a non-zero element of K[T7], (F;)_, be a finite family of elements
of Pk, containing {F € P r,)| ordr(g) # 0} and (C;)7_; be a family of non-
negative constants. One has

/ 9247yl Palo<Cn VEw(d2) = max faa(g)l - H I Yewerro<c,-
Q. w j=1deN®I

Therefore the function
(weQ)r— / 9|2 1|7y |, <Cn | Fu o <C VI ().
QL,w

is A-measurable. Moreover, for any element F' of &g /r,), one has

In|F|, v (dz) = 1 |- 2.8
L wiF v = e infaa() 28)
Therefore the function
(weQ)r— In|F|,; v . (dz)
Qr.w
is v-integrable. O
2.6.6. Remark. — In the case where ), = @ and the adelic curve S is proper, for

any d such that aq(F) # 0, one has

/ In |ag(F)o, v(dw) = 0,
we
and hence

hs, (F) = /Qu(dw)/Q In|Fl|;vpo(dz) > 0.

2.7. Arithmetic adelic structure

In this section, we provides a “standard” construction of an adelic structure for
a countable field of characteristic zero. More precisely, for any countable field E of
characteristic zero, we will construct an adelic curve Sg = (F, (Qp, A, vE), 9r),
which satisfies the following properties:
(1) Sg is proper.
(2) For any w € Qp, the absolute value ¢g(w) is not trivial.
(3) The set Qg g, of w € Q such that ¢p(w) is non-Archimedean is infinite but
countable.
(4) Let E?° be an algebraic closure of E. If Ey is a subfield of £ such that Ey is
finitely generated over Q, then

{a € E* | hspgppa(l,a) < C and [Ey(a) : Ey] < 6}
is finite for all C' € R>p and § € Z>;.



2.7. ARITHMETIC ADELIC STRUCTURE 51

2.7.1. Definition. — Let K be a countable field of characteristic 0. An adelic
structure of K which satisfies the above conditions [(1)H(4)|is said to be arithmetic.

2.7.2. Remark. — Note that the condition is analogous to Northcott’s property
in Diophantine geometry. In Arakelov geometry of adelic curve, we say that an adelic
curve S = (K, (Q, A,v), ¢) has Northcott property if the set

{a€ K|hs(l,a) < C)}

is finite for any C' > 0 (see [13], Definition 3.5.2]). In the case where the adelic curve
S is proper and has Northcott property, an analogue of Northcott’s theorem holds
(see [13], Definition 3.5.3])

In the remaining of the section, we fix a countable field K of characteristic 0 and
a countable non-empty set I. We equip K with an adelic structure ((2,.4,v), ¢)
to form an adelic curve, which we denote by S. We also fix a family (i,)weq., of
embeddings from K to C such that |-|, = |t ()] for any w € Q4 and that the map
(w € Q) +> 1y (a) is measurable for each a € K (see [13] Step 1 in Theorem 4.1.26]).
For any element f € K[T7], we denote by ¢, (f) the polynomial in C[T}] defined as

o(f) =Y wlaa(f)TH.
deN®I
This defines a ring homomorphism from K[Tj| to C[T}], which extends to a homo-

morphism of fields form K (T7) to C(T7), which we still denote by ¢,(-).

2.7.3. Notation. — For convenience, for any f € K[T}], the complex polynomial
tw(f) € C[Ty] is often denoted by f,,.

For any ¢ € [0, 1], we denote by e(t) the complex number e2™V=1 For any w € (s,
we denote by €, ., the set

Q= {(ti)iel efo0,1)

(e(ts))ier is algebraically
independent over ¢, (K)

Note that by definition one has

0,1\ Qo= |J Atier €01 : ful(e(t)ier) =0} (2.9)

feK[Ti\{0}

We equip [0,1]7 with the product o-algebra (namely the smallest o-algebra making
measurable the projection maps to the coordinates) and the product of the uniform
probability measure on [0, 1], denoted by n; (see [45] §4.2] for the product of an
arbitrary family of probability spaces).

2.7.4. Lemma. — For any w € Qu, the subset Q,, of [0,1]! is measurable, and
[0, 117\ Qr.., is nr-negligible.
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Proof. — The measurability of 1y ,, follows from (2.9)).
For any non-zero element of K[T7], let

Vi(f) = {(t:)ier € [0,1)7| fuo ((e(t:))ier) = O}.
Since K and I are countable, K[T7}] is a countable set. Therefore, by , to prove
the second statement it suffices to show that n;(Vi(f)) = 0. We first treat the case
where I is a finite set. Without loss of generality, we assume that I = {1,...,n},
where n € N. The case where n = 0 (namely I = @) is trivial since in this case V7 (f)
is empty. Assume that n > 1. For t € [0,1], let f; be the polynomial

Lw(f)(Tl, ey Tn—la e(t)) € Ly (K)(e(t))[Tl, . 7Tn—1]-
Then by Fubini’s theorem, one has

N,y Vi, (f) = /[ ]"7{1,...,7171}(V{l,‘..,nfl}(ft))dt =0,
0,1

where the second equality comes from the induction hypothesis.
We now consider the general case. Let J be a finite subset of I such that f €
K|[(T;)ics]- By the definition of the product measure, one has

ni(Vi(f)) =ns(Vs(f)) = 0.
O

For any w € Q, we equip €., with the restriction of the product c-algebra on
[0, 1] and the restriction of the product probability measure 17 to obtain a probability
space denoted by (r,w, ALwsVLw). Let érw @ Qpw — M be the map sending
x = (t;)ier € QL to the absolute value

(f € L) — |fla = | fu(eti))ier) |

Thus we obtain an adelic curve S, ., := (L, (QL w, AL w, VL w), PL.w)-

We recall Jensen’s formula for Mahler measure of polynomials (see [41] for a proof).
2.7.5. Lemma (Jensen’s formula). — Let

P(T)=a4(T—aq) - (T — ay) € C[T)

be a complex polynomial of one variable T, with aq € C\ {0} and (a1, ...,aq) € CZ.
One has

1 d
/ In [P(e(t))] dt = In jag + 3 In(max{1, Jaj[}) > In aa].
0 o

2.7.6. Proposition. — The family of adelic curves (Si . )weq is an admissible fi-
bration over the adelic curve S. Moreover, in the case where the adelic curve S is
proper, for any F' € Py(r), one has

hs, (F) := / V(dw)/ In|F|,vp w(dz) > 0.
Q Qr.w
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Proof. — Step 1. By construction, for any w € Q and any = € Qf, ,,, the absolute
value ¢r, ., (z) on L extends the absolute value ¢(w) on K.

Step 2. Let g be a non-zero element of K[Ty], (F;)}_; be elements of P g
containing

{F € Pk, : ordr(g) # 0},
and (C;)7_; € R%,. We show that the function

(e ) — / 9l << V() (2.10)
L,w

is A-measurable. We choose a finite subset J of I such that g, Fi,..., F, belong to
K[(T;)ics]- By Lemma [2.7.4] one has

/ 19127y | <O Pl < Vi (d)
QL,w

Note that [0,1]7 is a separable compact metric space. By the criterion of measur-
ability for functions on product measurable space proved in [46, Lemma 9.2] and
the measurability of integrals with parameter (see [42] Lemma 1.26]), we obtain the
measurability of the function on 2.. The measurability of this function on
Q\ Qo follows from Proposition [2.6.5]

Step 3. It remains to show that the function

gu((e(tien)| TT U cieteonenice, mr(@ltdien)
j=1

gw((e(ti))ieJ)‘ T e o etticni<c, n(d(t)ies)
j=1

(we Q) — In|F|, v . (dz) (2.11)
QL,w

is well defined and is integrable for any F' € Zk(r). By Proposition again, it
suffices to show its integrability on Q.. Let

0 :={d e N®1 : q4(F) #0}.

One has

In|F|, < gl&(}){ln |ag(F)|w, + In(card(©)).
c6

Therefore, for w € Q, the integral

/ In|F|,; v o (de)
QL,w

is well defined and the following inequality holds:

/ In|F|; vpw(de) < maxln|aqg(F)|, + In(card(©)). (2.12)
QL,u de®
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Moreover, by an argument similar to that in Step 2, it can be shown that the function
(W€ ) — In|Fl|; v o (dx)
Qr,w
is measurable. Finally, by writing

/ In|F|,; v o (de)
QL,w

as successive integrals, and then by applying Jensen’s formula in a recursive way, we
obtain that there exists dy € © such that

Vw € Qoo / In|Fl|;vpo(dz) = Injag, (F)|w. (2.13)
QL,w

Combining this inequality with (2.12)) and the fact that v(s) < 400 (see [13|
Proposition 3.1.2]), we obtain the integrability of the function (2.11)) on Q. Finally,
applying (2.8)) to w € Q\ Qo the inequality (2.13)) leads to

hs, (F) > /  Inlaag () v(d) =0

provided that the adelic curve S is proper. The proposition is thus proved. O
2.7.7. Remark. — Note that, for f € L,

pouth) = [ viaw) [ m|geien mdten + [ wiflovas),

) , fin

Thus hg, (1) =0 and hg, (T;) =0 for all 4 € I.

2.7.8. Definition. — As a corollary, to the admissible fibration (Sg ., )weq One can
associate an adelic structure (g, AL, L), 1) on L as in Definition We fix
A € Rxg. Let S7 == (L, (Q},.A2,v7),4}) be an adelic curve with underlying field L
such that

(1) (23, A2,v7) is the disjoint union of (2, Az,vz) and P U{co} equipped
with the discrete o-algebra and the measure satisfying

vp({F}) = hs, (F) + Adeg(F) and vj({oo}) = X

for any F' € Pk,
(2) the map ¢7 : Q} — My, extends ¢;, and the map

({17 S gZK[TI] U {OO}) — HI
The adelic curve S7 is called the A-twisted compactification of Sy,

2.7.9. Remark. — Note that if A = 0, then S7 = S;. Moreover, if K and Qg,
are countable and Agq,,, is discrete, then L and €} 5, are countable and Aq: . is
discrete. '

2.7.10. Proposition. — The adelic curve S} = (L, (Q},A},v7), ¢}) is proper.
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Proof. — If A = 0, then the assertion follows from Proposition and Proposi-
tion 2.7.6l Note that

deg(g)= Y deg(F)ordr(g) (2.14)
FEP iz,

for g € L™, so that
D> (hs,(F) + Adeg(F))(—ordr(g)) + Adeg(g) = > hg, (F)(—ordr(g)),

FE'@K[TI] FEQK[TI]
as required. O
2.7.11. Remark. — The above result can be considered as a particular case of

Proposition In fact, if we equip P r,) U {oo} with the discrete o-algebra A’
and the measure v/ such that v/({oc}) =1 and v/ ({F'}) = deg(F'), then

(L7 ('@K[TI] U {OO}, A/7 Vl)7 ¢/)

forms an adelic curve, where ¢’ sends x € Pgr,) U {oc} to the absolute value [-|,.
Then the equality (2.14) shows that this adelic curve is proper. Note that the restric-
tion of v} on P 7, U {oo} coincides with

vy, + Z hs, (F) Diracp .
Fe"@K[TI]

Therefore the statement of Proposition follows from Proposition 2:5.1]

2.7.12. Lemma. — (1) If Fy,...,F. € K[Ty] with (Fo,...,F;) # (0,...,0), then

hsé(Fo,...,FT)g/ I masc{| Folas - .+ | FyJo g0 (d2)
Q

L,co

—|—/ In max{|Folw,- - - | Frlw}an(dw)
Q

fin

+ Amax{deg(Fp),...,deg(F})}.
Moreover, if G.C.D(Fy,..., F.) =1, then the equality holds.

(2) Firn eI andletI' =TI\ {n} and L' = K(Ty)). For F € K[Ty]\ {0}, if we
set F = agT?+a T4 + -+ aq such that ag,ay,...,aq € K[Tr] and ag # 0,
then

hSzl (agy ... aq) < hg, (F) 4+ deg(F)(A + 1In(2)r(Qx))-

Proof. — (1) Note that

1 in general,

<
max{|Fyle, ..., |Fr
{Fole.-| |E}{:1 if G.C.D(Fy, ..., F) =1,

for £ € Pk r,), so that the assertion follows.
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(2) Note that d < deg(F). We set f = F/ag. For y € Qp/ o, let
fy =T+ ty(ar/ao) T + - + 1y (aa/ag) = (Tn — 1) -+~ (T — )

be the irreducible decomposition in C[T},]. Then,

wlar/ag) = (=DF > e,

1<y < <ip <d

so that

|ak/a0|y < Z |ai1|"' |aik| < Z max{lv|ai1|}"'max{1v|aik|}

1< < <ip<d 1< << <d

< Y max{l, ||} max{L, agl}

1< < <ip <d

< 298 max{1, |y |} - - - max{1, |ag|}
because (g) <29 2deg(F)7 and hence one has
max{1, |ax/agly} < 2989 max{1,|ay|} - - max{1, |og|}.

On the other hand, by Jensen’s formula,
1 d
/ In |, (e(tn)| dtn = 3 nmax{1, fas]}.
0 i=1
Therefore, one obtains
1
tnmax{1 o faoly} < [ 1nfy(eltn))|dt + deg(F) In(2)
0

for all k € {1,...,d}, so that

Inmax{|aoly, |aily, - -, |aaly}

= Infaoly + Inmax{1, |a1/acly, ..., [aq/aoly}
1
<tnfaoly + [ Wl (e(ta))]dt, + dog(F) )
0

- /0 In|E, (e(t,))] dtn + deg(F) In(2).

Thus, by Fubini’s theorem,

/ In|F|,vp 00 (de) = / In|Fy(e(tn))| ve/ (dy) dt,
QL oo

QL’,OOX[O:U
/QL’,oo

> / (Inmax{|aoly, - . .,|adly} — deg(F)In(2)) vi.(dy)

,00

( / Iy (e(t,) dtn) v (dy)
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= / Inmax{|aoly, ..., |adly} v (dy) — deg(F) In(2)v (Qr/ o)

,00

= / Inmax{|aoly; - - -, |aaly} vi- (dy) — deg(F) In(2)v(Qso)-

L’ 00
On the other hand, note that
|F|, = max{|ag|w,-- -, |¢d|.}

for w € Qgy, so that

/ Inmax{|aoly, . .-, |aaly} v/ (dy)
QL/Y

[eS)

—|—/ In max{|ao|w; - - -, |adlw} v(dw)
Q

fin

< hs, (F) + deg(F) In(2) v(Qso).

hSﬁf (ag,y...,aq) < / Inmax{|aogly; . .-, |adly} v (dy)
LI

,00

—|—/ In max{|ao|w, - - -, |@d|w} v(dw)
Q

fin

+ Amax{deg(ap), .. .,deg(aq)}
< hg, (F) + deg(F)(\ + In(2)v(Qs)),

as required.

Fixn € I and let I' = I'\ {n} and L' = K(T}/). For F € K[Ty] \ {0}, we set
F =aoT?+ -+ a4 such that ay,...,aq € K[T] and ag # 0. We define (F) to be

(F):=F/ay = T,‘Li + (al/ag)Tff*l + -+ (aq/ao).

Note that (F') is a monic polynomial over L'.

2.7.13. Proposition. — If S}, has Northcott’s property, then, for C € R and

0 € Z»1, then the set
{ (F)| F e K[T;]\ {0}, hs, (F) < C and deg(F) < d}

is finite.

Proof. — Let © := {F € K[Ty]\ {0} | hs,(F) < C and deg(F) <4} and ¥ : © —

P?(L’) be a map given by the following way: for
F:aOTg—i—n-—l—ad €0 (ag,...,aq € K[Ty] and ag # 0),
0+1
I(F):=(ag: --:aq:0:---:0) € P°(L).
By Lemma [2.7.12]
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hsa, (0(F)) < hs, (F) + deg(F)(A + In(2)r(2)) < C + 6(A + In(2)1(Qx)).-

Thus the assertion of the proposition is a consequence of Northcott’s property of
S O

2.7.14. Proposition. — If S has Northcott’s property, card(I) < oo and A > 0,
then S} has also Northcott’s property.

Proof. — We prove it by induction on card(7). If card(I) = 0, then the assertion is
obvious because S} = S. Fix n € [ and let I’ = I\ {n} and L' = K(Ty). It is
sufficient to see that {f € L* | hSﬁ (f,1) < C} is finite for any C. For f € L*, let us
choose Fy, Fy € K[Ty]\ {0} such that f = Fy/F», and F; and F; are relatively prime.
We set

F1 = aLOT,ffl + -4 0,17d1 ((11707 e ,a17d1 (S K[T]I} and a170 # 0),
FQ = a270T7‘32 —+ 4 az’d2 (a2707 - ,ag’d,z S K[T]I} and ag’o # 0)

2.7.15. Claim. — If hsg (f,1) < C, then one has the following:

(1) max{deg(F1),deg(F2)} < C/A and max{hs, (F1),hs, (F2)} < C.
(2) hszl (alo,ago) < C

Proof. — (1) As C > hga(f,1) = hga (F1, F2) and Fy and F3 are relatively prime, by
(1) in Lemma [2.7.12] one has

C > Amax{deg(F}),deg(F2)} + / In max{|F1|., | F2l. } vi(dx)

L,00

—|—/ In max{|F1 |y, |F2|w} v(dw). (2.15)

fin

Thus

C > Amax{deg(F1),deg(F>)} + max{hs, (F1),hs, (F2)}
Therefore, (1) follows because hg, (F1), hs, (F2) > 0.
(2) By (1) in Lemma

hsi\’ (ZIL(), (1270) g A max{deg(alvo), deg(ag,o)}

+/ Inmax{|ai oy, |az,0ly} v/ (dy)

L', 00

—|—/ Inmax{|ai,0lw, |a2,0lw} v(dw).
o

fin

Therefore, by (2.15), it is sufficient to see the following:

/ Inmax{|Fi|z, |F2ls } VL 00 (dx) > / Inmax {|a1,0|y, |a2,0ly} vi-(dy) (2.16)

L,oo L', 00
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and

/ In max{|F1|,, |Fa|,} v(dw) > / Inmax{|ai,0|w, |a2,0lw} v(dw). (2.17)
Qfin Qfin

Indeed, by Jensen’s formula together with Fubini’s theorem,

/ In max{|F1|z, | Fa|s} v (dz)
QLo

/ In max {|Fyy (e(tn))|} v (dy)d,
Q00 x[0,1] 1,2

1=

/QL, ( /0 1 In }E%f;ﬂFi,y(@(tn))Hdtn) v (dy)

,00

1
[ m{ [ mime i b v
QL’,oo 1=1,2 0

> / masx {In |1, (a:0)[} v2(dy)
QL’, 1=1,2

oo

WV

= [ tmax{Jaralyslazaly) vis(dy)
L’

,00

as required for (2.16). Further, since |Fi|, > |a1,0lw and |F3|, > |ag,0lw, one has
2.17). O

If we set

A={ (F)|F e K[T[]\ {0}, hs, (F) < C and deg(F) < C/A },
A'={a€ K(Tr) | hs (a,1) < C},

then, by Proposition [2.7.13| together with the hypothesis of induction, A and A’ are
finite. Moreover, by Claim [2.7.15] if hsg (f,1) < C, then

(Fl)a (F2) €A and a170/a270 (S A
Thus the assertion follows because f = (a1,0/a2,0)( (F1)/ (F2)). O

2.7.16. Remark. — (1) Note that hga(1,7,) = A for all n € I, so that North-
cott’s property does not hold for Sé if I is infinite.
(2) Let Sg be the standard adelic structure of Q. Then, it is easy to see that

Q(T)

1
h(sgyx (L, T" =1) = /0 Inmax{1, |e(nt) — 1|} dt < In2
for all n» > 0, so that the Northcott’s property does not hold for S&T).

2.7.17. Theorem. — We use the same notation as in Section[2.60. We assume that
S has Northcott’s propery and X\ > 0. Let E be an algebraic closure of L = K(T7y).
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If Ey is a subfield of E such that Ey is finitely generated over K, then S? @1 E has
Northcott’s property over Ey, that is,

{a eEE| hsrop(l,a) < C and [Eo(a) : Ep) < 5}
is finite for any C € Ryg and 6 € Z>;.

Proof. — Since Ej is finitely generated over K and FE is algebraic over L, we can
choose a finite subset I’ of I such that Fo(T}/) is finite over K (7). It is sufficient
to see that the set

{a € E | hgygp(l,) < C and [K(Tp)(a) : K(Ty)] < 5} (2.18)
is finite for any C' € Ry and § € Z3,. Indeed, note that
[K(Ty/)(a) : K(Tp)] < [Eo(Tr)(a) - K(Ty)]
= [Eo(Tr)() : Eo(Tr)][Eo(Ty) - K(T1)]
< [Bo(a) : Eo][Eo(Tr) « K(Ty)],
so that
{a € E | hgygp(1,a) < C and [Eo(a) : Eo] < 5}
- {a €E|hsygp(l,a) < C and
[K(Tr)() : K(Tr)] < 0Eo(Ty) : K(Tp)] .
Let o be an element of the set (2.18). Let f(t) be the minimal polynomial of a over
K(Ty). As K(Ty) is a regular extension over K(T7/),
K(Tn)[t]/f Q) K (Ty)[t] ~ (K(Tr)[t]/ f () K (T1)[t]) ©x(z,) K(Tr)

is an integral domain, so that f(¢) is irreducible over K(T7), and hence f(t) is also
the minimal polynomial of a over K (T7). We set
f=tl+at™ +-- - +ag (ar,...,aq € K(Ty)).
Then, in the same arguments as [I3| Theorem 3.5.3], one has
hsa(1,a1,...,aq) <6C+ (6 — 1) In(2)r(Qe),
T,,>(1’ ai,...,aq) <O6C+ (6 —1)In(2)v(Qs). Therefore, the assertion is
a consequence of Proposition O

2.7.18. Theorem. — If E is a countable field of characteristic zero, then E has an
arithmetic adelic structure (see Definition .

so that hs}q

Proof. — We denote by S the standard adelic curve with Q as underlying field. Recall
that the measure space of S is given by the set of all places of Q equipped with the
discrete o-algebra and the counting measure. Let {z,}Y_; be a transcendental basis
of F over Q. Note that N might be +o0o. Moreover, E is algebraic over L :=
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Q((zn)N_;). Let A be a positive number. Starting from the adelic curve S, by the
way in Subsetion let S7 be the A-twisted compactification of Sp. We claim
that the adelic curve S ® F satisfies the properties (1) — (4) characterizing an
arithmetic adelic curve. The property (1) follows from Proposition and [13]

Proposition 3.4.10]. The property (2) is obvious. For (3), see Lemma and

Remark Finally the property (4) follows from Theorem [2.7.17 O
2.7.1. Density of Fermat property over arithmetic function fields. — In

this subsection, let us consider a simple application of Theorem together with
Faltings’ theorem [21I]. Let K be a field. We denote by p(K) the subgroup of K*
consisting of roots of unity in K, that is,

w(K) :={ae€ K |a" =1 for some n € Zso}.

Let N be a positive integer and let Fyy := Spec(Z[X,Y]/(XY + Y¥ —1)). We say
that Fy has Fermat’s property over K if z,y € pu(K) U {0} for all (z,y) € Fy(K).
Then one has the following theorem.

2.7.19. Theorem. — If K is an arithmetic function field, then
I #{N €Z|1< N <m and Fx has Fermat’s property over K}
1m =

m— o0 m

1.

Proof. — Let S be a proper adelic structure of K with Northcott’s property (cf.
Theorem [2.7.18)). Let us begin with the following claim:

2.7.20. Claim. — (1) Forxz,y € K, hs(z,y,1) =0 if and only if x,y € u(K) U
{0}

(2) If N > 4, then there is a positive integer mqy such that Fy.,, has Fermat’s
property of every integer m > myg.

Proof. — (1) We assume that hg(z,y,1) = 0 for z,y € K. Then hg(z™ y", 1) =
nhg(z,y,1) =0 for all n € Z~, so that, by Northcott’s property,

{(z",y") [ n € Z>0}
is finite. Therefore, there are n,n’ € Z~o such that n > n’ and (z",y") = (avnl,y”,)7
and hence x,y € pu(K) U {0}. The converse is obvious.
(2) First of all, note that Fiy(K) is finite by Faltings’ theorem [2I]. We set

H := max{hs(z,y,1) | (z,y) € Fy(K)},
a = inf{hs(z,y,1) | z,y € K and hg(z,y,1) > 0}.
Note that a > 0 by Northcott’s property. For a positive integer m with m > exp(H/a),
we assume that hg(z,y,1) > 0 for some (z,y) € Fnm(K). Then, as (2™,y™) €
Fn(K),
H > hg(z™,y™, 1) = mhs(z,y,1) = ma,
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so that exp(H/a) > exp(m), and hence m > exp(m). This is a contradiction. There-
fore, hg(z,y,1) = 0 for all (z,y) € Fnm(K). Thus, by (1), Fnm has Fermat’s
property. O]

By (2) together with [40, Lemma 5.16], one can conclude the assertion of the
theorem. ]

In the case where K = Q, it was proved by [22], 29}, 39] (cf. [59]). A general
number field case is treated in [40]. The above theorem gives an evidence of the
following conjecture:

2.7.21. Conjecture (Fermat’s conjecture over an arithmetic function field)
Let K be an arithmetic function field. Then is there a positive integer Ny
depending on K such that Fy has Fermat’s property over K for all N > Ny?

2.8. Polarized adelic structure

In this subsection, we recall an adelic structure induced by a polarization of a field.
Let K be a finitely generated field over Q and n be the transcendental degree of K
over Q. Let & — SpecZ be a normal projective arithmetic variety such that the
function field of % is K. Note that dim % =n + 1. Let

(%3%1 = (<%ﬂ1, hl)a ce a%n = (%17 hn))
be data with the following properties:
(1) 54, ..., 5, are invertible Og-modules that are nef along all fibers of 8 —
Spec(Z).
(2) The second entries hy, ..., h, are semipositive metrics of J4, ..., 7, on #(C),

respectively.
(3) For each i = 1,...,n, the associated height function with #; is non-negative

According to [48], the data (%; .71, ..., ) is called a polarization of K.

Let = be a C-valued point of 4, that is, there are a unique scheme point p, € £
and a unique homomorphism ¢, : Og, — C such that z is given by ¢,. We say x
is generic if p, is the generic point of . We denote the set of all generic C-valued
points by Z(C)gen. Note that the measure of #(C) \ A(C)gen is zero.

The polarization (%; #1,...,#,) yields a proper adelic structure of K in the
following way. First of all, we set

Qoo 1= AB(C) gen,
Q\ Q := the set of all prime divisors on A.
For each element of w € Q, |-|,, is give by

{flz = |6:(f)| if & € O,
|flr :=exp (—ordr(f)) T e\ N



2.8. POLARIZED ADELIC STRUCTURE 63

for f € K. Note that Q. is a measurable subset of a projective space, so that one
can give the standard measurable space structure and a measure on {1, is given by
c1(F1) N+ Ay (H,,). The measurable space structure on Q \ Qo is discrete and a
measure v on 2\ Q. is given by v({T'}) = (- -- 5, - (T',0)). This adelic structure
is called the polarized adelic structure by the polarization (B; I, . .., ).

2.8.1. Ezample. — Let h be the metric of Op1(1) on P{ = Proj(C[Ty, T1]) given
by

laCo + b(i |

aTy + Ty |1 (Co, €1 ) i= — R0 T 251

e AT NS

Then (Op1(1), h) gives rise to a semipositive metrized invertible Opi-module, so that

((PL)"; 91 (g (1), B, 2 (Opy (1), 1)

yields to an adelic structure of the purely transcendental extension Q(z1, ..., z,) over
Q, where p; : (P1)™ — PL is the projection to the i-th factor. Note that it is nothing
more than the adelic structure described in Section 2.6l and Section






CHAPTER 3

LOCAL INTERSECTION NUMBER AND LOCAL
HEIGHT

In this chapter, we fix a field k& equipped with an absolute value |-|, such that k is
complete under the topology induced by the absolute value |-|. In the case where ||
is Archimedean, & is equal to R or C. In this case we always assume that |-| is the
usual absolute value on R or C. Note that the absolute value |-| extends in a unique
way to any algebraic extension of k (see [52] Chapter II, Theorem 6.2). In particular,
we fix an algebraic closure k¢, on which the absolute value |-| extends in a unique
way. Throughout this chapter, we denote the pair (k,|-|) by v. In the case where ||
is non-Archimedean, we denote by o, the valuation ring of v = (k, |-|), and by m,, the
maximal ideal of o,,.

3.1. Reminder on completion of an algebraic closure

We denote by Cj the completion of an algebraic closure k¢ of k, on which the ab-
solute value |-| extends by continuity. Recall that Cj, is algebraically closed. A proof
for the case where k = Q,, can for example be found in [53], (10.3.2)], by using Kras-
ner’s lemma. The positive characteristic case is quite similar, but a supplementary
argument is needed to show that there is no inseparable algebraic extension of Cg. For
the convenience of the readers, we include the proof here (see also [61], Theorem 17.1]
for another proof).

3.1.1. Lemma. — Let K be a field equipped with an absolute value |-| and K be the
completion of K. If the field K is perfect, then also is K.

Proof. — Clearly it suffices to treat the case where the characteristic of K is p > 0.
To prove that the completed field K is perfect, we need to show that any element a
of K has a p-th root in K. We choose a sequence (an)nen of elements of K which
converges to a. Since K is supposed to be perfect, for each n € N we can choose
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b, € K such that b2 = a,,. For any (n,m) € N? one has
‘bn - bm‘p = |(bn - bm)p| = |b£ - bfn| = |an — CLm|.
Hence (by,)nen is a Cauchy sequence in K, which converges to an element b € K.

Therefore

P = lim b = lim a, =aq,
n—-+oo n—-+oo

as required. O
3.1.2. Proposition. — The field Cy, is algebraically closed.

Proof. — Tt suffices to treat the case where the absolute value |-| is non-Archimedean.
We begin with proving that the field Cj, is separably closed. Let Cj be a separable
closure of Cy, on which |-| extends in a unique way. Let o be a non-zero element of
Cj and

f(T)=T +a;T" ' 4+ +a, € Ci[T]
be the minimal polynomial of . Assume that r > 2. Let ao, ..., a, be conjugates of
o in Cj which are different from «, and let

e= min |a—a;j|.
J€{2,...,r}

Since k¢ is dense in Cyg, there exists a polynomial

g(T) =T +bT" '+ 4 b, € k*[T]

such that
max |a| b — a;| < €.
i€{l,...,r}
Since k¢ is algebraically closed, there exist elements 1, ..., 3, such that
9(T)=(T = B1)--- (T - By).
One has

1,...,r

[Tl =81 =lg(@)l = lg(e) = (@) < max ol b —aif <€
i=1

Hence there exists 8 € {81,...,0:} such that | — 5| < €. However, for any o €
Gal(C; /Cy), one has
la = B = lo(a = B)| = |o(a) = Bl
This implies | — o(a)| < €, which leads to a contradiction. Therefore one has r = 1,
or equivalently, a € Cy.
To show that Cy, is algebraic closed, it suffices to check that Cj does not admit any
algebraic inseparable extension, or equivalently, Cy, is a perfect field. Note that any

algebraic closed field is perfect (see |8 Chapitre V, §1, no.5, Proposition 5|). Hence
the result follows from Lemma [3.1.1] O
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3.2. Reminder on norms

Let E be a finite-dimensional vector space over k. If ||-|| is a norm on E, we denote
by |||« the dual norm of ||-|| on the dual vector space EV, which is defined as follows:

£ (s)]

seE\{0} llsl .

VieE", |fll.=

Let ||||x and ||-||2 be two norms of E. Let ||-|[1,« and ||-||2,« be the dual norm of ||-||;
and ||-||2, respectively. Then we define d(||-||1, ||-|l2) and d.(]|-||1,]|-]|2) to be

d(ls l2) = sup {In|[s[x —In||s]l2],
seB\{0}

du([l-fl1s [I-1l2) == dCll-ll15 [I-]]2,%)-

Note that if dimy B = 1, then d(|[|1, |-|2) = d([[ll1, |-]l2). It is easy to see that d
and d, satisfy the triangle inequality.

3.2.1. Lemma. — Let 0 - F — FE — Q — 0 be an exact sequence of finite-
dimensional vector spaces over k. Let ||-||1.r and ||-||2,r be restricted norms of ||-||1
and ||-||2, respectively, and |-||1,¢ and ||-||2,o be quotient norms of ||-|[i and |-||2,
respectively. Then one has the following:

{d(||'||1,F, [ll2,7) < d(ll-ll1, [1-ll2), d(l- @ lIll2,@) < d(ll-[lx lI-]2), (3.1)
A (111,75 Ill2,7) < dulll-ll1 [I-l]2), delll-ll1,@: Ill2,0) < dulll-ll1; [-[]2)-
Proof. — See [13], Proposition 1.1.42].

[

3.2.2. Lemma (Abstract form of Fubini-Study metric)

Let m : E — Q be a surjective homomorphism of finite-dimensional vector
spaces over k such that dimy @ = 1. Let ||-||g be a norm on E and ||-||q be the quotient
norm of Q induced by the homomorphism © : E — Q and ||-|g. Let ¢ € EV \ {0}
such that ¢|y., . =0. Then, for any s € E,

_ lo(s)]
”71—(5)“@ = ||¢||E,*

Proof. — Note that the dual norm |[-[|g. of QY is equal to the sub-norm
|| E,x.0vesrv of @Y induced by the injective homomorphism Q¥ — EY, a — a o
and the dual norm |[|-||g . (cf. [13l Proposition 1.1.20]). As |k, . = 0, there is
¢ € Q\ {0} such that p o™ = ¢, and one has [|¢||g. = ||¢llg+ Since Q is of
dimension 1 over k, for any ¢ € ), one has

_ le@] _ le(a)l
lellgx  lIolle.

lalle
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In particular, for any s € F, the following equality holds:

In(s)llq = LT _ 19(e)]
[elee oz

which concludes the lemma. O

3.3. Continuous metrics

If X is a projective k-scheme, we denote by X" the analytification of X. If k = C
and |-| is the usual absolute value, then X?* is a complex analytic space; if |-| is non-
Archimedean, then the analytification X" is defined in the sense of Berkovich (see
[4, §4.3]). Recall that any element x of X®" consists of a scheme point of X and an
absolute value ||, on the residue field of the scheme point, which extends the absolute
value |-| on k. We denote by %(z) the completion of the residue field of the scheme
point with respect to the absolute value |-|,;, on which the absolute value extends by
continuity. In the remaining of the section, we fix a projective k-scheme X.

3.3.1. Definition. — Let E be a locally free O x-module. We call continuous metric
on E any family ¢ = (|-|,(2))zexan, where for each € X*", |-|,(z) is a norm on
E(z) :== E ®o, k(z), such that, for any section s of E on a Zariski open subset U
of X, the map |s|, from U to R sending (z € U*") to |s(x)|,(x) is a continuous
function on U*'. Let L be an invertible Ox-module. If ¢ and 1 are continuous
metrics on L, we define

d(p,9) == sup
zeXan

where
lo(@) _ [tlo(@)
lp(@) [y (x)

3.8.2. Example. — (1) Let L be an invertible Ox-module and n be a positive
integer. Let (E,|-||) be a finite-dimensional normed vector space over k. We
assume that p : E®, Ox — L®" is a surjective homomorphism of O x-modules,
which induces a k-morphism f : X — P(E) such that L®" is isomorphic to
1*(Og(1)), where Og(1) denotes the universal invertible sheaf on the projective
space P(E) (see [33] 11.(4.2.3)]). For each point € X" the norm ||-|| induces
a quotient norm |-|(z) on L(x) such that, for any ¢ € L(x) \ {0},

| for any ¢ € L(x) \ {0}.

. — 1/n
@)= if (IAZs])
s€E, \er(z)™
p(s)(z)=28™
The quotient norms (|-|(z)),cx=n define a continuous metric on L, called the
quotient metric induced by ||-||. By definition, if ||-]|; and ||-||2 are two norms on
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E, and if ¢7 and @9 are quotient metrics induced by ||-||1 and ||-||2, respectively,
then one has

(1, p2) < d([-ll1, [I]l2)- (3.2)
Let L be an invertible Ox-module and ¢ = (|-|,(%))zexan be a continuous
)

metric on L. The dual norms of |-|,(z) on L(x)¥ form a continuous metric on
LY, which we denote by —¢. Recall that for any ¢ € L(z) \ {0}, one has

6] = 10157,

where ¢V denotes the linear form on L(x) such that £¥(\) = X for any A € R(z).
Let L; and Ly be invertible O x-modules, and ¢1 and @5 be continuous metrics
on Ly and Ly respectively. Then the tensor product norms of |-|,, (z) and
|5 (z) form a continuous metric on Ly ® Lo, which we denote by ¢1 + 2. Note
that, for any ¢; € Li(z) and {3 € Ly(z), one has

|£1 ®£2|Lp1+4,02(m) = |letp1 (33) ) ‘€2|LP2($)'

Let f : Y — X be a k-morphism of projective k-schemes. We denote by
[ Y?™ — X?" the continuous map of analytifications induced by f. Let L
be an invertible Ox-module, equipped with a continuous metric ¢. Then the
metric ¢ induces by pull-back a continuous metric f*(¢) on f*(L) such that,
for any y € Y and any ¢ € L(f*"(y)), one has

1F* (Ol 5+ ) (y) = o (f* ()

The metric f*(p) is called the pull-back of ¢ by f.

Let k&’ /k be an extension of fields. We assume that the absolute value |-| extends
to &’ and that the field &’ is complete with respect to the topology induced by
the extended absolute value. Let X/ be the fiber product X xgpecr Spec K.
We denote by 7 : Xjr — X the morphism of projection. Then the map

e X X (3.3)

sending any point ' = (j(2), ||») € X7 to the pair consisting of the scheme
point 7(j(z’)) of X and the restriction of |-|,» to the residue field of 7(j(z')),
is continuous (see [13], Proposition 2.1.17]), where j : X7 — X denotes the
map sending a point in the analytic space to its underlying scheme point.

Let L be an invertible Ox-module, equipped with a continuous metric .
Let Ly be the pull-back of L by the morphism of projection 7. The continuous
metric ¢ induces a continuous metric @i on L such that, for any =’ € X
and any £ € L(n%(z")), one has

Vaer(z'), la@ll,, (@)= ale - |0, (m" ().
In particular, if v is another continuous metric on L, then one has

d(ow, Yrr) < d(p, ). (3.4)
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3.3.3. Definition. — Let (E,||-||) be a finite-dimensional normed vector space over
k. We assume that the norm ||-|| is either ultrametric or induced by an inner product.
Let k' /k be an extension of fields, on which the absolute value |-| extends. We assume
that the field &’ is complete with respect to the extended absolute value. We denote
by ||-||x the following norm on Ey/ := F ®y, k'
(1) In the case where the absolute value |-| is non-Archimedean and the norm ||| is
ultrametric, ||-|[x is the e-extension of scalars of the norm |-||. Namely, for any
t=51QM + - +8, @A € E@p K

ltllxr :== sup

feEV\{0} £« ’
where |||« denotes the dual norm of |||, which is defined as
zeE\{0} [l s]]

This is an ultrametric norm on Ej such that ||s ® allx = ||s]| - |a|] (see [13]
Proposition 1.3.1]). Moreover, if (e;)7_; is an orthonormal basis of (E, ||-||),
then (e; ® 1)7_; is an orthonormal basis of (E/, ||-|lx) (see [I3, Proposition
1.3.13]).

(2) In the case where the absolute value || is Archimedean, k =R, k¥’ = C, and ||||
is induced by an inner product (,), ||-[|c is the orthogonal extension of scalars

of ||-||]. Namely, for any (s,t) € E x E,
s © 1+t @ VTl = (s + 42)/2

Clearly, for any s € E one has ||s ® 1||c = ||s||. Note that the norm ||-||c is
induced by an inner product (, )¢ on E¢ such that, for any u = s®@1+t®+/—1
andu' =5 ®1+t ®+—1in Eg,

(u, u/> = <S’ S/> + <t7t/> + \/j1(<87t/> - <t’ S/>)'

Moreover, if (e;)7_; is an orthonormal basis of (E, ||-||), then (e; ® 1)I_; is an
orthonormal basis of (Eg¢, ||-||c)-

3.3.4. Remark. — Let n be a positive integer. Assume that p : F®,O0x — L®"isa
surjective homomorphism of O x-modules, which induces a k-morphism f : X — P(F)
such that L®" = f*(Og(1)). We equip L with the quotient metric ¢ induced by ||-]|.
In the case where the absolute value || is non-Archimedean, for any point x € X2,
the norm ||, (z) on L®"(z) coincides with the quotient norm on L®"(x) induced by
the norm ||-||z(») on E ® &(x) and the quotient map p, : E®p k(x) — L®". We refer
the readers to |13l Proposition 1.3.26 (i)] for a proof. As for the Archimedean case
with £ = R and k(z) = C, note that, if s and ¢ are elements of F and a and b are
complex numbers such that

pe(s) = al®",  py(t) = b®",
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where £ is a fixed non-zero element of L(z). Then one has
Pr(s®@14+t®@ V1) = (a+by/—1)1"
and hence
2 2\1 2 2\ 1
s+ 017z o sl + 185z o 1 sl + 1] Lo (@),
la + b/ =1 la] + (] V2 lal + bl T V2

Therefore, the quotient norm on L®" induced by ||-||z(») and the quotient map

pe i B @y R(z) — L (1),

which is bounded from above by |-|,,,,(x) by definition, is actually bounded from below
by (1/V2)]|ng (2)-

Let k' /k be a valued extension of (k, |-|) which is complete. By extension of scalars,
we obtain a surjective homomorphism of Ox,,-modules

pi : By @) Ox,, — LY,

which corresponds to the k’-morphism fi : X — P(Ex/). Let ¢ be the quotient
metric on L induced by ||-||. In the case where |-| is non-Archimedean, it turns out
that the quotient metric on L/ induced by ||-||x coincides with /. This fact follows
from [13l, Proposition 1.3.15 (i)] and the above identification of the quotient metric to
a family of quotient norms. In the Archimedean case with k = R and k¥’ = C, by the
above estimate, in general the quotient metric ¢’ on L¢ induced by |[|-||c is different
from pc. The above estimate actually shows that, for any x € X&" one has

Joc (@) < g () < [ ().
Note that the metric ¢¢ is still a quotient metric. In fact, if we consider the m-
extension of scalars ||-||c,» on E¢ defined as

m
Vte E t = inf Ail - |lsill-
€ Be lilleni= 0 0, o, SNl

Then the metric p¢ identifies with the quotient metric induced by |||

1
2=

C,m-

3.3.5. Definition. — Let L be an invertible O x-module and n be a positive integer.
Let (E, ||-||) be a finite-dimensional normed vector space over k. We assume that the
norm ||-|| is either ultrametric or induced by an inner product. Let p : E®pOx — L&"
be a surjective homomorphism of Ox-modules, which induces a k-morphism f : X —
P(E) such that L®" is isomorphic to f*(Og(1)). For each point z € X" the norm
[||7(z) on E ®j ®(x) induces by quotient a norm |-|(x) on L#"(z). There then exists
a unique continuous metric ¢ on L such that |-[,,(2) = ||(z) for any € X*". The
metric @ is called the orthogonal quotient metric induced by ||-||. Note that, in the
case where |-| is non-Archimedean or (k,|-|) is C equipped with the usual absolute
value, the orthogonal quotient metric identifies with the quotient metric induced by
||I-|| introduced in Example Moreover, for any complete valued extension
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k'/k, the metric oy identifies with the orthogonal quotient metric induced by |||z

(see Remark above).

3.3.6. Definition. — Let L be a semi-ample invertible Ox-module and ¢ be a
continuous metric on L. If there exists a sequence of quotient metrics ¢,, on L such
that

lim d(¢,,e) =0,

n—-+oo
we say that the metric ¢ is semi-positive (see [12] §2.2]). In the case where |-| is
Archimedean and k = C, this definition is equivalent to the plurisubharmonicity of
the metric ¢ (see for example [67, Theorem 3.5]).

3.3.7. Remark. — Let L be an invertible Ox-module. Let k'/k be a complete
valued extension of k, X/ be the fiber product X Xgpecx Speck’ and 7l Xpr— X
be the map defined in . If ¢ and 1 are two continuous metrics on L, then the
metrics ¢y and 1y satisfy the relation (see (3.4]))

d(ewr s i) < d(p,9).
Therefore, if ¢ is a semi-positive metric on L, then ¢y is also a semi-positive metric.
3.3.8. Definition. — Let L be a very ample invertible Ox-module and ¢ be a

continuous metric on L. For any positive integer m, the continuous metric ¢ induces
a seminorm |||, on HO(X, L®™) as follows:

Vs e HYX, L),  slme = sup [s|me ().
reXan
This seminorm is a norm notably when the scheme X is reduced. For each point

r € X*, the seminorm ||-[|;n, induces a quotient seminorm ||, (z) on L(x) such
that, for any ¢ € L(z) \ {0}
l om () = inf D ot [ R
@)= it lshg)
s(z)=A&™

This seminorm is actually a norm and is bounded from below by |-|,(z). The norms
(|| pom) (%)) wexon form a continuous metric on L, which we denote by ¢(™).

3.3.9. Proposition. — Let L be a very ample invertible Ox-module. If o1 and 2
are two continuous metrics on L, then the following inequalities hold:

Vm e Ny, del™,08™) < d(pr, 92).
Proof. — By definition, one has

1 Islbm,

sup < d(mp1, mp2) = md(p1, p2).
sEH°(X,L®™)

HSHm«m #0

||5||m<p2
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Therefore,
m m 1
d(py™. 03™) < —d(mer, me:) = (g1, @2)-
O
3.3.10. Remark. — Let (E, ||-||) be a finite-dimensional vector space over k, m be a

positive integer and p : 7*(E) — L®™ be a surjective homomorphism of O x-modules,
where m : X — Speck denotes the structural morphism of schemes. Let ¢ be the
quotient metric induced by ||-||. Note that p induces by adjunction between 7* and
. a k-linear map o : E — HY(X,L®™). Let s be an element of H°(X, L®™). For
any r € X?", one has

1]

teB, Aer(@)* Az
a(t)(z)=As(x)

|5|m<p(x) =

In particular, for any s in the image of the linear map «, one has

< inf t||.
lsllmg < ,_int 1

Therefore, for x € X?" and ¢ € L(z) \ {0}, one has

- l[8llme\ /™ . [l /™
L o () = inf —_— < inf = |l|,(x).
[l () seHO(x,LW),Aea(:p)x( Al ) tEE, ACR(z) ¥ (IM.T) o (@)

s(x)=A&™ a(t)(z)= 8™

Combining with the inequality |€[ ) (7) > [{|,(x), we obtain the equality oM = .

3.3.11. Proposition. — Let L be a very ample invertible Ox -module, equipped with
a continuous metric . Let ||-|| be a norm on the vector space H°(X, L®™). For any

a >0, let ||-||a be the norm on H°(X,L®™) defined by

V€ HOX L), fslla = max{ sl allsl}} = max {_ sup |slo(@).als] }

and let @, be the quotient metric on L induced by ||-||a. Then, for any x € X?"

o () < [-e, (), (3.5)

and there exists ag > 0 such that @, = ") when 0 < a < ay.

Proof. — By definition, one has |||, = ||-||,. Hence the inequality (3.5 holds.
Let Nj.j, be the null space of the seminorm ||||,, which is defined as

NH‘H«p = {S S HO(X, L) | ||3H<,0 = 0}.

Let E be the quotient vector space H°(X,L)/Ny.;, and © : H°(X,L) — E be the
projection map. We denote by ||-|| g the quotient norm of ||-|| on E and ||-||,. & be the
quotient seminorm of ||-||, on E, which is actually a norm satisfying the relation

Vse HY(X,L), |m(s)]le.e = llsll,- (3.6)
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Since all norms on E are equivalent, there exists C' > 0 such that ||-||g < C|-||,,E-
Therefore, for any € X*", and any ¢ € L(z) \ {0} one has

. max{|[s|lx, alls|[}\ =
/ T) = inf
e () sEHO(X,L‘X)"),)\eE(:z)X( |A] )
s(x)=A8"
N (I CTS ISR
SEHO(X,LE™), AeR () [Al
s(x)=18"m

once a < C~!, where the second equality comes from the fact that s(x) = 0 when
S € N|\'||<p' O]

3.3.12. Proposition. — Let L be a very ample invertible Ox -module, equipped with
a semi-positive continuous metric . Then one has

lim d(e™, @) =0.

m——+o0
Proof. — First of all, for positive integers m and m’, one has
Voe X Vee L)\ {0}, 7 (@) < g - 1€

Therefore
(m+m")de™ ), o) < md(e™, ) +m'd(e"™), p).
By Fekete’s lemma we obtain that the sequence
d(c,o(m),w)7 meN m2>1
converges to a non-negative real number, which is also equal to

inf _d(p"™, ).

meN, m2>1
Moreover, since the metric ¢ is semi-positive, there exist a sequence of positive integers
(mn)nen, a sequence of finite-dimensional normed vector spaces ((Ey, ||*||n))neny and
surjective homomorphisms of Ox-modules p, : E, ® Ox — L®™» such that, if we
denote by ¢, the quotient metric on L induced by |||, then one has
lim d(pn, @) =0.

n—-+o0o

By Remark [3.3.10} one has ¢£Z”") = (p,, and hence
("™, ) <A™, on) + d(ons 9) = AP, 01" + d(on, 0) < 2d(pns ),

where the last inequality comes from Proposition By taking the limite when
n — 400, we obtain that

inf  d(e™, ) =0.

meN, m>1
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3.3.13. Definition. — Let (L, ¢) be a metrized invertible O x-module. We say that
(L, ) is integrable if there exist ample invertible Ox-modules L; and Lo equipped
with semi-positive metrics ¢; and 9 respectively, such that L = L; ® LY and ¢ =

Y1 — P2.

3.3.14. Definition. — We assume that v is non-Archimedean. Let (L, ) be a
metrized invertible Ox-module. We say ¢ is a model metric if there are a positive
integer n and a model (27,.%) of (X, L®") such that ny coincides with the metric
arising from the model (£2",.%) (cf. [13, Subsection 2.3.2]). In the above definition,
we may assume that 2" is flat over o, (for details, see [I3], Subsection 2.3.2]). In the
case where L is nef, if £ is nef along the special fiber of 2~ — Spec(o,), then the
model (Z£7,.%) is said to be nef and g is called a nef model metric.

3.3.15. Remark. — Let (2°,.%) be amodel of (X, L), Z;cq be the reduced scheme
associated with 2" and ZLeq 1= $|Xred' For z € X?", the morphism Spec(o,) —
Z factors through Spec(o,) — Ziea — 27, and hence po coincides with ¢ _,.
Moreover, £ is nef with respect to & — Spec(o,) if and only if Zeq is nef with
respect to Zred — Spec(oy).

3.8.16. Definition. — Let (L,p) be a metrized invertible Ox-module. We say
that ¢ is smooth if one of the following conditions is satisfied:
(i) if v is Archimedean, ¢ is a C'*°-metric;
(ii) if v is non-Archimedean, ¢ is a model metric.
If L is nef and v is non-Archimedean, then ¢ is said to be M -semi-positive if there is
a sequence (@n,)>_; of nef model metrics of L such that lim d(y,¢m) = 0.
m—o0

3.3.17. Lemma. — We assume that v is non-Archimedean. Let L be an invertible
Ox-module and (Z,.£) be a model of (X,L). Then there is a model (Z7,£") of
(X, L) with the following properties:
(1) 7 — Spec(o,) is finitely presented, that is, (Z',.£") is a coherent model of
(X, L) (c¢f [13l, Subsection 2.3.2]).
(2) Z is a closed subscheme of 2.
(3) The special fiber of 2"’ — Spec(o,) coincides with the special fiber of X —
Spec(oy).
(4) L'y =2.

Proof. — By [38], Corollary 5.16 in Chapter II|, there are a polynomial ring A :=
0,[To, ..., Tn] over o, and a homogeneous ideal I of A such that 2" = Proj(A/I).
Weset R:=A/I. Let p: A— Rand 7: A — A®,, (0,/my) = (0,/my)[T0,...,TN]
be the natural homomorphisms. There are homogeneous elements hy, ..., k. of R and
Ggij € R(hihj) ((Z,j) S {]., .. .,6}2) such that 2 = Ule .DJr(h/Z) and (gij)(i,j)e{l,...,e}Q
gives transition functions of £, where R(;) (for a homogenous element h) is the
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homogeneous localization with respect to h. We choose a homogeneous element H;
of A such that p(H;) = h;. Since

@ = m Vi(hi) =Vi(mR+ -+ heR),
i=1

we have Ry Crad(hiR+---+ hR) by [44], Lemma 3.35 in Section 2.3|, that is, there
is a positive integer a such that p(Tp)®,...,p(Tn)* € iR+ - + heR, so that

T¢,... TS € HHA+ -+ H A+ 1. (3.7)

We also choose Gj € A, ;) such that p(Gij) = gij and Gi; = 1. As g;59; = ga on
R(n;h;ny), one can see

GijGjl -Gy € I(HiHsz) (38)
for all (i,45,1) € {1,...,e}>. Let S = 0, \ {0}. Since Is and 7(I) are homogeneous
ideals of k[Tp,...,Tn] and (0, /my,)[T0, ..., Tn], respectively, Is and 7(I) are finitely
generated ideals. Therefore, by using and , one can find a finitely generated
homogeneous ideal I’ of A such that

ICr Iy=Is, a(I) =n(D).

T8, ..., T{h e H1A+ -+ H A+ I,

GijGj — Gy € IEHiHjHl) (Vi g le{l,...,e}).
Let R' := A/I', 2" := Proj(R) and p’ : A — R’ be the natural homomorphism.
Obviously 2" is a closed subscheme of 2. We set h; = p'(H;) and g;; = p'(Gij).
Then p/(Tp)%, ..., p'(In)* € Wi R +---+ h.R', which means that 2" = (J;_, D4 (h})
by [44] Lemma 3.35 in Section 2.3]. Moreover, g;.g;, = g;;- In particular, g;,¢%; =
gi; = 1, so that g; € R/(Xh;h;)- This means that {g;;}i e(1,....c} gives rise to an
invertible O g,-module .#’ such that £’|,- = £. Moreover, (Z”,.Z’) is a model

of (X,L) and the special fiber of £’ — Spec(o,) is same as the special fiber of
2" — Spec(o,), as required. O

3.3.18. Proposition. — Let 2~ — Spec(0,) be a model of X and £ be an invertible
Og -module. If £ is ample on every fiber of Z — Spec(o,), then £ is ample.

Proof. — By Lemma|[3.3.17} there are a coherent model of 2~ of X and an invertible
Og-module £’ such that 2 is a closed subscheme of 27/, Z'|, = £ and the
special fiber of 2~ — Spec(o,) coincides with the special fiber of 2"~ — Spec(a,).
Note that %’ is ample on every fiber of 2" — Spec(0,), and hence .#’ is ample by
[33l TV-3, Corollaire (9.6.4)] because 2~ — Spec(o,) is finitely presented. Therefore
£ is ample. O

3.3.19. Theorem. — We assume that v is non-Archimedean and |-| is not trivial.
Let L be a semi-ample invertible O x -module and ¢ be a continuous metric of L. Then
w is semi-positive if and only if ¢ is M -semi-positive.



3.4. GREEN FUNCTIONS 77

Proof. — First we assume that ¢ is semi-positive. By Remark [3.3.15] we may assume
that X is reduced. As L is semi-positive, there is a positive integer ng such that L®"0 is
generated by global sections, so we may assume that L is generated by global sections,
and hence L®" is generated by global sections for all n > 1. Fix A € ]0,1[ such that
A < sup{lalla € £, |a] < 1}. By [13| Proposition 1.2.22], there is a finitely generated
lattice &, of HO(X, L®™) such that d(||-|e,, ||:|lns) < log(A™1). Note that there is
a morphism f, : X — P(H(X, L®")) with f}(Oppo(x,ren)(1)) = L¥", so we can
find a morphism F, : 2, — P(&,) over o, such that 2, is flat and projective over o,
and F, is an extension of f,, over o,. If we set .Z, = F;;(Op(e,)(1)), then (25, Z,) is
a flat model of (X, L®™). As &, ®,, Op(e,) = Op(e,)(1) is surjective, one also has the
sujectivity of &, ®,, Og;, — Z,. Therefore, by [13 Proposition 2.3.12], the model
¢,- Therefore, if we

metric ¢, coincides with the quotient metric induced by ||
denote by ¢, the quotient metic induced by ||-||ne, then, by [13, Proposition 2.2.20],

d(z,,0n) < d([ e, IIlng) <log(A),

which implies

dtog,, o) <d(Eeoz,, ten) +d(ten, o) < 2log(A™h) +d(Len, @),

and hence lim d(%gpgn,cp) = 0. Thus ¢ is M-semi-positive because .Z,, is nef.
n—oo

Let us see the converse. Let (:27,.Z) be a model of (X, L) such that .% is nef along
the special fiber of 2" — Spec(o,). Let ¢ be the metric arising from the model
(Z,%). Tt is sufficient to see that ¢ & is semi-positive. Let &/ be an ample invertible
O g-module. Then, for n > 1, & ® £®" is ample on every fiber of 2~ — Spec(o,),
and hence, by Proposition o @ L% is ample on 2 for all n > 1. Therefore,
by [13], Proposition 2.3.17], ¢« is semi-positive. O

3.4. Green functions
In this section, we fix a projective k-scheme X.

3.4.1. Definition. — Let D be a Cartier divisor on X. We call Green function of
D any real-valued continuous function on (X \ Supp(D))®* such that, for any regular
meromorphic function f € T'(U, #5) which defines the Cartier divisor locally on
a Zariski open subset U, the function g + log|f| on (U \ Supp(D))*" extends to a
continuous function on U*". A pair (D, g) consisting of a Cartier divisor D on X
and a Green function g of D is called a metrized Cartier divisor. We denote by
BFI(X ) the set of all metrized Cartier divisors on X. Further g is said to be smooth
if (Ox(D),|"|4) is smooth. A smooth Green function of D = 0 is called a smooth
function on X3,

3.4.2. Example. — In the case where D is the zero Cartier divisor, Green functions
of D are continuous functions on X?". In particular, if the Krull dimension of X is



78 CHAPTER 3. LOCAL INTERSECTION NUMBER AND LOCAL HEIGHT

zero, then X2" consists of isolated points. In this case any Cartier divisor D on X is
trivial (see Remark and hence Green functions identify with elements in the
real vector space spanned by X?".

In the case where D is a principal Cartier divisor, namely a Cartier divisor of the
form div(f), where f is a regular meromorphic function, then by definition — In |f| is
a Green function of div(f). We denote by div(f) the pair (div(f), —In|f]). Such a
metrized Cartier divisor is said to be principal.

3.4.3. Remark. — Metrized Cartier divisors are closely related to metrized invert-
ible sheafs. Let D be a Cartier divisor on X. We denote by Ox (D) the sub-Ox-
module of #x generated by —D. Let (U;);cr be an open covering of X such that, on
each U; the Cartier divisor is defined by a regular meromorphic function s;. Then the
restriction of Ox (D) at U; is given by Oy, s; '. If g is a Green function of D, then it
induces a continuous metric ¢, = (|-|¢())zexan on Ox (D) such that

|s;i !y = exp(—g — In|s;|) on U™.

Note that the metric of the canonical regular meromorphic section (see Definition
is given by
lsply = |si @ s; '], = exp(—g) on Uj.

Conversely, given an invertible O x-module L, any non-zero rational section s of L
defines a Cartier divisor div(L;s). Moreover, if ¢ is a continuous metric on L, then
—In|s|, is a Green function of div(L;s). We denote by d/i:/(f; s) (or by &R/(s) for
simplicity) the metrized Cartier divisor (div(L;s), —In|s|,).

The above relation between metrized Cartier divisors and metrized invertible
sheaves is important to define the following composition law on the set of metrized
Cartier divisors. Let (Di,g1) and (D2, g2) be metrized Cartier divisors. Note that
Ox (D1 + D) is canonically isomorphic to Ox(D;) ®o, Ox(Dz2). Moreover, under
the canonical isomorphism

Ox(Dl + D2) AN Ox(Dl) Rox Ox(DQ),

the regular meromorphic section sp,yp, corresponds to sp, ® sp,. We equip the
invertible sheaf Ox(D;) and Ox(D2) with the metrics ¢4, = (|-|g, ())zexen and
©gs = (|92 ())wexan respectively, and Ox (D; + D3) with the tensor product metric
Yg, @ g, We then denote by g1 + go the Green function in the metrized Cartier
divisor (Ti;/(sDﬁDz). Clearly, for any = € (X \ (Supp(D1) U Supp(Dg)))an, one has

(91 + g2)(z) = g1(x) + ga (7).

Note that the set ]51;(X ) of metrized Cartier divisors equipped with this composition
law forms a commutative group.

3.4.4. Definition. — Let (A, g) be a metrized Cartier divisor such that Ox(A4) is
an ample invertible O x-module (namely the Cartier divisor A is ample). We say that
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the Green function g is plurisubharmonic if the metric |-|; on Ox(A) is semi-positive.
We refer to [11], §6.8] and [37] §6] for a local version of positivity conditions.

We say that a metrized Cartier divisor (D, g) is integrable if there are ample Cartier
divisors A; and As together with plurisubharmonic Green functions g; and go of Ay
and As, respectively, such that (D, g) = (A1, g1) — (A2, g2). We denote by I/I;E(X) the
set of all integrable metrized Cartier divisors. This is a subgroup of the group ]51;(X )
of metrized Cartier divisors.

3.4.5. Remark. — Let k'/k be a valued extension which is complete. Let X be
the fiber product X Xgpecr Speck’, and 7 : X3y — X be the morphism of projection.
Let (D,g) be a metrized Cartier divisor on X. Then the pull-back Dy of D by
the morphisme 7 is well defined (see Definition and Remark [I.3.5). Note
that Ox,,(Dy) is isomorphic with the pull-back of Ox (D) by 7, and the canonical
meromorphic section sp,, of Dy identifies with the pull-back of sp by 7. Let ¢, be
the continuous metric on Ox (D) induced by the Green function g. We denote by g/
the Green function of Dj, defined as

gk = —1In |3Dk’ |pryk/7

1%

where ¢4/ is the continuous metric on 7*(Ox (D)) = Ox,,(Dy/) induced by ¢,
(see Example . Note that, for any element 2’ € X' such that 7(z') €
(X \ Supp(D))?", one has

~

gr (@) = g(r"(a")).

Moreover, the composition of g with the restriction of 7% to (X \ Supp(Dgs))>"
forms a Green function of Dy. We denote by gp this Green function. By Re-
mark if Ox(D) is semi-ample and ¢ is plurisubharmonic, then g is also
plurisubharmonic. If (D, g) is integrable, then (Dy/, gx/) is also integrable. There-
fore the correspondance (D,g) — (D, gx) defines a group homomorphism from
Bi\V(X ) — ﬁi\v(Xk/), whose restriction to I/n\t(X ) defines a group homomorphism
Int(X) — Int(Xy).

3.4.6. Theorem. — Let X be a d-dimensional projective and integral scheme over
k. Let D be a nef and effective Cartier divisor and g be a Green function of D such
that either

(a) if v is Archimedean, the metric of ||, of Ox (D) is C*° and semi-positive, or

(b) if v is non-Archimedean, the metric of |-|4 of Ox(D) is a nef model metric.
Then there is a sequence (Vn)nen of smooth functions on X with the following
properties:

(1) for alln € N, ¥, < g, ¥n < VPny1.

(2) for each point x € X, sup{¢,(z) |n € N} = g(z).

(3) for alln € N, g — 1), is a Green function of D such that either
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(3.a) if v is Archimedean, the metric of |-|g—y, of Ox(D) is C*™ and semi-
positive, or

(3.b) if v is non-Archimedean, the metric of |-|g—y, of Ox(D) is a nef model
metric.

Proof. — This theorem is nothing more than [10, Théoréme 3.1]. In the case where
v is non-Archimedean, it is proved under the additional assumption that v is discrete.
However, their proof works well by slight modifications. For reader’s convenience, we
reprove it here.

We may assume that v is non-Archimedean. If the theorem holds for (mD,mg) for
some positive number m, then it also holds for (D, g), so that we may assume that
there is a flat model (2", %) of (X, Ox (D)) such that |-|; = ||,, and .Z is nef along
the special fiber of Z° — Spec(o,). By Lemma there is a Cartier divisor 2
on Z such that Og(2) = £, 9|y = D and g is the Green function arising from
(Z,9). Let Z = Ui\;l Spec(«%) be an affine open covering of 2" such that & is
given by a local equation f; on Spec(%). Since D is effective, one has f; € ()s,
that is, s; f; € 4 for some s; € S, where S := o0, \ {0}, so that if we set s = 51 - sy,
then sf; € « for alli=1,...,N. Let

g :=g—logls|, £ =L@0xs ' and 2 := P +div(s).

Then 2’ is effective, Og (2') = £’ and ||y = |-|¢/. Thus, if the theorem holds
for ¢’, then one has the assertion for g, and hence we may further assume that 2 is
effective.

Fix a € S such that |a|] < 1, and set

¥, = min{g, —nlogla|} (Vn €N).

The properties (1) and (2) are obvious, so we need to see (3). Let ., be the ideal sheaf
of O 4 generated by a local equation of & and a™. Let p, : %, — Z be the blowing-
up in terms of the ideal sheaf .#,,. Note that .#,, O is a locally principal ideal sheaf of
Og,, whose support is contained in the special fiber of %;, — Spec(o,,), that is, there
is an effective Cartier divisor &, on %}, such that Og, (—&,) = #,0g, and &,|y =0.
Obviously v, is a smooth function arising from the model (#4,,&,,). Therefore, it is
sufficient to show that p’(2) — &, is nef along the special fiber %;, — Spec(o,). Let
2 = Ufil Spec(<#) be an affine open covering of 2" as before. Note that & is given
by f; € o on Spec <7 for each i. Then

Py (Spec ;) = Proj(«#[To, Th]/(fiTo — a™T1)).
If we set p,'(Spec.)o = {T, # 0} for a € {0,1}, then f; = a™(T1/Ty) on
p,1(Spec )o and a™ = f;(Ty/T1) on p, ' (Spec o)1, so that

{O@"(_@@")lpnl(spec oo T anopil(specdi)o’ (3.9)
Og/n (_gn”p;l(Spec i) fiopgl(speC i)’
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Therefore, one can see that pl(2) — &, and div(a™) — &, are effective. Let us see
(pi(2) — &, - C) = 0 for any irreducible curve C' on the special fiber of %, —
Spec(0,). Let & be the generic point of C. We choose i such that ¢ € p; ! (Spec «). If
& & Supp(p:(2) — &), then the assertion is obvious because p}(2) — &, is effective.
Otherwise, by , ¢ € p;Y(Spec ). Then, by again, £ ¢ Supp(div(a™)—é&,),
so that ((div(a™) — &,) - C) = 0 by the reason of the effectivity of div(a™) — &,. Note
that p%(2) — &, is linearly equivalent to pi(2) + (div(a™) — &,). Thus it is sufficient
to show that (pk(2)-C) > 0, which is obvious because of the projection formula and
the nefness of . O

3.5. Local measures

In this section, we assume that k is algebraically closed. Let X be a projective k-
scheme and let d be the dimension of X. Assume given a family (L;)%_; of semi-ample
invertible Ox-modules. For any i € {1,...,d}, let ; be a semi-positive continuous
metric on L;. First we assume that X is integral. In the case where |-| is Archimedean
(and hence k = C), by Bedford-Taylor theory [3] one can construct a Borel measure

c1(L, 1) - e1(La, a)
having
deg(c1(L1) -+ e1(La) N [X])

as its total mass. In the non-Archimedean case, an analoguous measure has been
proposed by Chambert-Loir [I0], assuming that the field & admits a dense count-
able subfield (see also [I1, §5] for a general non-Archimedean analogue of Bedford-
Taylor theory). In any case, the measure ¢1(L1, 1)+ c1(Lg, pq) is also denoted
by f(L,,01)-(La,pq)- Note that the measure (1, 4,)...(L4,e) 18 additive with respect to
each (L;, ;). More precisely, ifi € {1,...,d} and if (M;, 1;) is another semi-positively
metrized invertible O x-module, then the measure

H(L1,01)(Lim1,0i-1)(Li®M;,0: %) (Lig1,0i41) (La,pa)

is equal to

H(L1,01)(Liz1,0i—1) (Liyei) (Lig1,0iq1) - (La,pa)
+ H(L1,01)(Lim1,0i—1) (Mi i) (Lit1,9i4+1) - (La,a)

Moreover, for any permutation o : {1,...,d} — {1,...,d}, one has

Loy, o)) (Lo Po(ay) — H(L1,p1)(La,ea):

In general, let X;,..., X, be irreducible components of X which are of dimension
d, and 71, ...,n, the generic points of Xy,..., X, respectively. Let §; : X; — X be
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the canonical closed embedding for each i. Then a measure pi(1, ,)...(Lg,0q) O0 X
is defined to be

K(L1,01)-+(Laypa) =

> lengtho, (Ox,) (") (1 (& (L1,01) -1 (§ (Laspa)) ). (3.10)
j=1

3.5.1. Definition. — Let (L1,1),...,(La, pq4) be a family of integrable metrized
invertible Ox-modules. For each i € {1,...,d}, we let (L}, }) and (L}, ¢}) be ample
invertible O x-modules equipped with semi-positive metrics, such that L; = Li@(L])Y
and ¢; = ¢} @ (])". We define a signed Radon measure fi(r, o,)...(Ly,pq) O0 X as
follows:

H(Ly, 1) (Laspa) *— Z (_1)Card(I)M(L1,17501,1)~-(Ld,1,<,0d,1)7

where (Lj,h(Pj,I) = (L;/7Lp;/> lf_] € I, and (Lj)[ﬁ@j}]) = (L;,(p;) lf] S {1, . ,d} \ I
(cf. Lemma [1.1.5]).

3.5.2. Example. — We recall the explicit construction of Chambert-Loir’s measure
in a particular case as explained in [10] §2.3]. Assume that the absolute value |-| is
non-Archimedean and that the k-scheme X is integral and normal. Let k° be the
valuation ring of (k,|-|) and m be the maximal ideal of k°. Suppose given an integral
model of X, namely, a flat and normal projective k°-scheme £ such that

2 Xgpecke Opeck = X.

Let 2w be the fibre of 2" over the closed point of Spec k°. It turns out that the re-
duction map from X2* to 2, is surjective. Let Zy, ..., Z, be irreducible components
of Zn. For any j € {1,...,n}, there exists a unique point z; € X*" whose reduction
identifies with the generic point of Z;.

Assume that each metric ¢; is induced by an integral model .Z;, which is an
invertible sheaf on 2" such that .%;|x = L;. Then the measure

c1(Ly, 1) -+~ c1(La, va)

is given by
d
Z multz, (Zn) deg(c1(L1|2,) - - - c1(Lal 2,,) N [Z;]) Dirac.;,
j=1
where multh(%m) is the multiplicity of Z; in 2y, and Dirac,, denotes the Dirac

measure at z;.

3.5.3. Remark. — We assume that X is integral. Let (¢1,,)0%1,- ., (Pdn)ner be
sequences of semi-positive metrics of L1, ..., Ly, respectively such that

lim d(%‘,m i) =0
n— oo
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for all ¢ € {1,...,d}. Then, by using [18] Corollary (3.6)] and [11], Corollaire (5.6.5)],

one can see

nlijgo/ fﬂ(Ll,wl,n>~-~<Ld,wd,n>:/ Fr(L1610) (Lasea)
Xan Xan

for any smooth function f on X?".

3.5.4. Definition. — Let Dy = (D1,¢1),...,Dq = (Dg4,gq) be a family of inte-
grable metrized Cartier divisors on X. Note that (Ox(D;),]||s,) is an integrable
metrized invertible Ox-module for each i € {1,...,d}, so that we define a signed
Radon measure Kp,.. D, on X2 to be

HD, Dy *= H(Ox(D1),|"lg1)(Ox (Da)sllgy)

For any i € {1,...,d}, we write (D;,g;) as the difference of two metrized Cartier
divisors (D}, gi) — (DY, g!'), where D} and D/ are ample, and g, and g}’ are plurisub-
harmonic. Then we can see

- d(I
HD,.. Dy = Z (71)0‘% ( )Nﬁl,l"'ﬁd,I’
IC{1,....d}

where D;; = (D7,g7) if j € I, and Dj; = (D%,g5) if j o€ {1,...,d} \ I (cf.
Lemma Definition and Definition .

Let X1,..., X, beirreducible components of X and 7, ..., 7, be the generic points
of X1,..., Xy, respectively. Let & : X; < X be the canonical closed embedding.
Then it is easy to see

n
H(D1,91)+(Da,ga) = Z length(?x,nj (0X777j )(fjm)* (uf; (Dlxgl)"'g;(degd)) : (3.11)

Jj=1

3.5.5. Proposition. — Let m : Y — X be a surjective morphism between
integral projective schemes over k. We set e = dimX and d = dimY. Let
(L1,¢1), .-, (La,pa) be integrable metrized invertible Ox-modules. Then one has
the following:

(1) If d > e, then Tu(fir= (L, 1) 7 (Laspa)) = O-
(2) If d = e, then 7T*(pw*(Lh%)mﬂ*(Ld’w)) = (degﬂ)u(meO).,‘(Ld,w).

Proof. — We may assume that Ly, ..., L; are ample and (1, . .., @4 are semi-positive.
If o1, ..., pq are smooth, then the assertion is well-known (cf. [36], Proposition 10.4]).
Let (¢1,0)0%1,- -, (pan)22, be regularizations of ¢1,...,pq, that is, ©1.n,...,Vdn
are smooth and semi-positive for i € {1,...,d} and n > 1, and nlgr;o d(is0in) =0
fori € {1,...,d} (for example, see [14] for the Archimedean case and Theorem [3.3.19
for the non-Archimedean case). Let f be a smooth function on X?" (namely the
metric on Oy induced by f is smooth). Then, by using [18] Corollary (3.6)] and [11],
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Corollaire (5.6.5)], one can see that

lim T (f )t (L1 1) 7% (Laspan) = / T () (L1 1) 7 (Laypa)

n—oo Xan an

and if d = e, then

lim f'u(LlaSal,n)"'(Ld#Pd,n) = /Xan f“(LMPl)”'(Ld"/’d)'

n—00 [y-an
Thus the assertions follow. O
3.5.6. Remark. — Let X and Y be two projective schemes over Speck, of Krull
dimension d and n, respectively. Let Ly, ..., Lq be integrable metrized invertible O x-
modules, M1, ..., M, be integrable metrized invertible Oy-modules. We consider
the fiber product X x; Y and let m; : X X3 Y — X and m : X X3 Y — Y be the
two morphisms of projection. In the case where k is Archimedean, the analytic space
(X X Y)* is homeomorphic to X?" x Y2 and the measure
Py (Ta)-mi (Ta)my (M) (M)

on (X xj Y)?" identifies with

uzl"'fd ®’U’M1'“Mn'

In the case where |-| is non-Archimedean, in general the topological space (X x; Y )"
is not homeomorphic to X?" x Y, However, there is a natural continuous map

a: (X X V)P — X2 x Yo
Then the following equality holds (see [10] §2.8])
b (’“‘wr(E>~~7r;‘(L)w;(ﬂl)w;(m)) =PI, Ty © 131, W
In particular, if g is a measurable function on Y?" which is integrable with respect to

KT, .. 7T, » One has

(gomd™) AUs (T Voo (T Vot (BT L)oo (BT :/ gdusr 57 - (3.12)
/(XXkY)a“ 2 1(L1) 1(Ld) 2(]\/11) 2(Mn) yan My---My,

3.5.7. Definition. — Let E be a finite-dimensional vector space over k. We say
that a norm ||-|| on E is orthonormally decomposable if
(1) in the case where |-| is non-Archimedean, the norm ||-|| is ultrametric, and

(E,]]]l) admits an orthonormal basis (e;)’_,, namely,

V(A)i—o €K hoeo + - 4 Aver|| = jetons R¥IE

(2) in the case where || is Archimedean, the norm ||-|| is induced by an inner product

<,>
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Note that for each valued extension (K, |-|") of (k,|:|), there is a unique norm |-||;» on
E ®y k', which is either ultrametric or induced by an inner product, such that any
orthonormal basis of (E,|-||) is also an orthonormal basis of the extended normed
vector space (E @y, K, ||||1) (see Definition [3.3.3).

3.5.8. Remark. — Let E be a finite-dimensional vector space over k, and ||-|| be an
orthonormally decomposable norm on E. For any s € F, the real number ||s|| belongs
to the image of the absolute value |-|. In particular, if s is non-zero, then there exists
A € k such that ||As]| = 1.

In the case where the absolute value || is non-Archimedean, it is not true that any
ultrametrically normed vector space admits an orthonormal basis (see [54] Example
2.3.26]). However, if (E,||-||) is a finite-dimensional ultrametrically normed vector
space over k, for any a € R such that 0 < a < 1, there exists an a-orthogonal basis
of E (cf. |54} §2.3], see also [13] §1.2.6] for details), namely a basis (e;)!_; such that,
for any (A\;)i_; € k",

a max [A] - [les]| < [[Adrer 4o+ Aver| < maxai] - les]-
ief{l,...,r} ie{l,...,r}
Moreover, since k is assumed to be algebraically closed, in the case where absolute
value || is non-trivial, the image of |-| is dense in R. In fact, if a is an element of k
such that |a| # 1, for any non-zero rational number p/q with p € Z and g € Z~, any
element x € k satisfying the polynomial equation

z? = a?
has |a|P/9 as absolute value. Therefore, by possibly delating the vectors (e;)7_, we
may assume that
a < lei <1

for any ¢ € {1,...,r}. Therefore, if we denote by ||| the norm on E under which
(e4)7_; is an orthonormal basis of F, then for any x = Aje1 + -+ Aqe, in E, one has

[ella = max N[ <ot max A fle]| < a7z,
e{1,...,r} ie{l,...,r}
and
[z < max [A[-[le;f] < max [Ai] = [[z]a
jeensT} e{L,...,r}

Therefore, one has

a(lllla II-11)

sup |In||z|lo — In|jz|]| < —2In(«a).

o zeE\{0}

Thus we can approximate the ultrametric norm ||-|| by a sequence of ultrametric norms
which are orthonormally decomposable.

3.5.9. Proposition. — Let (E,||-||) be a finite-dimensional vector space over k,
equipped with an orthonormally decomposable norm. Then any element so € E such
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that ||so|| = 1 belongs to an orthonormal basis. Moreover, for any quotient vector
space G of E, the quotient norm on G is orthonormally decomposable.

Proof. — The statement is classic when [-| is Archimedean, which follows from the
Gram-Schmidt process. In the following, we assume that |-| is non-Archimedean. Let
k° be the valuation ring of (k,|-|).

Let (e;)}_y be an orthonormal basis of (£, [|-||). Without loss of generality, we may
assume that so = Ageg + -+ + Ape, with (Mg,..., \.) € (B°)™"! and [Ag] = 1. We
then construct an upper triangular matrix A of size (r + 1) x (r + 1), such that the
first row A is (Ao, ..., Ar) and the diagonal coordinates of A are elements of absolute
value 1 in k. Then the matrix A belongs to GL;11(k°). Let (s;)7_, be the basis of £
such that

(50,...,5.)0 = Aleq, ..., en)7.
For any j € {0,...,r}, one has ||s;|| = 1. Moreover, for any (bo,...,b,) € k", one has
boso + -+ + bps, = (bo, ..., b )A(eq, ..., en)T.
Let (co,...,¢r) = (bo,...,b.)A. Since (eq,...,e) is an orthonormal basis, one has

b it bosil = 1
H 050 + + 737“ je?(%??ir} |C]|

Note that (bo,...,b,) = (co,...,c.)A7L. Since A~! belongs to GL,;1(k°), one has

Vied0,...,r b;| < max Csl.
{ 9 ’ }7 | l| j€{07..., }| J|
Therefore one obtains

lboso + - -+ + bpsp|| = max byl
1€{0

Combined with the strong triangle inequality, we obtain

boso + -+ b.s.|| = ma b;|.
Iboso =, max b

Therefore (s;)7_, is an orthonormal basis of (E,|-|[). In particular, the image of

(s1,...,8) in E/ksg forms an orthonormal basis of E/ksy with respect to ||-||. There-
fore the quotient norm on F/ksg is orthonormally decomposable. By induction we
can show that all quotient norms of ||-|| are orthonormally decomposable. O

In the remaining of this section, we fix a finite-dimensional vector space E equipped
with an orthonormally decomposable norm |-||. We also choose an orthonormal basis
(e;)5=1 of (E,[|-]]). Let P(E) be the projective space of £/ and Og(1) be the univer-
sal invertible sheaf on P(E). We equip Og(1) with the orthogonal quotient metric
(|-/(x)) zep(g)mn (see Deﬁnition and denote by Og(1) the corresponding metrized
invertible sheaf. Recall that each point 2 € P(E)?" corresponds to a one-dimensional
quotient vector space

E @k k(z) — Og(1)(z),
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where k() denotes the completed residue field of z. Then the norm |-|(z) on Og(1)(x)
is by definition the quotient norm of ||-||z().

3.5.10. Definition. — Assume that |-| is non-Archimedean. We denote by & the
point in P(E)** which is the generic point of P(E)*" equipped with the absolute value

|'|5 : k(:f(:,.. . eril) — R20

' oer

such that, for any

pP= 3 AQ(Z—D%...(W*I)“M € kle,..., =],

e
a=(ag,...,ar—1)EN? "

one has

Pl = Aal-

|Ple = max [Aa|
Note that the point £ does not depend on the choice of the orthonormal basis (e;)}_,.
In fact, the norm |-|| induces a symmetric algebra norm on k[E] (which is often called
a Gauss norm) and hence defines an absolute value on the fraction field of k[E]. The

restriction of this absolute value to the field of rational functions on P(E) identifies
with |-|¢. Hence £ is called the Gauss point of P(E)*".

3.5.11. Proposition. — Assume that the absolute value |-| is non-Archimedean.
The following equality holds

c1(Og(1))" = Dirac,
where Dirace denotes the Dirac measure at .
Proof. — Let k° be the valuation ring of (k,|-|), m be the maximal ideal of k°, and

k = k°/m be the residue field of k°. Let & be the free k°-module generated by
{eo,...,er}. Then P(€) is a projective flat k°-scheme such that

P(€) Xgpecke Speck = P(E).
Note that the fibre product
P(€) Xspec ke Speck

is isomorphic to P(£ Qo k), which is an integral k-scheme. Therefore, one has (see
Example [3.5.2))

c1(Og(1))" = deg(c1(O¢, (1))" NP(E,)) Dirace = Dirace .
O

3.5.12. Remark. — Assume that k& = C and || is the usual absolute value. Let
(E, |I-ID) be a Hermitian space and

S(EY, [I-ll+) = {a € EY[]lall. =1}

be the unit sphere in E, where ||-||« denotes the dual norm of ||-||, which is also a
Hermitian norm. Note that P(F)** identifies with the quotient of S(EY,|-||.) by
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the action of the unit sphere S(C) = {z € C||z| = 1} in C. We equip the univer-
sal invertible sheaf Og(1) with the orthogonal quotient metric induced by ||| and
equip S(EY, ||-||l«) with the unique U(EV,|-||+)-invariant Borel probability measure
Ns(EV,|-|l.) Which is locally equivalent to Lebesgue measure. Then the measure

o (@)dimc(b?)fl

identifies with the direct image of ng(gv |.|.) by the projection map from S(EY, |-||+)
to P(E)" (see for example [5] (1.4.7)] for more details).

3.5.13. Theorem. — Let L = (L, ), L1 = (L1,¢1),...,Lq = (Lq, q) be integrable
metrized invertible Ox-modules. Let s be a reqular meromorphic section of L. Then
g = —log|sl|, is integrable with respect to pz .z, -

Proof. — The proof of this theorem is same as [10, Théoréme 4.1]. We prove it
without using the local intersection numbers.

Clearly we may assume that X is integral, L, L1, ..., Lg are ample and L, L1, ..., Ly
are semi-positive. Let Z be the ideal sheaf of Ox given by

Z,={a€Oxy | asy € Ly}.

Choose a positive number m and a non-zero section t; € H°(X,ZL®™)\ {0}. If we set
ty =t ®s, then s =ty @t ' and to € HO(X, L2™+1)\ {0} and g = —log [ta|(m+ 1) +
log |t1]mg, so that we may assume that s € H°(X, L) \ {0}. Let ¢’ be a metric of L
such that either (a) if v is Archimedean, ¢’ is C°° and semi-positive, or (b) if v is
non-Archimedean, ¢’ is a nef model metric. Then — log |s|, +1og|s|, is a continuous
function, so that we may assume that ¢ = ¢’. By Theorem there is a sequence
(1n)nen of smooth functions on X" with the following properties:

(1) foralln € N, ¢, < g, ¥n < Py1-
(2) for each point z € X", sup{¢,(z)|n € N} = g(z).
(3) for all n € N, g — 9, is a Green function of D such that either
(3.a) if v is Archimedean, the metric of |-|;_y, of L is C* and semi-positive,
or
(3.b) if v is non-Archimedean, the metric of |-|;_y, of L is a nef model metric.

We prove the assertion by induction on the number
e:= Card{i € {1,...,d} | ¢; is not smooth}.

If e = 0, that is, ; is smooth for all i, then the assertion is obvious. We assume
that e > 0. Obviously we may assume that ¢; is not smooth. Let ¢} be a semi-
positive and smooth metric of Ly. If we choose a continuous function ¥ such that
oy = exp(—9)||g;, then ¢1(L1) = e1(Ly) + dd°(9), where Ly = (L1, o))

Let us consider the following integral:

In = ¢n cl(fl)n-cl(fd).
Xau
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Note that v, and ¥ are locally written by differences of plurisubharmonic functions,
so that, by [10], Proposition 2.3],

I, = - Uner(T)) - e1(Ta) + . Py, dd®(9)er (La) -+ - e1(Ly)

= [ poa@) a@y+ [ 9ddWn)e(Ls)- - a(La).
Xan Xan
By the hypothesis of induction,

/!

lim tpe1(Ly) - -e1(Ly)

n—00 [xan

exists. Moreover, by the same arguments as the last part of [10, Théorém 4.1], one
can see

lim 9 ddC(Yn)er(Ls) - - - e1(Lq)

n—oo Xan

[ eD)er(Ta)- (L) —/ Jer(Ta) - or(Ta).
Xon div(s)an

Therefore lim,, , I,, exists, as required. ]

3.6. Local intersection number over an algebraically closed field

Let k be an algebraically closed field equipped with a non-trivial absolute value ||
such that k is complete with respect to the topology defined by |-|. The pair (k, |-|)
is denoted by v. Let X be a projective scheme over k and d be its dimension. Recall
that any element x of X" consists of a scheme point of X and an absolute value ||,
of the residue field of the scheme point. We denote by K(x) the completion of the
residue field of the scheme point with respect to the absolute value |-|,, on which the
absolute value extends by continuity.

3.6.1. Definition. — Let (Dy,go),- .., (D4, gq) be integrable metrized Cartier di-
visors on X. We assume that Dy,..., Dy intersect properly, that is, (Dy,...,Dg) €
IPx (see Definition [1.3.2). According to [10], we define the local intersection number
((Do, g0) - - - (Da, gd))v at v as follows.

In the case where d = 0, one has X = Spec(A) for some k-algebra with dimy(A4) <

00. By Remark |1.2.10| and Example
A= @ Al and (Do,go) = Z (07 a‘l)a

zESpec(A) zESpec(A)
where a, € R for all « € Spec(A). Then
((DO, go))v = Z length 4 (Az) a. (3.13)
zESpec(A)

Note that length 4 (A,) = dimg(A,) because k is algebraically closed.
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If d > 0and Y, a;Z; is the cycle associated with Dy (cf. Remark [1.2.11]), then
the local intersection number ((Do, go) - - - (Da, ga)) , is defined in a recursive way with
respect to d = dim(X) as

Zaz( Do, g0)l 5, -+ (Dd—17gd—1)|2i)

=1
-‘r/ gd(x)u(po,go)...(pd_hgd_l)(dx). (3.14)

For the integrability of g4 with respect to the measure ((pg,go)...(Dy_1,94_1)> S€€ The-

orem B5.T3

3.6.2. Proposition. — Let Xi,...,Xy be irreducible components of X and
M,...,Me be the generic points of X1,..., Xy, respectively. Then
¢

((DO;gO) (Dd7gd Zlength(ﬂx (OXJ]J')( (DOagO)‘Xj e (Dd7gd)|Xj )v'
Jj=1

Proof. — In the case where d = 0, the assertion is obvious. We assume that d > 0.
By the definition of p(py,go).-(Da1,94_1) (cf. Section , if we set

bj = lengthoanj (Oxm,),

then one has

/an gd(x)M(Do,go) -(Dg-1,9d4— 1) diE Zb /a gd M(Doﬁgo)\xj“'(Dd71ygd71)|xj (dx)

If > a;Z; and Y., aj; Z; are the cycles associated with D, and Dd\Xj, respec-
tively, then, by (1.3)), a; = Z§=1 bjaj;, so that

n

Zai( (Do, 90)l 7, -+ (Da—1,9a-1)l 4, )U
=1
n 4
pO% s (Dosgo)l -+ (Da-1,9a-1)l, )

4 n
= Zba Z%z( Do, g0)l 7, -+ (Da-1,94-1)ly, )v~

j= i=1

=

Therefore, since

3

( (DOag0)| (Ddagd |X = Za]l< DOago : (Dd—lagd—l)‘Zi )v

i=1

+ / - ga(z) p (Do.go)lx;+ (Pa-19a-1)lx;, (dz),
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one has the desired formula. O

3.6.3. Proposition. — Let (Do, g0)...,(Di,0i), (D}, g0), ..., (Da,g9a) be in-

tegrable metrized Cartier divisors on X such that (Do,...,D;, ...,Dg) and
(Do, ..., Dl ..., Dg) belong to TPx. Then one has the following:

(1) The local intersection pairing is multi-linear, that is,

((Do,g0) -+ (Di+ Dj, gi + gi) - - (Da, 9a)),
= ((Do,90) -~ (Di, 9:) -~ (Da> 9a)),, + (Do, g0) - - (D5, 97) -+ (Da, 9a)) -

((Do,g0) -+ (=D, —=gi) - - (Da, 9a)), = —((Do, go) - - - (Ds, gi) - - - (Da, ga)) , -

(2) We assume that Dy, ..., Dq are ample and go, - . ., gq are plurisubharmonic. For
each i, let (gin)or, be a sequence of plurisubharmonic Green functions of D;
such that limy, o ||gi — ginllsup = 0. Then

Jim ((Do,gon) - (Da,gan)), = ((Do,g0) -+ (Da ga)),,

(3) The local intersection pairing is symmelric, that is, for any bijection o :
{0,...,d} = {0,...,d} one has

(Do (0ys o)) =+ (Do(ays 9o(a))), = (Do, 90) - - - (Da, ga)) -

Proof. — Clearly we may assume that X is integral. We prove (1), (2) and (3) by
induction on d. In the case d = 0, the assertion is obvious, so that we assume d > 0.

(1) If 0 < ¢ < d, the assertions follow from the hypothesis of induction and
the multi-linearity of the measure p(p,,g0).--(Dy_1,94_.) With respect to (Do, 90)s - - -
(Dd-1,9d—1), so that we may assume that ¢ = d. Let Dy = a1Z1 + -+ + anZ,
and D}, = a}Z1 + --- + al,Z,, be the decompositions of Dy and D/, as cycles. Then
Dy+ D)= (a1 +ay)Zi+---+(an+a,)Z, and —Dg = (—a1)Z1 + - - -+ (—an) Zy, so
that the assertions are obvious.

(2) By (3.14) and the hypothesis of induction, it is sufficient to see

lim 9dnl(Do,go,n)-+(Da-1,9a—1,n) :/Xan 9dH(Dg,g0)-+(Da—1,94-1)>

n—00 Jyan
which follows from [I8, Corollary (3.6)] and [11], Corollaire (5.6.5)].

(3) We may assume that Dy, ..., Dy are ample and go, . . . , g4 are plurisubharmonic.
By (2) together with regularizations of metrics, we may further assume that metrics
[lgos- - |*|gq are smooth. It suffices to prove the assertion in the particular case where
o is a transposition exchanging two indices ¢ and j with i < j. If j < d, then the
assertion follows from the hypothesis of induction, so that we may assume that j = d.



92 CHAPTER 3. LOCAL INTERSECTION NUMBER AND LOCAL HEIGHT

Ifi <d—1, then

((Dosg0) -+ (Di, gi) -+ - (Da-1,9a-1) - (Da, ga)),
= ((Do,90) -+ (Da-1,9a-1) - - - (Di, g:) - (Da; ga)) ,-

by the hypothesis of induction. Therefore we may assume that i = d — 1. Let

Dg=a1Z1+---+a,Z, and Ddfl‘zi =ai1Zi1 + -+ + ainZ;in be the decomposition
as cycles. Then

((Do,g0) -+ (Da-1,94-1) - (Da, ga)),,
= Z a;G;j ((D0790)|zij -+ (Dg-2,94—2)

4,3

+ a /Z 9a-1(T) 1 (Do.g0) 5, (Da—2.94-2)] 5, (AT)

Zij )v

+ [ 900 B Da 0 02

In the same way, if Dg_1 = a\Z] +---+a,,Z], and Dql|, =aZ), +---+al,Z;, be
the decomposition as cycles, then '

((Do,g0) - (Da, ga) - (Da-1,9a-1)),

= Z a;a;, ((D0790)|z;j (Dd—2a9d—2)|zgj )v
.7

+ Z / ,LL (Do7g0)|z/ (Dd—2agd—2)‘zg (dx)

+/an gd—l(l') :LL(DO790)"'(Dd727gd72)'(Dd,gd)(dx)'

By [49] Proposition 5.2 (2)], one has ), a;ai; Zi; = >, a;ai; Z;; as cycles, so that it
is sufficient to show that

Zal/an Gd— 1 (D0790)|Z (Dd—zagd—z)‘zi (d$)+/Xan gd(.T) M(D()vg())"‘(Ddfhgdfl)(dw)
B Z / an D07go)|Z/ (Dd 2,9d—2 ‘Zl (dﬂ:)

+/an gd—l(x) IU’(DQ,g())"'(Dd—27gd—2)'(Ddagd)(dx)7

which is nothing more than [49, Theorem 5.6] for the Archimedean case and [36]
Proposition 11.5] for the non-Archimedean case. O

3.6.4. Proposition. — Let 7 : Y — X be a surjective morphism of integral pro-
Jjective schemes over k. We set e = dim X and d = dimY. Let (Do, go),- -, (Dd,gd)
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be integrable metrized Cartier divisors on X such that (7*(Dy),...,7*(Dq)) € ZPy.
Then one has the following:

(1) If d > e, then (7*(Do, go) - - - 7 (D4, ga))v = 0.
(2) Ifd=e€ and (Do, ...,Dq) € IPx, then

(7" (Do, go) - - - 7" (Da, ga) ) = (deg 7)((Do, go) - - - (Da, gd))w-

Proof. — We prove (1) and (2) by induction on e. If e = 0, then (2) is obvious. For
(1), as 7* (Do, go) = (0,a0),...,7*(Dg,94) = (0,a4) for some ay,...,aq € R, then

(7*(Do, go) - - 7 (D ga) ) :/ adft(0,a0)-(0,a0) = 0;
Xan
as desired.

We assume e > 0. Let Dy = a1Z1 + -+ + anZy, and 7*(Dg) = b1 Z] + - + by Zly
be the decompositions as cycles. By (3.14)),

(7*(Do, go) - - - 7 (Da, ga)) Zb *(Do, 90) |Z/ W*(Dd—lagd—lﬂzj’. )u

+/ 9a(T*"(Y)) fr=(Do.go)--7* (Da.ga) (AY),

Note that if e < d, then dim7(Z}) < dim Z} and 7« (tr=(Dg,go)- -7 (Darga)) = 0 DY

Proposition so that one has (1).

Next we assume that e = d. For each i, we set J; = {j € {1,..., N} | n(Z}) = Z;}.
We set Jo = {1,...,N} \ (J1 U---UJ,). By the hypothesis of induction for (1),
(w*(DO,gO)|Z§ (Dd 1, 9d— 1)|Z, ) = 0 for all j € Jy, so that, by the hypothesis

of induction for (2) and Proposmon u the above equation implies
(W*(DO, gO) T (Dda gd))

*Zzb *(Do, 9o) |Z""7T*(Dd—1;gd—1)|ZJ’.)v

i=1j€J;

+/ gd<7ran(y)):U/Tr*(Dg,go)-uﬂ'*(Dd,gd,)(dy)
=> (Do, 90)lz, -+ (Da-1,9a-1)|7,), > bj deg( mlz)
i=1 je€J;

+ deg(ﬂ) / gd(x) H(Do,go)-+(Da,ga) (dl‘)

Therefore, the assertion follows because >, ; b;jdeg(m|,) = deg(m)a; (cf. [49,
i i
Lemma 1.12]). O

3.6.5. Proposition. — Let f be a regular meromorphic function on X and
(D1,91),---,(Da,ga) be integrable metrized Cartier divisors on X such that
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(div(f),D1,...,Dq) € IPx. If we set Dy --- Dy = Zzex(o) a,x as cycle, then

(@V(f) - (D1,g0) -+ (Darga)), = S aw(—loglfl@™),  (3.15)

2€X(0)

where X oy is the set of all closed point of X and x** is the associated absolute value
at x. Note that in the case where dim(X) = 0, the above formula means that

(div(f)), =0.

Proof. — Let X =a1X; + -+ + a, X, be the decomposition as cycles. Then

(Jl;(f) - (D1,91) - (Da; ga)) Zaz le X, (D, 91)lx, -+ (Day 9d)lx, ),
i=1

and
= Zaz( D1|X1 Dd|X1)7
i=1

so that we may assume that X is integral.

We prove the equality by induction on d = dim(X). In the case where
dim(X) = 0, the assertion is obvious because f is a unit. We assume that dim(X) > 1.
Let Dy =a121+ -+ a,Z, be the decomposition as cycles. Let Zzex(m b;zx be the
decomposition of D1|Zi e Dd—1|zi =D1---Dgy_1 - Z; as cycles. Then

Za, Z bizx = Z Az

i=1 IGX(O) ZEX(O)

so that a, = Z?:l a;b;z. On the other hand, by hypothesis of induction,

(Av(Hlz, - (D1, g0)lg, - (Dac1,90-1)l2,), = Y. bia(—log|f](z™)).
z€X(0)
Therefore,
> ag(—log|fl(=*))
IEX(O)

> (X aibi)(~loglfl( Z ~log |f(z*"))

2€X() =1 =1 zeX
= Zai(diV(fﬂzi “(D1,90)l, - (Da—1,94-1)5, ) ,-
i=1

Note that I = 0, and hence the assertion follows by (3.14). O

(f)-(D1,91)-(Da,ga))
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3.6.6. Proposition. — Let (Do, go),-..,(Di—1,94-1),(0,g) be integrable metrized
Cartier divisors on X with (Do, ...,D4-1,0) € TPx. We assume that Dy, ..., Dg_1

are semiample and go, ..., gq—1 are plurisubharmonic. Then
((Do,go) -+ (Dg=1,9d-1) - (079))1, = /X g(x)M(DU,QO)“'(Dd—l,gd—l)(dx)'

In particular,
min{g(x) | z € X*"}( Do --- Dg—1)

< ((Do,g0) -+ (Da-1,9a-1) - (0,9)),
<max{g(z) |z € X} Dy Dy_1).

Proof. — This is trivial by the definition. O

3.6.7. Corollary. — Let (Do, go), ..., (D4, ga) be integrable arithmetic Cartier divi-
sors on X with (Dy,...,Dg) € ITPx. We assume that Dy, ..., Dy are semiample and
90, - - -, ga are plurisubmarmonic. Let g, ..., g, be another plurisubharmonic Green
functions of Dy, ..., Dy, respectively. Then one has

|((Do, 90) -+ (Da, g4)), — (Do, g0) - -+ (Da ga)) |

d
<Y max{|g; — gil(2) | 2 € X*}(Dy - Dj_1 - Dyy1 -+ Dy).

i=0
Proof. — By using Proposition [3.6.3]

((Do,90) -+ (Das g3)) = ((Do, g0) - - - (Da; ga))

d
=> (Do, g0) -+ (Di-1,9i-1) - (0,9} — i) - (Dit1,951) - (Da, gh)).
1=0

so that the assertion follows from Proposition [3.6.6] O

3.6.8. Proposition. — We assume that X =P¢ and L = Opa(1). Let {Tv,..., T4}
be a basis of HO(PY,Opa(1)) over k. We view (Tp : -+ : Ty) as a homogeneous
coordinate of P%. Let ||-|| be a norm of H(PE, Opa(1)) given by

Vo2 + -+ +laal*> if v is Archimedean,
laoTo + -+ + aaTul| =
max{l|ag|,...,|aq|}  if v is non-Archimedean.

Let ¢ be the orthogonal quotient metric of Opa(1) given by the surjective homomor-
phism HO(PY, Opa(1))®Opa — Opa(1) and the above norm ||-||. We set H; = {T; = 0}
and h; = —log|T;|,. Then

d/e\g(a(opg(l), cp)d+1> if v is Archimedean,
((Hos ho) -+ (Ha, ha))o =
0 if v is non-Archimedean,
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where d/eTg(El(O]p%(l),ga)dJrl) is the self-intersection number of the arithmetic first

Chern class ¢ (Opa(1), ) on the d-dimensional projective space Pe over Z.

Proof. — If we set
i = /]P 108 [Tl () 0 (1) ey ()
k

for a positive integer m, then

((Ho, ho) -+ (Hg, ha))o =

A, -

1=

In the following, we set x; = T;/Tp.

e Archimedean case : The algorithms of the calculation are exactly same as
one on P4, so that we have the assertion.

e non-Archimedean case : If we set |f|, = max;, ;. {|ci, i, |} for

f: Z cilwwimx?il x:vrzn € k[iCh...,{L‘mL
i

1yeo9tm

then |-|. extends to an absolute value of k(z1,...,2z,,) (cf. Lemma [2.6.3). We set
U = {T,, # 0}. Note that if £ € U*", then

|93m|f
T, = '
| m|tp(§) max{17‘x1|§7o-‘7|xm|£}

Let 0, be the valuation ring of v. Note that ¢ coincides with the metric of the model
(IP’;IU, Ogpa (1)) by [13] Proposition 2.3.12], so that fyoum (1),)m = .|, Thus

|

max{ 1, |[T1]s, ... [Tm|e}

a, = —log 0,

and hence the assertion follows. O

3.7. Local intersection number over a general field

In this section, we consider the local intersection product and local height formula
in the non-necessarily algebraically closed case. We fix in this section a complete
valued field v = (k,|-|) such that |-| is not trivial. Let Cj be the completion of an
algebraic closure of k. Note that the absolute value |-| extends naturally to Cy and
the valued field (Cy, |-|) is both algebraically closed and complete. We denote by v>°
the couple (Ckg, |-|). We also fix a projective morphism 7 : X — Spec k and we denote
by Xc, the fiber product X Xgpec i Spec Cy,. Let d be the Krull dimension of X, which
is also equal to the Krull dimension of Xc, .
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3.7.1. Definition. — Let (Do, go), ..., (D4, ga) be a family of metrized Cartier di-
visor on X such that Dy,..., D, intersect properly and that g, ..., gq are integrable
Green functions. By Remark the Cartier divisors Dy c,,...,D4c, intersect
properly. Moreover, by Remark [3.4.5] the Green functions goc,,...,d4c, are inte-
grable. We then define the local intersection number of (Do, go), ..., (Dd, ga) as

((Do,g0) -+ (Da, 9a)), = ((Docy» go.ci.) -+ (Dacyr 9a.ci)) yae

Several properties of the local intersection number follow directly from the results
of the previous section. We gather them below.

3.7.2. Remark. — Recall that I/n\t(X ) denotes the group of integrable metrized
Cartier divisors on X. Let TP x be the subset of Int(X)?*! consisting of elements

((D0>90)7 ey (Ddagd))

such that the Cartier divisors Dy, ..., Dy intersect properly.

(1) The set IPx forms a symmetric multi-linear subset of the group I/n\t(X ya+t

Moreover, the function of local intersection number
((Do,g0) -+ (Da, ga)) — ((Do, g0) - - - (Da, 9a)),

form a symmetric multi-linear map from P x to R. These statements follow
from Proposition [3.6.3
(2) Let # : Y — X be a surjective morphism of geometrically integral projective

schemes over k. We set ¢ = dim X and d = dimY. Let (Do, g0),--.,(Dd, gd)
be integrable metrized Cartier divisors on X such that (7*(Dy),...,7*(Dyg)) €
ZPy. Then one has the following:

(i) If d > e, then (7*(Dy, go) - - 7*(Dg, ga))w = 0.

(ii) If d = e and (Dy,...,Dy) € TP, then

(7*(Do; go) - - -7 (Da, ga))v = (degm)((Do, go) - - - (D ga))v-

We refer to Proposition [3.6.4] for a proof.

(3) Let f be a regular meromorphic function on X and (D1,¢1),..., (D4, g94) be
integrable metrized Cartier divisors on X such that (div(f), D1,...,Dq) € ZPx.
Suppose that

Di---Dg= g Az
QJEX(())

as a cycle, then
(@) - (D1.g1) -+ (Darg)), = 3 aalile) : Ko~ log |7](z™)).
z€X(0)

where [k(z) : k|s denotes the separable degree of the residue field x(x) over k.
We refer to Proposition for more details.
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(4) Let ((Do,go), ce (Dd,gd)) be an element ofI/7\7X. We assume that Dy, ..., Dg_1
are semi-ample, gg, ..., gq—1 are plurisubharmonic, and Dy = 0. Then one has

5;611}(1;“ 9a(z) < ((Do,90) -+ (D, ga)), < 5;?)%1 9a(),
where § = (Dg -+ Dg_1). See Proposition for more details.
(5) Let ((Do,90);---,(Da,ga)) and ((Do, g0), - - - (Da, g4)) be two elements of ZP x

having the same family of underlying Cartier divisors. One has

‘((DOMQO) e (Dd7gd)>v - ((D07g(l)) e (Ddag(li))v
d
< ) max |g; = gil(@)(Do- - Diy - Dis1 -+ Da)-
1=0

See Corollary for more details.

3.8. Local height

In this section, we fix a complete non-trivial valued field v = (k, |-|) and a projective
scheme X over Speck. Let d be the dimension of X.

3.8.1. Definition. — Let L, = (L;,;), i € {0,...,d} be a family of metrized
invertible O x-modules, where each L; is an invertible O x-module, and ¢; is a contin-
uous and integrable metric on L;. For any i € {0,...,d}, we let s; be a regular mero-
morphic section of L; on X. Assume that the Cartier divisors div(sp),...,div(sq)
intersect properly. We define the local height of X with respect to the family of
metrized invertible Ox-modules (L;)L, and the family of regular meromorphic sec-
tions (s;)%_, as the local intersection number (see Definition [3.7.1))

Bt () 1= (div(so) -+~ div(s))

05 La v’

3.8.2. Notation. — We often encounter the situation where each L; is the pull-

back by a projective morphism f; : X — Y; of a metrized invertible Oy,-module M;

and s; is the pull-back of a regular meromorphic section ¢;. In such a situation, for

simplicity of notation, we often use the expressions h%“"tdf (X) or h%)t% (X) to
05 05y lid

yeeesMa
SQyeeny Sd
denote hZO7»--,Zd (X).

3.8.3. Remark. — We keep the notation of Definition [3.8.1] in assuming that the
field k is algebraically closed. Let X1,..., X, be irreducible components of X, consid-
ered as reduced closed subscheme of X. For any j € {1,...,n}, let multx, (X) be the
multiplicity of the component X;, which is by definition the length of the Artinian
local ring of Ox at the generic point of X,;. Then, for any j € {1,...,n}, the divisors
on X; associated with the restricted sections (s;|x,){, intersect properly on Xj.
Assume firstly that d = 0. In this case, each X consists of a closed point z; of
X, which is actually a rational point since k is supposed to be algebraically closed.
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Hence X#" only contains one point, which we denote by z%". Note that so does not
vanish at any of the closed points X;. By definition, h%’ (X) is equal to
0

=Y multx, (X)In|so|,, (z5"). (3.16)

In the case where d > 1, the induction formula in Definition [3.6.1] for local inter-
section number leads to the following formula for the local height.

00 = Yy
(3.17)
[ WSl ki (00,
where Z?zl a;Z; is the cycle associated with div(Lg; sq)-
3.8.4. Definition. — Let (E,|-||) be a finite-dimensional normed vector space over

k, and r be the rank of E. We denote by ||-||det the norm on the one-dimensional
vector space det(E) := A"(E) such that,

vn € det(B), nllaey:= - inf flE]--cfle
n= ’tl’/\r Aty
Note that, if the norm ||-]| is ultrametric or induced by an inner product, for any
complete valued extension k' of k, one has (see Definition [3.3.3)
11%7,aet = II-llaet, b, (3.18)

where we identify det(E) @ k' with det(F ®j k'). We refer the readers to [13]
Proposition 1.3.19] for a proof.

3.8.5. Proposition. — Let E be a finite-dimensional vector space over k, equipped
with a norm ||-|| which is either ultrametric or induced by an inner product, r =
dimy(E), and L = Og(1) be the universal invertible sheaf on P(E). We equip L with
the orthogonal quotient metric ¢ induced by ||-|| (see Definition|3.3.5). Let (s;)i_ be
a basis of E over k. If || is non-Archimedean, then

B (B(E)) = = 1n[lsg A+ A 8y et
if |-| is Archimedean, then
R 2 (P(E)) = —In|lso A+ A splldet + or,

where

is the r-th Stoll number.
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Proof. — First, the metric ¢c, identifies with the orthogonal quotient metric induced
by ||'llc,. Therefore, by we may assume without loss of generality that & is
algebraically closed.
By Remark|3.5.8] one can find a sequence (||-||»)nen of orthonormally decomposable
norms such that
lim_d(|s 1) = 0.

n—-+o0o
By (3.2)), if we denote by ¢,, the orthogonal quotient metric on L induced by |||,
then one has

lim d(pn, @) =0.

n—-+o0o

By Corollary [3:6.7] one has

lim A9t

Jm Bl (e (BE)) = hy 27 (B(E)).

Moreover, by [13], Proposition 1.1.64] one has
0 < d([lln.aet, Illace) < rd([l-|ln, [I-])

and hence
i d(lfers laer) = 0.
Therefore, without loss of generality, we may assume that the norm ||-|| is orthonor-

mally decomposable.
We reason by induction on r. In the case where r = 0, the vector space F is
one-dimensional, and sq is a non-zero element of E. One has

hZ (B(E)) = —In|so]-

We now assume that r > 1. Let G be the quotient vector space of E by ks,. Note
that the quotient norm ||-||quos on G is orthonormally decomposable (see Proposition
3.5.9). For j € {0,...,r — 1}, let 5; be the class of s; in G. We can also view 5; as
the restriction of s; to the closed subscheme P(G) of P(E). We apply the induction
hypothesis to (G, ||||quot) and obtain (see Notation

%hgr_l (P(G)) = —In|[So A ASr—1]lquot,det

when || is non-Archimedean and

%)?:'..gT71 (]P(G)) =—In ||§0 ANREEA §r71||quot,det + or_1

We now compute the integral

[ sl
P(E)an

We first consider the case where |-| is non-Archimedean. By Proposition [3.5.11) one
has

/ In [s,]p dpgr = —In |5, ]o(€) = —In [, ]|
]PJ(E)an
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where & denotes the Gauss point of P(E)*". Therefore, by [13], Proposition 1.2.51] we
obtain

R 2 (P(E)) = —In[So A -+ ASr—1]|quot,det — I [[sp || = —In{lso A+ A syl det-

In the case where |-| is Archimedean, by [5], §1.4.3] Remark (iii), one has
11
[ lsil, dup =~ Infs 4 5307
B(E)" =1
Therefore
. - - Il
pa 2 (B(E)) = —In S0 A~ A S lauoraer = Inflsell + 5 32 D7 5
m=1 (=1

T

1
:711’1”80A"'/\87«||dct+§
m

1

In the remaining of the section, we consider a family
(Ei, |I-l:), i€{o,...,d}

of finite-dimensional vector spaces over k equipped with norms which are either ul-
trametric or induced by inner products. For each i € {0,...,d}, welet (E),||-||:,«) be
the dual normed vector space of (E;, ||-[;), r; := dimy(E;) — 1, (s;,5)j, be a basis of
E; over k, and (o ;);, be the dual basis of (s;;);,, namely

0;5(8:5) =1 and o4;(s:0) =0 if j#L
Let P be the product projective space

For any i € {0,...,d}, let m; : P — P(E)’) be the morphism of projection to the i*®
coordinate, and L; = 7} (Ogy (1)). We equip L; with the orthogonal quotient metric
induced by ||-||;.«, which we denote by ¢;. Let (Jo,...,54) be an element of N4+t

L=73(Opy(80)) ® - @ m5(Opy (84)) = L% .. @ L%%.
We equip L with the metric
pi=pfP @ ® P
Let R be a non-zero element of
S%(Ey) @y -+ - @x S°(EY),

which is considered as a global section of L, and also as a multi-homogenous polyno-
mial of multi-degree (Jg,...,0q) on Eg X -+ x E4. For any i € {0,...,d}, let

fi = (fi,...,fi), Q; = (aiJ);i:l'
—

T; copies
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The purpose of this section is to compute the local height h%”%“""’%d (P).
2 4405--sid

3.8.6. Proposition. — Assume that the sections R and
a;;, 1€{0,....d}, je{l,...,r}

intersect property on P. If the absolute value || is non-Archimedean, then

d
hppo 24 (B) = —In| R(s0,0, - 5a.0)] = D 6 laio A At [lis ders
=0
if the absolute value |-| is Archimedean, then
d
h%’%g’:::’%j (P) =—In IR(So)o, ey 8d70)| — Z 51‘(111 ||Oéi)0 A--- A Oy ||, x,det — Un)~
i=0

Proof. — By the same argument as in the beginning of the proof of Proposition [3.8.5]
we may assume without loss of generality that k is algebraically closed and that all
norms |-||; are orthonormally decomposable.

We reason by induction on rg + - - - + r4. Consider first the case where rg = --- =
rq = 0. One has

h%(}p) =—1In |R(80707 ey Sd70)|.
In the following, we assume that rg + --- +r4 > 0. Let ¢ be an element of {0,...,d}

such that r; > 0. We consider the quotient vector space G} = E)/ka;,,. For
j€{0,...,r; — 1}, let @, ; be the class of o; ; in G;. Let @; := (am-);i:_ll and

P’ =P(Ep) Xp -+ x P(Ei_1) x5 P(Gy) xp P(Eij1) X - - - X3 P(Ey).

By the same argument as in Proposition |3.5.11} we obtain that, in the case where the
absolute value || is non-Archimedean, one has

HLTp. T T Tt oy = 0 Dirace,

i+1

where Diracg denotes the Dirac measure at the Gauss point £ of Pa" Hence, by

(3.17), one has

R,ax,...,0tq (13 R,00,...,00—1,00,0041,...,0tq (!
hf’fo’ 77(1 IFD — h—’— [t bt yHiH, X AR ]P) _ 6111 i o
L,Loy-u,Ld( ) L,L0,~»-,Lz‘—1,L;7Li+1,»--,Ld( ) ' | bt

Rao..‘a',l a‘a‘+1 N o YA
— h,’f ey Xi—1, X, QG4 1, X ]P) —5111 i o
L,Lo,...,Lifl,L;,LM,...,Ld( )~ il flevr,

T,% 9

where
L. = (Z“ N ,fl)
———

r;—1 copies
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By the induction hypothesis, we obtain
R,a0,...,0t4 (T
hpgr 24 (B) = —n|R(s0,0, - 5a0)| = D Gnflajo A Ayl
J€{0,....d}\{}

— 51 In ||ai70 AR /\ai,ri—l

‘i,*,quot,det —6;1n Hai,ri ”z,*
d
= —In|R(s0,0,--,84,0)] — 253' In[lejo A= A, lljxdets
=0

where the last equality comes from [I3] Proposition 1.2.51].
In the case where |-| is Archimedean, by [5] §1.4.3] Remark (iii) one has

T

R,aq,...,0tq (TG R,a,...,00; 1,00;,041,...,0tq [}/ 1 E : 1
h,’fo’ yXd P) = hiai AN st it oA (PR 6 In oo |l — — — ).
L’Low-,Ld( ) L7L07---1Li—1vL:‘,1Li+17--~aLd( ) ¢ H baTa lle% 2 J4

=1

Thus the induction hypothesis leads to

g2 (B) = —ln|R(s0,0, - sa0)l = D &j(Inflago A Aaje,ljeae —or)
j€{0,....d}
it
11
i

{=1

i,%,quot,det — 07“@'—1) — 0 ( In ||04i,n|

— (5i(ln ||ai,0 AN /\al‘7”_1

d

=—1In |R(80,0, ceey 3d,0)| — Z(Sj(ln Haj70 Ao N, H _ 0'7']-)7
=0

as required. O

3.9. Local height of the resultant

The purpose of this subsection is to relate local heights of a projective variety and
its resultant. As in the previous section, v = (k,||) denotes a complete valued field
such that |-| is not trivial. We fix a projective k-scheme X and we let d be the Krull
dimension of X. Let (E;)?_, be a family of finite-dimensional vector spaces over k.
For each i € {0,...,d}, we denote by r; := dimy(E;) — 1 and let ||-||; be a norm on
FE;, which is supposed to be either ultrametric or induced by an inner product. Let
fi + X — P(E;) be a closed immersion. We pick elements sg,...,sq of Ey,...,Eq4
respectively, such that

div(solx), .-, div(sa|x)
intersect properly on X. For simplicity of notation, we denote by
s:=(80,---,84)-
Let P:=P(EY) xj --- xx P(EY), and let
p: XxpP—X and ¢: X x,P—P
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be morphisme of projections. For any i € {0,...,d}, let m; : P — P(EY) be the
projection to the i-th coordinate and let ¢; = m; o q.

For i € {0,...,d}, let L; be L; = 77 (Ogy (1)) equipped with the pull-back of the
orthogonal quotient metric on Opy (1) associated with ||-; ., and let

L;:=(L;,...,L;)
7; copies
and
(0,00 = (i1, ;)

be a basis of £, such that
a;o(s;) =1 and oy (s;)=0forje{l,...,r}
For simplicity, we denote by R the resultant

X,80,-+,8d

fosesfa
as in Definition [1.6.9] considered as a global section of

I = WS(L0)®5O ®...®7T2(Ld)®5d’

where
8; := deg (c1(Lo) -+~ c1(Li—1)er(Lit1) -+ - e1(La) N [X]).
Note that one has R(sq,...,Sq) = 1. Moreover, the Cartier divisors

div(R), div(my(0,1)), - - -, div(mg(@o,ry)), - - - s div(m(ag,1)), - - ., div(m)(ag,r,))
intersect properly.

3.9.1. Lemma. — Assume that the field k is algebraically closed and X is integral.

One has
7o (o), my(ea) ¢ 3. _ 145 (00),--,q5(0ea)
hfow--,fd (le(R)) o hl]*(fo)v---ﬂ*(fd)(jx).
Proof. — The projection g : Ix — div(R) is a birational morphism (see the proof of
[24] Proposition 3.1]). Hence the equality follows from the induction formula (3.17)
and [50], Proposition 2.4.11 (4)]. O

3.9.2. Definition. — Assume that the absolute value || is non-Archimedean. We
equip each symmetric power S%(EY) with the e-symmetric power norm of |- .,
namely the quotient norm of the e-tensor power of ||-||; . (see Remark for the
definition of the dual norm ||-||; «). Recall that the e-tensor power of the norm ||-||; «
is the norm ||-||; +.c on (E))®*% defined as (see [13, Definition 1.1.52])

T(t1,...,ts,
T |liee = sup M
(trreotsepst Mellio-Ilts ]l
VjG{l ..... 51}, t]‘;éo
We then equip the vector space S% (EY) ®y, - - - @ S%¢(EY) with the e-tensor product
of the e-symmetric power norms, which we denote simply by |[|-||.
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3.9.3. Remark. — Note that, by [13] Definition 1.1.58|, the norm |-|| also identifies
with the quotient norm by the canonical quotient map

(E(\J/)®k50 R - - - g (E(\i/)®k6d — §% (E(\)/) Qp -+ Ak 50 (E;l/)

of the e-tensor product of §; copies of ||-||;«, ¢ € {0,...,d}. By Propositions 1.3.20
and 1.3.21 of [13], we obtain that, for any complete valued extension &k’ of k, the norm
[[-ll& on

(S(EY) @y -+ @1 S°(EY)) @y k' =2 S (Eg 1) @pr -+ @1y S (Ey 1)
identifies with the e-tensor product of d; copies of |||k’ .«, ¢ € {0,...,d}.
3.9.4. Lemma. — In the case where |-| is non-Archimedean and k is algebraically

closed, one has

B (20T (G (R)) = byt 70 (0) T () 41 | R (3.19)

Proof. — Let ¢ be the Gauss point of P2, It suffices to observe that

R, (€) = [[RI],

where ¢ is tensor product of orthogonal quotient metrics. In fact, if we consider the
Veronese-Segre embedding

P — P(5%(Ey)) Xk -+ & P(SPH(EY)) — P(S®(EY) @y - - @k S (EY)),

then the metric ¢ identifies with the quotient metric induced by ||-|| (see [I3, Propo-
sition 1.1.58]). Moreover, one has

Mo Tra = Dirace .

Therefore the equality (3.19)) follows from the induction formula (3.17)). O
3.9.5. Lemma. — In the case where |-| is Archimedean and k = C, one has

LN T (e . R,i(ag),...,mh(x =
h—o( 0)7 d( d)(le(R)) :%7fg(?%d d( d)(IP))

F L miRGe s () @ s, (d),
So X+ XS4

where S; is the unit sphere of (Eic,|||lic), and ps, is the U(E; ¢, ||-||: c)-invariant

Borel probability measure on S;.

Proof. — This is a direct consequence of the induction formula (3.17) and Remark
3.5.12 O

3.9.6. Lemma. — Assume that the field k is algebraically closed and X is integral.
For anyi € {0,...,d}, we equip O, (1) with the orthogonal quotient metric induced by
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Iz, and denote by M/ the restriction of Og, (1) to X and equip it with the restricted
metric. If |-| is non-Archimedean, then one has

80y--+ySd 95 (e0),---,q (exa) . . .
It s X =l @ +25 Infleio A--e A i i et

if || is Archimedean, then one has

Pzt (X)) = R0 S0) e +Z§ In o A~ Advi,

i,%,det — Uri71)7

M,...,M), a*(Lo),-,q*(La )
where
nfl m 1
Op;—1 = E E 7
m=1¢=1

Proof. — For i € {0,...,d}, let t; be the global section of Op,(1) X Ogy(1) on
P(E;) x; P(E)) defining the incidence subscheme. Then ¢; corresponds to the restric-
tion of the trace element of E; ®j E) via the Segre embedding

P(E;) x 1 P(E)) — P(E; ®, EY).
Let t = (tg,...,tq). For any i € {0,...,d}, let
(SiySids--vsSim;)
be the dual basis of (a;, ;). By definition one has
ti=8 Qa0+ 8,1 Q@01+ + S @,

For i € {07 S ,d}, let L; := q;’k(OEy(l)), M; = p*(OEl(l)‘X) and N; = L; ® M;. We
use two methods to compute the following local height of X x P (see Notation [3.8.2))

hjv"z;"vad (X x5 P),

where N = (No, ..., Ng). We will show by induction that

t,ap,...,aq 60, 7Sd
hNLO, T (X XkP) —]’L

idet  (3.20)

Zé Inflaz oA A,

if |-| is non-Archimedean, and

t,ap,..., 80,-++18d
N.Lo,....Lq (Xxk]P’)_h M’

d
— Z 51(1n HO‘LO AR '/\Oéi77»,i ||i,*,det _Un-) (321)

if |-| is Archimedean. Let i € {0,...,d} be such that r; > 0. Let GY = E} /ka r,,
a; = (@) ! and
P = P(Eo) X+ X P(Eifl) Xk P(Gl) Xk P(Elqu) X+ Xk P(Ed)

Then, with the notation
L. = (Z“ N ,fi),
———

r;—1 copies
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by (3.17) one can write htﬁa%oa%d (X xi P) as

Td

|

t,ag,...,0t; 1,00, 41,...,04 %
20 i 1 B 2 (X xP)— In| | dite  « +ro Fric1ri—157it1
N,L07...,Li,17L;,Li+17...,Ld( ) GoxBye || PN NPT T T

which is equal to

STy A0 v N v SO v oy p IO S

t,o0,..., 01,00 ,00i41,...,0Lg na
J{ihatii it ekt Aot 4 (X xP) - In oy .
N,Lo,....Li—1,L;,Lit1,..,Lq ) (X xB)an | BT

If |-] is non-Archimedean, it identifies with

t,xp,...,0t—1,00,041,...,0¢4 =
RS S LSRR LT d (K s PY — ;1 || v g [
N,Lo,...,Lifl,L;LM,...,Ld( ) = diln flevr [l

In the case where || is Archimedean, it equals

T § Ay |
t,00,... 01,00, 4 1,...,04 Y ) o= +
hﬁ;foanwfifl7f;’fi+17~~yfd(X x ]P)) 5l<ln”az’n”z’* 2 ; f)
Hence by induction we obtain ((3.20) and (3.21)) according to the nature of |-|.
Now let t' = (tg,...,tq—1) and N = (No,...,Ng_1), still by (3.17) one can write

t,o,...,0q 7
NLoop, (X Xk ) as

!
ht e TAFRRRN e %]

Vo2t (diy(t,) - /( gy Il

= hELw . (divi(ta)) - /
N'.Lo,....La (X xxB)on

In |td ‘ dﬂﬁomﬁdquo mf;d

Note that for any element z € (X xj, P)** represented by

(B0, -, 2a) € Ejzy X Bogz) - X Bagz)

one has

In|tq|(z) =In . (3.22)
18llazc) - 1Tallaze)

In the case where |-| is non-Archimedean, this leads to
In|ty|dps7 . 57, Fro.7ma =0
/(Xxklp’)a“ Mo--My_1Ly0- I
by using (3.12)) and
o |8 dpg,—gyre = {8l s
00255

In the case where |-| is Archimedean, by [5l §1.4.3] Remark (iii), (3.22) leads to

g
— Inlty|dp~r . Fro. 7ra = —
/<Xxku‘»)an n [tdl Fafo- Maa LT3t = Ty

|

T
=1
Then by induction we obtain

t,ag,...,¢ 7 ap,...,0
N.Lo L, X Xk ) =g (Ux) (3:23)
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when || is non-Archimedean and
1 a1
t,aq,...,0q D\ _ 7, 0,---, Qg S5 -
ez, (X e B) = hpip(Ix) + 50 z;; i (3:24)
1= =
when |-| is Archimedean. Combining (3.23) with (3.20)), and (3.24) with (3.21f), we
O

obtain the result.

3.9.7. Theorem. — For any i € {0,...,d}, we equip Og, (1) with the orthogonal
quotient metric induced by ||-||;, and denote by M/ the restriction of Og, (1) to X and
equip it with the restricted metric. In the case where |-| is non-Archimedean, one has

Bt (X) = In| R,

where the norm || was introduced in Definition [3.9.3 In the case where || is
Archimedean, one has

d
1
ha e (X) = / I [R(z0. .., za)| ns (d20) @ - @1, (dza) +5 > 7
0 Sox-+-xSq i=0 (=1
where S; is the unit sphere of (E;c,||-|lic), and ns, is the U(E;c, ||-||:,c)-invariant
Borel probability measure on S; 5.

Proof. — By Remark [T.6.10}
R® 1€ (S%(E))®) - @ S°(EY)) @k Ci

is the resultant of Xc, with respect to foc,,-.., fd,c,, which takes value 1 at
(s0,-.-,84). Therefore, by extension of scalars, we may assume without loss of
generality that k is algebraically closed and X is integral.

We treat first the non-Archimedean case. By Lemma [3.9.6] one has

d
Bt (X) = B (1) S G g A A,

M{,...,M}, P i,%,det -
By Lemma [3.9.1] this is also equal to
d
h% ff’_‘jg’”é(“d) (div(R)) + z; S In o A+ A i [lis.det-
i
By Lemma|3.9.4] it is equal to
d
hlf%:%i,(ﬁ%;m;(ad)@) +In[|R| + Zg Silnflaio A A g [l det-
i

By Proposition and the relation (see Definition [1.6.9)
R(So, cen ,Sd) = 1,

we obtain
hso,...,sd

et (X) = In R
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The case where |-| is Archimedean is quite similar. We have

d

504035 _ 145 (@0),--,q7(axa) ) ) . ) ) _

W S (X) = h gy @ Ux) + 2051(111 llotio A=+ A i llie,det = 0ri—1)
iz

d
_ h%(:](aozd ,ﬂd(ad)(dlv(R)) + Z 51(1I1 ||Oéi,0 A-e A Qi ||i,*,det _ O'ri—l)
1=0

+/ In|R(z0, ..., 2d)| s, (d20) ® - - @ ms, (dzq)
So X+ XSq

d d
+ Z 51 ( In ||ai,0 ARERNAN Y] i lli,%,det — + Z (S’L

=0 =0

T

[\:J\)—l

1

1
:/Soxmde 1n|R(ZO7azd)|nSO(dZO)®®77§d(dzd +525 Z e

=0

~
&

where the first equality comes from Lemma [3.9.6] the second one from Lemma[3.9.1]
the third one from Lemma [3.9.5] and the last one from Proposition [3.8.6] O

3.9.8. Remark. — Note that the result of Theorem does not depend on the
choice of the vectors ay, . .., ay. If we are only interested in the equalities in the theo-
rem, we could choose ay, ..., oy carefully to make the computation simpler. However,
the formulae in the lemmas proving the theorem are of their own interest, especially in
the computations of height of homogeneous hypersurfaces in multi-projective spaces,
and hence are worth to be detailed.

3.9.9. Proposition. — Assume that the absolute value |-| is non-Archimedean. Let
K be an extension of k, on which the absolute value extends. We assume that K is
complete with respect to the extended absolute value. Let X be a projective scheme over
Speck, d be the dimensional of X, and D; = (D;, g;) be a family of integrable metrised
Cartier divisors, where i € {0,...,d}, such that Dy,..., Dy intersect properly. For
each i € {0,...,d}, let D; x := (Dix,gir). Then the following equality holds:

(ﬁo e 'Ed)(k,H) = (50,;( e '5d,K)(K,\-|)- (325)

Proof. — Step 1: In this step, we assume that Dy, ..., Dy are very ample, and, for
each i € {0,...,d}, there exist a positive integer m; and an ultrametric norm ||-||; on
E; = H°(X, Ox(m;D;)), such that ¢,, identifies with the quotient metric induced by
[-l:-

For each i € {0,...,d}, let f; : X — P(E;) be the canonical closed embedding.
Note that Ox(m;D;) = f(Og,(1)). In order to simplify the notation, we let L; be
the line bundle Ox(m;D;) and s; be the canonical regular meromorphic section of
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L;. Let R be the resultant
X,80,-,8d

fose-fa 7
which is considered as an element of

S%(Ey) @y -+ - @x S°(EY),
and
6; = (Do Di_1Dis1 - Dy).
Then, by Theorem the equality
(Do Dg)x,.) = In||R|

holds, where ||| denotes the e-tensor product of e-tensor powers of |-||; .. Similarly,

by Remarks [1.6.10] and [3.9.3] one has
(3071(, - 7ﬁd,K)(K,\-|) =In ||R® 1||K

By [13| Proposition 1.3.1 (1)], one has |R ® 1||x = ||R||. Hence the equality
follows.
Step 2: In this step, we still assume that Dy, ..., Dy are very ample. However,
the Green functions gg, ..., gq are only supposed to be plurisubharmonic.
fm) be the Green func-
tion associated with the quotient metric <p§7in) as in Definition and let ﬁgm) =
(D, gfm)). By Proposition we obtain that, for any i € {0,...,d},
lim sup [gi"™ - gil(2) =0, (3.26)

m——+00 reXxa

Therefore, by Corollary (see also §3.7)), we obtain

. —m)  =(m) - =
111’I1 (DO "'Dd )(k,||) = (DODd)(k,H) (327)

m——+oo

Moreover, (3.26) leads to

For any i € {0,...,d} and any positive integer m, let g

lim  sup |gz(7mK) — gi,K|(x) =0.

m——+oo SEGX;‘;’

Hence, similarly to (3.27), we have
. —(m) —(m) — —
lim (Do,x - Da )y = (Doxe - Daxc) x|

m——+oo

Note that, by [13] Proposition 1.3.16], gz(”;{) is also the Green function associated with
a quotient metric. Therefore, by the result in Step 1, we obtain that

—(m)  —=(m) D pm
(DO -+ Dy )(k7|.‘):(D07K"'Dd,K)(K7\'|)

for any m, so that, by passing to limit when m — 400, we obtain .
Step 3: We now treat the general case. For each i € {—1,0,...,d}, we consider
the following condition (C,):
For any i € {0,...,d} such that 1 < i < r, the Cartier divisor D; is very
ample and the Green function g; is plurisubharmonic.
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We will show by inverted induction on r that, under the condition (C,), the equality
holds. Note that the initial case where r = d is proved in Step 2. We suppose
that the equality is true under the condition (C)) and will prove it under the
condition (C,_;). Since D, is integrable, there exists very ample Cartier divisors A’
and A/, and plurisubharmonic Green functions k.. and h!! of A and A/, respectively,
such that

By Claim (see also Remark |1.3.9)), there exists a very ample Cartier divisor B,
such that

(Do, ..., Dy_1,Br+ AL Dy i1,...,Dy) € ITPY.
Since IPS?) is a multilinear subset of Div(X)"*! we obtain that
(Do, ..., Dy_1,Br + AV, D, 11,...,Dg) € TP,
We pick arbitrarily a plurisubharmonic Green function [, on B,. Let
D, =(B.+A.l,+h.), D.=(B.+A" 1l +h")
Then the induction hypothesis shows that
(Do - ‘br—lb;br+l - Da) (k- = (Dox - 'ET—I,KE;7KET+1,K ~Da i) (k,))»
(Do Dy 1D, Dyyy -- ‘Da) k- = Dok - 'ﬁrq,Kﬁ:,KﬁrH,K Dy i) (K,)-])-
Taking the difference, we obtain O

3.9.10. Remark. — If K is a subfield of Cj, the assertion of Proposition [3.9.9]
is obvious by its definition (cf. Definition . In particular, the statement of
Proposition is also true when |-| is Archimedean. Proposition m guarantees
the invariance of intersection number under any field extension.

3.10. Trivial valuation case

In this section, we fix a field k and equip it with the trivial absolute value ||,
namely |a| = 1 for any a € k*. Let K = k(T") be the field of rational functions over
k, and u be a positive constant such that v # 1. By Lemma there exists a
non-Archimedean absolute value ||, on K which extends the above absolute value |-|
on k, such that,

Vi=a+aT+ - +a,T"€k[T], |flu= Jl%lax }|ai|ui.
1€10,...,n

Note that ||, is not trivial.

3.10.1. Definition. — Let X be a projective scheme of dimension d over Spec k. If
D; = (D;,gi), i €{0,...,d}, is a family of integrable metrized Cartier divisors, such
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that Do, ..., Dy intersect properly. We denote by (D - - 'Ed)(k,H) the intersection
number

((Do,x»90,) " - - (Dd,K’gd,K))(K,\'Iu)
3.10.2. Notation and assumptions. — Let ((E;,|-|:))%, be a family of finite-
dimensional ultrametrically normed vector space over k. For any i € {0,...,d}, let
r; = dimg(E;) — 1, f; : X — P(E;) be a closed immersion, and s; be an element of
E;, viewed as a global section of Op,(1). We assume that the restriction of s; to X
defines a regular meromorphic section of L; := O, (1)|x and that the Cartier divisors

DZ:dIV(Sl|X), ’LE{O,,d}

intersect properly. We equip each D; with the Green function associated with the
quotient metric induced by ||-||;. Let R be the resultant

R =Ry € S%(BY) @ - @x S(EY),

where
0 =(Do-+-Di_1-Diy1---Da).
8.10.3. Proposition. — Under Notation and assumptions [3.10.9, the following
equality holds
(Do Da) k- = I [|R], (3.28)
where ||-|| denotes the e-tensor product of e-symmetric power norms of ||| «-
Proof. — Under the isomorphism of K-vector spaces

(SP(Ey) @k -+ @k SM(EY)) @ K = 5% (Ey ) ®k -+ @k S*(EY ),
the element R ® 1 coincides with the resultant (see Remark [1.6.10)

RXK750®17~--73d®1
fo, iy s fd K :

By Theorem and Remark one has
(Do -+ Da) k|- = [[R@ 1 .

By [13l Proposition 1.3.1 (1)], one has |[R®1||x = ||R||. Hence we obtain the equality
B29). 0

3.10.4. Corollary. — Let X be a projective scheme of dimension d over Speck. If
D; = (Di,gi), i €{0,...,d}, is a family of integrable metrized Cartier divisors, such
that Dy,...,Dg intersect properly. Then the intersection number (Dg - - ~Ed)(k,‘.|)

does not depend on the choice of u.

Proof. — By the multi-linearity of the intersection number, it suffices to treat the
case where all Cartier divisors D, are very ample and all g; are plurisubharmonic.
Moreover, by Proposition[3.3.12)and Corollary[3.6.7] we can further reduce the problem
to the case of Notation and assumptions In that case the assertion follows from
B29). O
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3.10.5. Remark. — By using Remark one has the following properties.

(1)

The set TP x forms a symmetric multi-linear subset of the group Int(X)4+!.

Moreover, the function of local intersection number
((D07 90) e (Dd7 gd)) — ((DO7 gO) e (Dda gd))v

form a symmetric multi-linear map from P x to R.
Let 7 : Y — X be a surjective morphism of geometrically integral projective
schemes over k. We set ¢ = dim X and d = dimY. Let (Do, g0),-..,(Dd,9ga)
be integrable metrized Cartier divisors on X such that (7*(Dy),...,7*(Dy)) €
ZPy. Then one has the following:

(i) If d > e, then (7*(Do, go) - - 7*(Dg, ga))v = 0.

(ii) If d = e and (Dy,...,Dq) € TPx, then

(m* (Do, go) - - 7" (Da, ga))v = (degm)((Do, go) - - - (Da, ga) )v-
Let f be a regular meromorphic function on X and (D1,¢1),.-.,(Da,g94) be
integrable metrized Cartier divisors on X such that (div(f), D1,...,Dq) € TPx.
Then -
(div(f) - (D1,91) -~ (Da, g9a)), = 0.
Note that —log|f[(z*®) = 0 for any = € X(g) in Remark because |-| is

trivial.

Let (Lo, ¢0), - - -, (La, pa) be a family of integrable metrized invertible O x-modules.
By the property (3), the local intersection number ((LO7 ©o) -+ (La, <pd))v is well-
defined.






CHAPTER 4

GLOBAL INTERSECTION NUMBER

Let K be a field and S = (K, (Q, A, v), ¢) be a adelic curve the underlying field of
which is K. For any w € 0, we denote by K, the completion of K with respect to |-|,.
We assume that, either the o-algebra A is discrete, or there exists a countable subfield
Ky of K which is dense in each K,, w € ). Let X be a d-dimensional projective
scheme over K. For any w € €2, let X,, be the fiber product X xgpec k Spec K,,. Note
that the morphism Spec K,, — Spec K is flat. Hence the morphism of projection
X, — X is also flat (see [33] IV;.(2.1.4)]).

4.1. Reminder on adelic vector bundles

Let E be a finite-dimensional vector space over K. We call norm family on E any
collection & = (||'||w)wes, where ||-||» is a norm on E, = E Q@ K,. Note that the
dual norms &V := (||||w,+)weq form a norm family on the dual vector space EV. If
all norms ||-||,, are either ultrametric or induced by an inner product, we say that the
norm family £ is Hermitian.

4.1.1. Example. — Let e = (e;)7_; be a basis of E over K. We denote by &, the
e,w)wen, Where for any (Aq,...,\;) € K[,

norm family (]|

max{|A]w, .-, [Ar|lw}, if |-l is non-Archimedean,

Arer + -+ Aver|lew =
[Aaes e {(Alg,...,mg)w, if |-|.» is Archimedean.

The norm family &, is Hermitian. We call it the norm family associated with the
basis e.

4.1.2. Definition. — Let E be a finite-dimensional vector space over K and £ =
(JI'le)wen be a norm family on E. If for any s € E, the function

(w e Q) — 8]l
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is A-measurable, we say that the norm family & is measurable (note that under the
assumption on S above, this condition also implies that, for any o € EV, the function
(we Q) = ||a|w,x is A-measurable, see [13] Proposition 4.1.24). We say that the
norm family £ is strongly dominated if there existes an integrable function A on
and a basis e of EY over K such that

Vo e d(|lo:-lew) < Alw).

If ¢ is strongly dominated and measurable, we say that (E,&) is a strongly adelic
vector bundle on S.

4.1.3. Definition. — Let X be a projective K-scheme and L be an invertible Ox-
module. For any w € Q, we denote by L, the pull-back of L by the morphism of
projection X, — X. We call metric family of L and family ¢ = (¢,,)wcq, where each
¢, is a continuous metric on L, (see Definition . Note that the dual metrics
(¢ )weq form a metric family on the dual invertible Ox-module LY, which we denote
by ©V. If Ly and Ly are invertible Ox-modules, and ¢; and ¢y are metric families
on Ly and Lo, respectively, then the metrics (p1.6 ® ¢2.0)weq form a metric family
of L1 ® Lo, which we denote by ¢1 ® 3.

If ¢ and ¢’ are two metric metrics of the same invertible O x-module L, we define
the local distance function between ¢ and ¢’ as the function

(weQ)—d,(p,¢):= sup |In e (2)
zeXan [ler, ()
4.1.4. Remark. — In the case where X is the spectrum of a finite extension K’ of

K, an invertible Ox-module L can be considered as a one-dimensional vector space
over K’ and a metric family on L identifies with a norm family of L if we consider
the adelic curve S @ K'.

4.1.5. Definition. — Let f : Y — X be a projective K-morphism of projective
K-schemes. Let L be an invertible Ox-module, equipped with a metric family ¢ =
(Yw)wen. For any w € Q, let f, : Y, — X, be the K, ,-morphism induce by f
by extension of scalars. Then, for any w € 2, the metric ¢, induces by pull-back
a continuous metric f*(y,) on f*(L,) such that, for any y € Y2" and any £ €
L,(f*(y)), one has

1FEO 120 W) = o, (F* ()-
We denote by f*(p) the metric family (f%(¢w))weq and call it the pull-back of ¢ by
f. In the case where f is an immersion, f*(y) is also called restriction of .

4.1.6. Example. — A natural example of metric family is the quotient metric family
induced by a norm family. Denote by 7 : X — Spec K the structural morphism. Let
E be a finite-dimensional vector space over K and f : 7*(E) — L®™ be a surjective
homomorphism of Ox-modules, where n is a positive integer. For any w € €, the
homomorphism f induces by pull-back a surjective homomorphism of Ox_-modules
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fw : 7k (E) — L,. Assume given a norm family = (||-[|v)wen of E. We denote
by ¢¢ the metric family of L consisting of quotient metrics associated with |[|-||,, (see

Example , and call it the quotient metric family induced by &.

Assume that the norm family ¢ is Hermitian. For each w € €, let wgr‘f) be the
orthogonal quotient metric induced by |||, (see Definition [3.3.5). Note that this
metric coincides with ¢¢,, when || is non-Archimedean or K, is complex. The
metric family gogrt is called orthogonal quotient metric family induced by &.

4.1.7. Example. — Let X be a projective K-scheme, L be an invertible Ox-
module, and ¢ = (¢u)wea be a metric family on L. Let K'/K be an algebraic
extension of the field K, and

S ® K/ = (Kl, (Q/7'A/’ l//)) ¢/)

be the corresponding algebraic covering of the adelic curve S (see . Recall that
Y is defined as Q Xz, Mg+, where My and My are the sets of all absolute values
of K and of K’, respectively.

Let X’ be the fiber product X Xgpec x Spec K/ and L’ be the pull-back of L on X'.
If ' is an element of ' and w is the image of w’ in Q by the projection map

Q/ = X Mg ¢ MKI — Q,
then one has
X:J/ = X/ XSpec K’ SpeCK:J/ = (X XK Kw) XK., K:u/.

Moreover, the pull-back of L, on X/, identifies with L/,. We denote by p, the
morphism of projection from X/, to X,,. Then the map

pht (XL)™ — X320,

sending any point 2’ = (j(x'), |-|+/) to the pair consisting of the scheme point p, (j(z'))
of X,, and the restriction of |-|,» on the residue field of p,(j(z')), is continuous (see
[13| Proposition 2.1.17]), where j : (X/,)* — X/, denotes the map sending a point in
the analytic space to its underlying scheme point. Therefore, the continuous metric ¢,
induces by composition with p? a continuous metric ¢, such that, for any =’ € (X, [k
and any ¢ € L, (p*(«')), one has

Vaer(r'), la@ly, (@)= lala [, (2)-
Therefore, (¢ )w e forms a metric family of L’ which we denote by k.

4.1.8. Definition. — Let L be an invertible Ox-module and ¢ = (p,)ucq be a
metric family of L.

(1) We say that ¢ is dominated if there exist invertible Ox-modules L; and Lo,
respectively equipped with metric families 7 and 2, which are quotient metric
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families associated with dominated norms families, such that L & L; ® Ly and
that the local distance function

(w € Q) — du(p, 1 @ 0Y)

is bounded from above by a v-integrable function (see [13] §6.1.1]);
(2) We say that ¢ is measurable if the following conditions are satisfied (see [13]

§6.1.4]):
(2.1) for any closed point P of X, the norm family P*(y) of P*(L) is measur-
able,

(2.ii) for any & € X" (where we consider the trivial absolute value on K in
the construction of X?") whose associated scheme is of dimension 1 and
such that the exponent of the absolute value |-|¢ is rational, and for
any ¢ € L ®0p, k(£), the function

(w € Q) — [, (€)
is measurable, where €y is the subset of w € Q such that ||, is trivial,
and we consider the restriction of the o-algebra A to Q.

If ¢ is both dominated and measurable, we say that the pair L = (L, ) is an adelic
line bundle.

4.1.9. Proposition. — Let m : X — Spec K be a projective scheme over Spec K,
L be an invertible Ox-module, ¢ be a metric family of L, and E = H°(X,L). We
equip E with a norm family £ = (||-||w)weq. Consider the following norm family
& = (Il wen defined as

Vs € B L), [l = max{ sup [ol (. sl -
zeXan

Then one has the following:

(1) If ¢ and & are both measurable, then &' is also measurable.
(2) If ¢ is dominated and £ is strongly dominated, then &' is strongly dominated.

Proof. — MFor any w € 2, welet ||-||,,., be the seminorm on E®x K,, = H(X,,, L.,)
defined as

0
Vs e H'(Xu, Lo),  lslle, = sup |slg, (z).
T€Xan
By |13, Propositions 6.1.20 and 6.1.26], for any s € H°(X, L), the function
(w e Q) — [slle,
1. Since the schematic point associated with £ is of dimension 1, the absolute value |-|¢ is discrete
and hence is of the form |-|¢ = exp(—tordg(-)), where the (surjective) map orde(-) : R(§) — ZU{+o0}

is the discrete valuation corresponding to the absolute value |-|¢. The non-negative real number ¢ is
called the exponent of the absolute value |-|¢.
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is measurable. Therefore the function
(w € Q) — [Is], = max{||s]lg,, [Isllw}

is also measurable once the norm family ¢ is measurable.
We may assume without loss of generality that there exists a basis e = (e;)1_;
of E such that, for any w €

VA, ) €KL, e+ -+ Mverllw = ?fax }|)\i|w.
1eil,...,r

By |13, Remark 6.1.17], for any s € H°(X, L), the function
(we Q) — In|s|e.,

is bounded from above by an integrable function. Let A : @ — R3¢ be a positive
integrable function on 2 such that

Vw e Q, max In|le;||,, < A(w).
max e, < A()

yerey

For any w € Q\ Q and any (\1,...,\.) € K[, one has

In|[Aer + -+ Neepllw <Inf|Aer + -+ + Aeer ||, < %nax }(1n |Nilw + In|le;]],)-
1€{1,...,r

gooe

Note that ||e;]|, = 1 and hence
In [[e; |5, = max{In le; ]|, In(1)} < A(w).
Therefore one has
A([l[leos II5,) < A(w).

In the case where w € Q, for any (A1,...,\,) € K, one has

Inf[Arer + -+ Averlo < InfArer + - + Aveg [}, < cmax Al + Aw) + In(r).

ooy

Finally we obtain that
VweQ, d,(&¢) <Aw)+In(r)lg (w).

Hence the norm family £ is strongly dominated (see [13, Proposition 3.1.2] for the
fact that v(Qs) is finite). O

4.1.10. Lemma. — Let S = (K, (Q, A,v), ¢) be an adelic curve, K' be an algebraic
extension of K and Sk = Sk K' = (K', (Y, A",V'),¢"). Let [ be a function on Q.
Then one has the following:

(1) f is measurable if and only if f o g/ /i is measurable.

(2) f is integrable if and only if f o g i is integrable.

Proof. — Clearly we may assume that f is non-negative, so that it is a consequence
of [13] Proposition 3.4.8 and Proposition 3.4.9]. O
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4.2. Integrability of local intersection numbers

In this section, we fix a projective K-scheme X. Let d be the dimension of X.

4.2.1. Definition. — Let D be a Cartier divisor on X. For any w € €, let D,
be the pull-back of D by the morphism of projection X, — X, which is well defined
since the morphism of projection X,, — X is flat (see Remark and Definition
. We call Green function family of D any family (g,)weqn parametrized by
Q, where each g, is a Green function of D,. We denote by ¢, the metric family
(Ilg., Jwen of Ox (D), where |-|g, is the continuous metric on Ox,(D,,) induced by
the Green function g, (see Remark . If the metric family ¢, is measurable, we
say that the Green function family g is measurable. If the metric ¢, is dominated, we
say that the Green function family g is dominated. We refer to Definition for
the dominancy and measurability of metrics. If g is both dominated and measurable,
we say that (D, g) is an adelic Cartier divisor.

Let D be an invertible O x-module and g be a Green function family of D. If D
is ample and all metrics in the family ¢, are semi-positive, we say that the Green
function family g is semi-positive. We say that (D, g) is integrable if there exist ample
Cartier divisors Dy and Ds, together with semi-positive Green function families g;
and go of Dy and Dy respectively, such that D = D; — Dy and g = g1 — g2. Similarly,
we say that an adelic line bundle (L, ¢) is integrable if there exists ample invertible
Ox-modules L; and Lo, and metric families consisting of semi-positive metrics ¢
and @9 on Ly and Ls, respectively, such that L = Ly ® LY and ¢ = ¢ ® Y.

Let Dy,..., Dy be a family of Cartier divisors, which intersect properly. For any
i €{0,...,d}, let g; be a Green function family of D; such that (D;, g;) is integrable.
Then, for any w € €2, a local intersection number

(Do,ws 90,w)s -+ > (Ddws 9dw)) (Ko |0)
has been introduced in Definition which we denote by
(ﬁo ...D 4w
for simplicity. Thus the local intersection numbers define a function
(we€Q) — (Dy---Dg)e,.

4.2.2. Definition. — Let D; and D5 be Cartier divisors on X, and g; and g» be
Green function families of Dy and Ds, respectively. We say that (D1, ¢1) and (D2, g2)
are linearly equivalent and we note

(D1,91) ~ (D2, g2)

if Ox (D1) is isomorphic to Ox (Ds) and if there exists an isomorphism of O x-modules
Ox(D1) = Ox (D) which identifies the metric ¢g, to @g,.
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4.2.3. Proposition. — Assume that, for all Cartier divisors Ey, ..., Eq which in-
tersect properly, and measurable (resp. dominated) Green function families hy, ..., hq
of Ey, ..., Eq respectively, such that all (E;, h;) are integrable and linearly equivalent,
the function of local intersection number

(wWeN)— (Eo-+Eq)w
is measurable (resp. dominated). Then, for all Cartier divisors Dy, ..., Dy which
intersect properly and measurable (resp. dominated) Green function families g, . . ., gd
of Dy,...,Dq respectively, such that all (D;,g;) are integrable (but not necessarily
linearly equivalent), the function of local intersection number

(wWweQ)— (Do Dg)e,

is measurable (resp. dominated).

Proof. — First of all, by Lemma[.1.10, we may assume that K is algebraically closed.
By Lemma [I.3.7] we can choose a matrix

(Dij)i.5)eq0.....dy?
consisting of Cartier divisors on X such that (D;,0,...,Di,4) € IPx for any
(ig,- .-+ iqa) € {0,...,d}?*1, and that D;; ~ D; for all (i,7) € {0,...,d}?. Let g;;
be a family of integrable Green functions of D; ; such that (D; j,gi ;) ~ (D, ¢:). By

Proposition [T.14]

Y (DoowDiow),= >, (Do Doww.a),
s€6&({0,....d}) 0€6({0,....d})

_ _{\(@+1)—card(D) 5 Y. .
oy e (8 B) (5, P))

@#1CH0,....d} w

where D; j = (D; j, gi,;)- Note that -, .; Djq ~ > .c; Dip, so that
_ 1\(d+1)—card([) . . .
wemn 3 o (($ D) (X, )

@#1CH{0,...,d} w

is measurable (resp. dominant) by our assumption. Moreover, by Proposition [3.6.5]
for each o € 6({0,...,d}), there is an integrable function A, on €2 such that

(EO,U(O) o 'Ed,a(d))w = (EO o 'bd)w + Aa(w)'

Thus the assertion follows. Note that / A (w)v(dw) =0 if S is proper. O
Q

4.2.4. Theorem. — Assume that Qo = @. Let (L;)%_, be a family of invertible Ox -
modules. For each i € {0,...,d}, let s; be a reqular meromorphic section of L; and
D; = div(s;). We suppose that Dy, ..., Dg intersect properly. For any i € {0,...,d},
let 0i = (Piw)wen be a measurable metric family on L; such that (L; ., ¢iw) 1S



122 CHAPTER 4. GLOBAL INTERSECTION NUMBER

integrable, and let g; = (gi w)weq be the family of Green functions of D; corresponding
to @;. Then the function of local intersection numbers

(weQ) — (Do Da)e (4.1)
1s A-measurable.

Proof. — By Lemma we may assume that K is algebraically closed. By using
Proposition [3.6.3] we may further assume that Lo,..., Ly are very ample. For any
i €4{0,...,d}, we denote by §; the intersection number

deg(c1(Lo) -+ -e1(Li—1)e1(Liyr) - - er(La) N [X]).

We introduce, for each r € {—1,...,d}, then following condition (C,):

For each i € {0,...,d} such that 0 < i < r, there exist a positive
integer m; and a measurable Hermitian norm family & = (||-liw)wen
on HO(X, L¥™), such that ¢; identifies with the quotient metric family
induced by &;.

We will prove by inverted induction on r that, under the condition (C,.), the function
is A-measurable. Note that the condition (C_;) is always true and hence the
measurability of under (C_q) is just the statement of the theorem. We begin
with the case where r = d. For any i € {1,...,d}, let B; = H°(X,LY™) and
fi : X — P(E;) be the canonical closed embedding. Note that L™ is isomorphic to
7 (Og,(1)). We denote by R the resultant

which is an element of
SON(EY) @k -+ - @k SMNU(EY),

where
N, = mo Mg
m;
We equip this vector space with the family of e-tensor product of e-symmetric power
norms of ||-|[sw,« (see Definition [3.9.2)), which we denote by & = (||||w)weq. By [13]

Proposition 4.1.24], the norm family £ is measurable. By Theorem [3.9.7] one has

mo--- md(ﬁo . 'bd)w = (moﬁo e mdﬁd)w =In ||RHUJ
Hence the function
(OJ S Q) — (E(] .- 'Ed)w

is measurable.
We prove the measurability of (4.1) under (C,_;) in assuming that the measura-
bility of (4.1) is true under (C)), where r € {0,...,d}. For any positive integer m,
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we let gfnm) be the Green function family of D, corresponding to the metric family

o™ = (")) cq (see Definition [3.3.8). We first show that the function
(we Q) — (EO o 'br—l(Drag(m))Er+1 - 'Ed)w

s

is measurable. For this purpose, we choose arbitrarily a measurable norm family
& = (I]lw)wen on the vector space H°(X, L®™) (one can choose &, = &, where e
is a basis of H?(X, L®™), see Example [4.1.1)). For any a > 0 and any w € Q, we let

@&ﬁ?w be the quotient metric on L, induced by the norm

[llaw = max{][-lme, all-l}

on H°(X,,, L&™), and let g,(»”;) be the Green function of D, corresponding to the metric
@’ZL By Proposition the norm family &, := (|||law)wen is measurable.
Therefore Dy, ...,Dy_1, (Dr,gﬁfg)),ﬁrﬂ -+ Dy satisfy the condition (C,). By the

induction hypothesis, we obtain that the function

(we Q) — (Dg-- 'Erq(Dr,g(zL))ﬁrH -+ Da)w

T

is measurable. Moreover, by Proposition [3.3.11] we obtain that, for any w € €2, there

exists a, > 0 such that gﬁfg) = gﬁm) when 0 < a < a,,. Therefore one has

(Do Dy-1(Dy.g™)Drsr -+ Da)oo = _lim  (Do-+-Dy1(Dy. g Dy -~ Dl
a€Q, a—0+

and hence the function

(w€ Q) (Do Dy1(Dr,g™)Dyy1 -+ Da)

T

is measurable. Finally, by Proposition [3.3.12] and Corollary [3.6.7] one has
(Do---Dg) = lim (Dy-- -57«71(Dr,g(m))ﬁr+1 - Dg)w

T
m——+oo

and therefore the function
(weQ)r— (50"'bd)w
is measurable. O

In the following, we study the measurability of the function of local intersection
number over Archimedean places. Let us begin with the following lemma.

4.2.5. Lemma. — Let S = (K,(Q,A,v),¢) be an adelic curve such that Qoo is not
empty. Suppose that —1 € K admits a square root \/—1 in K. Then there is a family
(tw)wea., of embeddings K — C which satisfy the following conditions:

(1) for any w € Qoo, tu(v/—1) =i, where i € C denotes the usual imaginary unit,

(2) for any w € Qoo, ||w = tw ()],
(3) for any a € K, the function (w € Qo) — Ly (a) is measurable.
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Proof. — Fix a family (04,)weq,, of embeddings K — C such that ||, = |ow(-)| for
all w € Q. Note that o, (v/—1) € {i,—i} because

0o (VT = (VT = (1) = -1
We define a family (t,)weq.. of embeddings by
o, ifo,(vV-1) =1,
oo ifou(v-1) = —i,

where &, denotes the composition of the complex conjugation with o,. Then
tw(v/—1) =i for all w € Q. Thus one can see

(@) = (la+ (/2 = lals = [1/25) +i (la+ (V=1/2)5 = lalS = [V=1/2[2)

as required. ]

Ly =

We assume that Q. = Q. If K contains a square root v/—1 of —1, then, by
Lemma [£.2.5] for each w € Q, there is an embedding o,, : K < C with the following
properties:

(1) |'|w = low(+)| for all w € Q.

(2) o,(v/—1) =i, so that o,(a + /—1b) = a + ib for all a,b € Q, where i is the
usual imaginary unit in C.

(3) Fora € K, (w € Q) — o0,(a) is measurable.

4.2.6. Proposition. — We assume that Q@ = Q. and /-1 € K. Letn and d
be non-negative integers with n > d and 7 : Al — A% be the projection given by
(w1, ..., 2n) = (T1,...,24). Let U be a non-empty Zariski open set of A% and X be
a reduced closed subscheme of =1 (U) such that ©t|y : X — U is finite, surjective and
étale.

We assume that either (i) n =d and X = 7= 1(U), or (i) K is algebraically closed
field. Let f = (fu)weq be a family of functions indexed by 2, where each f, is a
C®-function on w;*(U,) such that, for any K-rational point P € =1 (U)(K), the
function given by (w € Q) = fu,(P,) is measurable. If we set g, = fu|x  forw € Q,
then, for any P € X(K) and 1 € {1,...,d},

8gw agw
Q — (P, d Q P,
(we )Hazlw( ) and (we€ )Haglw( )
are measurable, where (214, . . ., Za,,) denotes the canonical coordinates of A4(C)x,_C.

Proof. — Case (i): n =d (so that 7 = id) and X = 7~ 1(U).

Let xy, (resp. yi.) be the real part (resp. the imaginary part) of z,,. It is sufficient
to show that
Ifw
8%

9fu

€N)—
(W ) 6ylw

(P,) and (we)m—

(F)
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are measurable. We set P,, = 0,(P) = (a1, +b1w, - - - , Gnw + by, ). Then, for e € Q*,
(P + Eel)w = Ow(P + €el) = (alw + iblw, PR (alw + 5) + iblw; e ibnw)7
(P +cie)), = 0, (P + cier) = (a1 + 1010, - -y 1y + 1(bjey +€)5 -+ s Qney + 1bpw),
where {ey,...,e,} is the standard basis of K™, so that
lim fu(P +eer)w) — fu(Py) _ dfe

EEQS € Oy, (Bo),
lim fw((P+5iel)w) _fw(Pw) _ 6fw (P )
68695 3 8ylw “r
Note that
(WweQ) — Ju((P+eer)w) — ful(Py)
13
(o.) €0) s fw((P+5iel)w) — fw(Pw)'
13

are measurable. Thus the assertion follows.

Case (ii): K is algebraically closed field.
By replacing U and X by U\ n(P) and X \ P, we may assume that P = (0,...,0).
If we set Q = w(P), then (7|y)* : O(}}’Q - OQ,P, where O{},Q and O?{,P are the

Henselizations of Oy g and Ox p, respectively. Thus there are ¢gy1,...,¢, € (’){L,’Q
such that (7| y)*(p;) = x|y for je {d+1,...,n}. We set
wj = Z a‘j@l“'GXmel Xsd

e1eqd€l>q
as an element of K[X1,..., X ]. Note that if we set
Pjw = Z Uw(aj,elmed)Xlel e 'Xceld’

e1-eq€lxo
then
9w = fu(Zlw, - -+ Zdws Pdt1w(Zlws « - 5 Zdw)s -« - s P (Zlws + -+ 5 Zdw))
as a function on U around Q. Then, for [ € {1,...,d},

agw afw - afw 8@]@

—(P,) = 0,...,0 0,...,0 0,...,0),

0214, 021 ( )+ 0z, ( 0z, ( )

5 af j=d+1

Jw w

P,) = 0,...,0).

0Z1, %lw( )

If we denote aje,,....c, by a;,; in the case where e; =0,...,e; =1,...,eq =0, then

99 Of. "9,
9o py = oo o)+ 3 / 0,...,0)0.(az),

021 021 Pt 0%jw
09., P = 0 fw
azlw 8le

(0,...,0),
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so that the assertions follow from the case (i). O

4.2.7. Proposition. — We assume that Q = Qu, and \/—1 € K. Let U be a non-
empty Zariski open set of A%. Let h = (hy,)weq be a family of functions indexed
by Q such that hy, is a C*°-function on U, and that, for any K-rational point P €
U(K), the function given by (w € Q) +— hy(P,) is measurable. For each w € Q, let
(#1w)y - - - s Znw) 18 the coordinate of A™ ®,,, C. If

i

/ (5) ho(Z1ws -+ s Znw) d21w A dZ1g A+ - Adzpw A dZne
Uw

exists for any w € ), then

I\
(weN)— (%) ho(Z1ws -+ oy Znw) d21w A dZ1w A+ - A dzpe A dZne
U,

is measurable.

Proof. — Shrinking U if necessarily, we may assume that A% \U is defined by {F' = 0}
for some F € K[X1,...,X,]\ {0}. We set

Uon = {(zm, e\ Zp) ECT

max |zjo| < N and |F(210, .. ., 2nw)| > 1/N}.
je{1,...,n}
Let x;, (resp. i) be the real part (resp. imaginary part) of z;,. Then

(%) ho dz1y AdZie A -« Adzng A dZ,
= hy, dzi, Ady1w A - AdTpe A dYne-

Moreover,

/ ho dzip Adyiw A - Adzp, A dyne
Uo,~N

= lim 3 ! hw<a1+ib1,...7a”+ibn). (4.2)

m—oo m m

a1,b1,...,a4n,bn€EZ
b L i
(M,‘.A,%)EU%N

m

Note that

(we Q) — h, (a1+ib1 a"+ib”)
oo w m AR

is measurable, so that (4.2) means that

m

(W€ Qo) — / he dz1o Adyro A - Adzpe A dyne
Uw,N
is measurable. Therefore, since

lim he dzi, Adyrw A - AdTpe A dyne

N—oc0 Uo N

= / he dx g, /\dylw/\"'/\dxnw/\dynwa
U,
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one has the assertion. O

4.2.8. Theorem. — We assume that = Q. and K is algebraically closed. Let
X be a d-dimensional projective and integral variety over K and L be a very ample
invertible Ox -module. Let (||-||w)wen be a measurable family of Hermitian norms on
H(X,L). Let ¢ = (p,)wecq be a family of metrics on L induced by the surjective
homomorphism H°(X,L) ® Ox — L and (||-||w)weq. For s € HY(X, L)\ {0},

e [ loglloer(Luspu)
Xuw
is measurable.

Proof. — Let n = dimgx H°(X,L) — 1 and X < P% be the embedding by L. Note
that L = O]p}l((].)‘x. Since H (P, Opr (1)) ~ H°(X, L), one has t € H° (P, Opx (1))
with [y = s. Let ¢ = (Y)wen be a family of metics of Opr (1) induced by the
surjective homomorphism H°(P%, Opy (1)) ® Opz. — Opy (1) and (||-[|lw)weq. Note
that 1|y = ¢. By Proposition we can choose a linear subspace M in P} such
that codimM =d+1, MNX = @ and M C {t = 0}, so that, by Proposition m
again, the morphism 7 : X — P% induced by the projection mp : P% \ M — P%
with the center M is finite and surjective. We choose a homogenous coordinate
(To :...:Ty,) on P such that
t:T() and M:{T():“-:Td:()}.

Then 7y is given by (T : -+ : Tp,) — (Tp : -+ : Ty). Let U be a non-empty open of
P4 such that 7 : X — P% is étale over U. We may assume that U C {Tp # 0}. We
set X; =T,;/To (j=1,...,n). Then

P2\ {Tp =0} = Spec(K[X1,...,X,]) = A%,

P4\ {Tp = 0} = Spec(K [ X1, ..., Xq]) = AL

and 7y on PR\ {Tp = 0} is given by (X1,...,X,) — (X1,...,X4). Let
(Z1wy -+ s Znw)  and  (Z1wy .-+ Zdw)

be the coordinates of A% ®,,_ C and A% ®,,, C, respectively. Note that f,, := log [¢|y,
is C* on A% ®,,, C. Then, by Proposition if we set

fulx, €1(Lu, ) = ihy(dz1s A dZ1) A+ A (dzaw A dZa)
on 7, 1(U,), then, for P € 771(U), (w € Q) — h(P,) is measurable. Note that

/ IOg |5|pr01(Lwa QOUJ)/\d = / fw|Xw Cl(Lwa Ww)/\d

X o (Uw)

= / i (dz1 A dZ1o) A - A (dzge A dZay)
W;l(Uw)

:/ i(70) s (ho) (210 A dZ10) A -+ A (dzaw A dZa,).
Uw
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Moreover, (7,,)«(hy) is C* over U,. Further, for P € U(K), if we set 7~1(P) =
{Qla RS Q’r‘}7 then

(ﬂ'w)*(hw)(Pw) = Zhw(in)a

so that (w € Q) = ()« (he)(P,) is measurable. Therefore, by Proposition [£.2.7

(we)— / (Tw) s« (h)(dz1w A dZ1y) A -+ A (dzgw N dZ4y)
is measurable. Thus the assertion follows. O
4.2.9. Theorem. — We assume that 2 = Q. Let X be a projective scheme over

K and L be an ample invertible Ox -module. Let ¢ = (¢u,)wen be a measurable family
of semipositive metrics. Then, for s € H(X, L) \ {0},

(we)— /X log I8l 1 (L, )"

is measurable.

Proof. — By Lemma [f.1.10] we may assume that K is algebraically closed. We
choose a positive integer N such that L®" is very ample for for all n > N. Let ¢, =
(Vn.w)wea be the quotient metric family of L& induced by H°(X, L®*")@ Ox — L®"
and &, = (||'llneg., Jweq. Moreover, by [13] Theorem 4.1.26], there is a measurable
Hermitian norm family & = (||-|7,)weq on H°(X, L®™") such that

Fling. < 1w < (ROELE™) + 1)V [lng,

for w € Q. Let [, be the quotient metric family of L®" induced by H(X,L®") ®
Ox — L®" and ¢, Note that

d “lin IR " 0 ©n
o (1 1 H> o W lp 1) _ W(O(ZE") +1)

~
" n 2n

Therefore, if we set ¢y, = (1/n)<p£{w, then lim, o dw(p,1,) = 0 for all w € Q
because lim,,_,« dy, (¢, (1/n)p,) = 0. By Theorem

1
(0 €9 [ toglslo, er(Luvtna)® = i [ loglslo ai(nLos ol
X, X

w

is measurable. Further, by [18, Corollary 3.6],

lim log|s|¢nvwcl(Lw,wn’w)d:/ 10g|s|%cl(Lw,<pw)d.
X, X

n—oo
w

Therefore, the assertion follows. O

Combining Theorems and we obtain the following result.
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4.2.10. Theorem. — Let X — Spec K be a projective scheme over K and d be the
dimension of X. Let Dy, ..., Dy be Cartier divisors on X, which intersect properly.
We equip each D; with a measurable Green function family g; such that (D;,g;) is
integrable. Then the local intersection function

(we Q) — (Do, go) -+ (Dd, gd))w

1s A-measurable.

Proof. — The measurability over Q\ Q. follows directly from Theorem More-
over, in view of Theorem [£.2.9] the measurability over Q. follows from Proposi-
tion and the multi-linearity of the local intersection measure. O

4.2.11. Theorem. — Let X — Spec K be a projective scheme over K and d be the
dimension of X. Let Dy,...,Dg be Cartier divisors on X, which intersect properly.
We equip each D; with a dominated Green function family g; such that (D;,g;) is
integrable. Then the local intersection function

(w e Q) — (Do, g0) - (Da, ga)) (4.3)

is dominated.

Proof. — By Lemma[£.1.10] we may assume that K is algebraically closed. By using
Proposition [3.6.3] we may further assume that Dy, ..., D, are very ample. Moreover,
by Proposition [£:2.3] we may assume without loss of generality that there are an
integrable adelic line bundle (L, ¢) and non-zero rational sections s, ..., sq of L such
that Ox(D;) = L and g; = —log]|s;|, for i € {0,...,d}. Note that L is very ample.
Thus, by Proposition there is a finite and surjective morphism 7 : X — P%
such that L = 7*(Opa(1)). Let (T : -+ : Ty) be a homogeneous coordinate of P%.
We consider (T})™, as a basis of H°(P?, Opa(1)). Let ¢ps be the quotient metric on
Opa(1) induced by the universal quotient homomorphism

HO(P?, Opa(1)) @ Opa — Opa(1)

and the norm family associated with the basis (T})%, (see Example see also
Proposition [3.6.8)). Moreover, we set h; = —log |T;|ops-

First we assume that ¢ = 7*(¢rg). If D; = 7*(H;) for ¢ € {0,...,d}, then the
dominancy of follows from Proposition and Proposition In general,
there are non-zero rational functions fo,..., fg on X such that D; = «*(H;) + (f;)
for i € {0,...,d}. Then, by Proposition there is an integrable function 6 on €
such that

(Do, 90) -+ (Da; ga))w = (7" (Ho), 7" (ho)) - - - (" (Ha), 7" (ha)))w + 0(w).

Thus one has the dominancy of (4.3).
In general, there is a family g of integrable continuous functions such that ¢ =

exp(g)m*(¢rs). In this case, the dominancy of (4.3) follows from Corollary O



130 CHAPTER 4. GLOBAL INTERSECTION NUMBER

Finally, we obtain the following integrability theorem.

4.2.12. Theorem. — Let X be a projective K-scheme of dimension d, and
Dy,...,Dg be a family of integrable adelic Cartier divisors. Assume that the un-
derlying Cartier divisors Dy, ..., Dg intersect properly. Then the function of local

intersection numbers
(weQ)— (Do~ Day)u (4.4)

is integrable on the measure space (Q, A,v).

4.2.13. Definition. — Let X be a projective K-scheme of dimension d, and
Dy, ...,Dy be a family of integrable adelic Cartier divisors, such that Dy, ..., Dy
intersect properly. We define the global intersection number of Dy, ..., Dy as

(ﬁo...ﬁd)s ::/ Q(DO-”ﬁd)w V(dw).

4.2.14. Remark. — Let X be a projective K-scheme of dimension d. For any
i€{0,...,d}, let

(Eis & = ([[]liw)we)
be a Hermitian adelic vector bundle on S, and f; : X — P(E;) be a closed embedding.
Let L; be the restriction of Op, (1) to X, which is equipped with the orthogonal
quotient metric family ¢; induced by &;. We choose a global section s; of L; such that
S0, - .-, 84 intersect properly. For each i € {0,...,d}, let D; be the Cartier divisor
div(s;) and g; be the Green function family of D; corresponding to ¢;. By Theorem
if we denote by R the resultant

RX’S(“};M c Sﬁo(E(\)/) QK - QK S(Sd(E(\j/):

foseees

where §; = (Dg - D;—1D;11 -+~ Dyg), then the following equality holds

(Do---Da) = / In || |l v(d)
weNN\ Qo

" / v(do) / 10 [Ro (20, -+ 20) 70, (d20) @ - -~ ® 75, (da)
€N So,6 X XS4,

d
P

=0 {=1

T

‘1
g?

DN =

+v(Qs0)

where
(1) |||lw is the e-tensor product of d;-th e-symmetric tensor power of ||-||;.w «,
(2) R, is the element of
$*(Ege,) @c, -+ ®c, 8™ (Byc,)

indued by R,
(3) Si,0 is the unique sphere of (Fic,., |-|i.o.c. ).
(4) s, is the U(Esc,, ||-|li,c, )-invariant Borel probaility measure on S; ;.
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4.3. Invariance of intersection number by coverings
Let S = (K, (R, A,v),$) be an adelic curve. Consider a covering
a= (o ay,I,)
from another adelic curve S’ = (K, (Q, A',v),¢') to S (see Definition [2.1.2). We

assume that, either both o-algebra A and A’ are discrete, or there exist countable
subfields K¢ and K| of K and K’ respectively, such that Ky is dense in each K,, with
w € Q, and K|, is dense in each K/, with w’ € Q. Recall that ¥ : K — K’ is a
field homomorphism,

ayg: (A = (Q,A)
is a measurable map, and

Io: LYY AW — 219, Av)

is a disintegration kernel of v/ over v such that, for any g € £*(Q, A,v), one has
goay € LYV, A,v') and I,(go ay) = g. In this section, we consider a projective
scheme X of dimension d over Spec K and a family

EO = (DOaQO)a v 7Ed = (degd)

of adelic Cartier divisors, such that Dy, ..., D, intersect properly. The purpose of
this section is to define the extension of scalars ﬁi,a of each adelic Cartier divisor D;
by « and show the following equality

(Do, Daa)s' = (Do Da)s.

4.3.1. Definition. — Let D be a Cartier divisor on X and g = (g.,)weq be a Green
function family of D (see Definition [4.2.1)). Let X, be the fiber product

/
X ><Spec K,a# Spec K

and D, be the pull-back of D by the morphism of projection X, — X. If ' is
an element of Q' and w = ax(w’), then the Cartier divisor D,, . identifies with the
pull-back of D,, by the morphism of projection

! A~ !/
Xaw = X Xspec k7 Spec K, = X, Xgpec Kk, Spec K, — X,,.

We denote by ga.. the Green function g, x, (see Remark [3.4.5). Then the family
9o = (Ga,w )weqr forms a Green function faglily of the Cartier divisor D,,.

Let L be an invertible Ox-module and ¢ = (pu)wen be a metric family on L.
We denote by L, the pull-back of L by the morphism of projection X, — X. If
w’ is an element of ' and w = ax(w’), then the invertible sheaf L, identifies
with the pull-back of L, by the morphism of projection Xg- ., — X,,. We denote
by ¢a,. the continuous metric Pu.K!, (see Example on Ly .. Then the
family ¢q = (pa,w )weq forms a metric family of L,. Note that, if s is a regular
meromorphic section of L, D = div(s) and g = (g,,)weq is the Green function family
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of D corresponding to the metric family ¢, then g, is the Green function family of
D,, corresponding to ¢,

4.3.2. Proposition. — Let m: X — Spec K be a projective K-scheme.

(1) Let L be an invertible Ox-module and ¢ be a metric family on L. 1If ¢ is
dominated, then @, is also dominated.

(2) Let D be a Cartier divisor on X and g is a Green function family of g. If g is
dominated, then g, s also dominated.

Proof. — Tt suffices to prove the first statement. Assume that 1 is another metric
family on L. If o’ is an element of )’ and if w = ay(w’), then by (3.4) one has

dyy (<Pou wa) = dw(‘Pa w)

Therefore, if the function (w € Q) — d,, (¢, ) is dominated, so is the function (w’ €
Q) = dw (Yo, a). To prove that the metric family ¢ is dominated, we can assume
without loss of generality that there exist a finite-dimensional vector space over K,
a strongly dominated norm family £ = (||||w)weq on E, a positive integer n and a
surjective homomorphism f : 7*(E) — L®" such that ¢ identifies with the orthogonal
quotient metric family induced by £ (see Definition . We may assume further
that ¢ is Hermitian and E admits a basis e which is orthonormal with respect to all
norms ||-||,,-

For any w’ € €, let ||-[|s be the norm |||, x,, where w = ay(w’). Then & =
(Il )wr ey is a norm family on E:. Moreover, if we view e as a basis of Ex over K',
then it is orthonormal with respect to all norms |[|-||,-. In particular, the norm family
€M s strongly dominated. Since ¢, coincides with the orthogonal quotient metric
family induced by ¢, we deduce that the metric family ¢, is also dominated. O

4.3.3. Definition. — Let E be a finite-dimensional vector space over K and £ =
(JI'le)weq be a norm family on E. We define £, = (||||w)w e as the following norm
family on E, := E ®k o# K'. In the case where w’ is non-Archimedean, the norm
|||l is the e-extension of scalars of |||, where w = ag(w’); in other words, one has

£ (8)]r

Vse€Eyr,, |sllor= sup .
“ rery \{o} I1fllws

In the case where w’ is Archimedean, the norm |||, is the m-extension of scalars of
I||lw, in other words, one has

NeN,N>1
()‘17"'>>‘N)€(K:,I)N
(31,...,31\])6E5 ’
s=A1s1+-+ANSN

Vs € Bar:,, |sllor = inf {I/\llw sillo -+ Ao - [lsnlle

Similarly, we define £, . the norm family on E, consisting of e-extension of scalars
(for both non-Archimedean and Archimedean absolute values).



4.3. INVARIANCE OF INTERSECTION NUMBER BY COVERINGS 133

4.3.4. Lemma. — Let E be a finite-dimension vector space over K and £ =
(I'lw)wea be a measurable norm family on E. Then the norm families o and &,
defined above are also measurable.

Proof. — The proof is very similar to that of [13] Proposition 4.1.24 (1.c)]. The case
where A and A’ are discrete is trivial. In the following, we will treat the case where
K and K’ admit countable subfields K and K{, such that K is dense in each K,
with w € Q, and K| is dense in each K/, with w’ € , respectively. We first check
the measurability of £, .. For any w’ € @, let |||,/ be the norm indexed by w’
in the family &, .. Let Hp be a finite-dimensional Ky-vector subspace of EY which
generates EV as a vector space over K. Then Hy \ {0} is dense in Ey; \ {0} for any
w € Q. If s is an element of E,, then for any ' € Q/,

Isllre = sup |f(5)|wf_
rer\{0} [1fllw,x

Hence it is the supremum of a countable family of A’-measurable function in w’.
As for the second statement, it suffices to apply the first statement to £V to obtain
the measurability of (§¥)a.e. Since &, is the dual norm family of (£¥),. (see [13]
Proposition 1.3.20]), by [13] Proposition 4.1.24 (1.c)] we obtain the measurability of
o O

4.8.5. Proposition. — Let X be a projective scheme over Spec K.

(1) Let L be an invertible Ox-module and ¢ be a metric family on L. We assume
that L is ample and all metrics in the family @ are semi-positive If p is mea-
surable, then @, is also measurable.

(2) Let D be a Cartier divisor on X and g be a Green function family of g. Assume
that D is ample and g is semi-positive. If g is measurable, then g, is also
measurable.

Proof. — Tt suffices to prove the first statement. Similarly to the proof of Theorem
for any m € Ns; such that L®™ is very ample we choose a norm family
& = (||.||£Jm))weg on HO(X,L®™) such that H°(X,L®™) admet a basis which is

)

orthonormal with respect to each norm ||- ||£Jm . This norm family is clearly measurable.

(m)

For any b > 0 and any w € €, let ¢,
0157 = max{[-lme, 0115}

on H°(X,,L®™). By Proposition the norm family fém) = (H||Z()7Z))weg is
measurable. By Lemma we deduce that the norm family féz) of HY(X,, L®™)
is A’-measurable.

Let <pl()m) be the quotient metric family on L induced by {ém). By [13, Remark

the quotient metric on L induced by the norm

2.2.14], the metric @é?;) identifies with the quotient metric family on L, induced

by 5Igm)' Since the norm family 515?2)

e’

is measurable, by [13] Proposition 6.1.30], the
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metric family gol(:';) is measurable. By Proposition [3.3.11} for any fixed v’ € €' and
w = ay(w'), for sufficiently small b one has @é?:}) = ¢, and hence %01()7:;),0.;’ = @L@,.

Therefore, by |13l Proposition 6.1.29] we obtain that gp&m) is measurable. By (3.4]),
for any w’ € @ and w = ax(w), one has
dur (26" ) < du(p'™, ).

Since the metric family ¢ is semi-positive, by Proposition [3.3.12] we deduce that, for
any w’ € ', one has
lim  d (™, pq) = 0.

m——+00

Still by [I3], Proposition 6.1.29], we obtain that the metric family ¢ is measurable. [

4.3.6. Theorem. — Let X be a projective scheme over Spec K and d be the di-
mension of X. Let Dgy,...,Dg be Cartier divisors on X which intersects properly.
We assume that each Cartier divisor D; is equipped with an integrable Green function
family g;. The the following equality holds

((DO,aagO,a) T (Dd,aagd,a))w/ = ((D07g0) t (Ddagd))a#(w’)'

In particular, if all Green function family g; are dominated (resp. measurable), then
the function

(w/ € Q/) — ((DO,ougO,a) T (Dd,aagd,a))w’
is dominated (resp. measurable). If all (D;,g;) are adelic Cartier divisors, then the
following equality holds

((Do, 90) -+ (Da; ga))s = ((Do,as 9a,a)  +* (Dd,a; ga,a))s'-
Proof. — For any w’ € ' and w = ax(w’), the equality
((D(Lougo,a) e (Dd7avgd7a))w’ = ((DOa gO) e (Dd7 gd))w

follows from Proposition (see also Remark [3.9.10]).
If go, ..., gq are measurable, by Theorem [4.2.10] the function

(w € Q) — ((Do,g0) -+ (Dd, 9a))w
is A-measurable. Since oy is a measurable map, we deduce that the function
(w/ € Q/) — ((DO,Oc?gO,a) te (Dd,a»gd,a)w/

is A’-measurable.
Assume that the Green function families go, ..., gq are dominated. By Theorem
4.2.11] there exists an integrable function F' on the measure space (£, .4, v) such that

VWEQ, |((DO’gO)"'(Dd,gd))w| gF(O))
Hence
vw/ S Qv |((D0,aagO,oc) e (Dd,aagd,a))w’| < F<a#(w/))-
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Hence the function

(W/ S Q/) — ((DO,aagO,oc)a o 7(Dd,avgd,a))w’

is dominated. Finally, if the function

(we Q) — (Do, go) - (Dd, gd))w

is integrable, then also is the function

(w/ € QI) — ((DO,aagO,a) te (Dd,avgd,a))w’ = ((D0790) to (Ddagd))a#(w/)

is also integrable, and one has

(Do.as Gi.0) - (Daors gaa)) s = / (Dos 90.0) - (Do o) 1/ (i)

’

= /Qla(wl — ((DO,oca 907a) o (Dd,uu gd,oc))w') V(dw)

= /Q((Do,go) -+ (Da; 9a))w v(dw) = (Do, go) - - - (D, ga))s-

4.4. Multi-heights

From now on, we assume that the adelic curve S is proper.

4.4.1. Definition. — Let X be a projective scheme over Spec K. If f is a regular
meromorphic function on X, we denote by div(f) the following adelic Cartier divisor

(diV(f), (_ In |f|w)w€Q)'

If L =(L,¢) is an adelic line bundle on X and if s is a regular meromorphic section
of L on X, we denote by div(s) the following adelic Cartier divisor

(div(s), (= In[s[e, Jwen)-

4.4.2. Proposition. — Let X be a projective K-scheme of dimension d, and
Dy,...,Dy and Eg,...,ﬁld be families of integrable adelic Cartier divisors, such
that Dy, ...,Dq and Dy,...,D! intersect properly. If there is a family of reqular
meromorphic functions fy, ..., fq on X such that D; = E;—F(i;‘(f,) forie{0,...,d}.
Then

(Do Dy)s = (Dy---Dy)s.

Proof. — 1t is sufficient to prove that if f is a regular meromorphic function on X
and Dq,...,D, are integrable adelic Cartier divisors such that div(f), D1,...,Dqg
intersect properly, then (CTR/( f)Di---Dg)s = 0. Clearly we may assume that K
is algebraically closed, so that the assertion follows from Proposition [3.6.5] and the
product formula. O
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4.4.3. Definition. — Let Lo = (Lo, ¢0), - - -, La = (La, ¢aq) be a family of integrable
adelic line bundles. Let sg,...,sq be regular meromorphic sections of Lyg,..., Ly,
respectively such that div(sp),...,div(sq) intersect properly. Then, by Proposi-
tion [£4.2] the global intersection number
(div(sg) - --div(sa))s
does not depend on the choice of sg,...,sq. The global intersection number
(IO ... L d) g
of Lo -+ Ly over S is then defined as
(div(sp) - - - div(sqa))s-
This number is also called the multi-height of X with respect to Lg,...,Lq and is
denoted by
Wy, . (X)-
In the particular case where Ly, ... Ly are all equal to the same integrable adelic line
bundle L, the number hy +(X) is denoted by h+(X) in abbreviation, and is called
the height of X with respect to L.
4.4.4. Proposition. — (1) The global intersection pairing is a symmetric bilinear
form on the group consisting of integrable adelic line bundle.

(2) Let Xi,...,Xy be irreducible components of X and m,...,ne be the generic
points of X1, ..., Xy, respectively. Then

¢
(ZO o 'Zd)s = ZlengthOXW (OX"’U)( Z0|Xj e fd‘xj )S'
j=1

(3) Let sq be a reqular meromorphic section of Lg and div(sy) = a1Z1+ -+ anZy,
be the decomposition as cycles. Then

(LO---Ld)s:/Q</Xv —logSdlw(m)mLo,w,gao,w),---(Ldw,wdl,n(dw))ff(dw)

+ Zai(fo|zi + La-1|,)s-
i=1

Proof. — They follows from (3.14)) and Proposition m O

Finally let us consider the projection formula for our intersection theory. For this
purpose, we need three lemmas.

4.4.5. Lemma. — Let (A,m) be a local Artinian ring and B be an A-algebra such
that B is finitely generated as an A-module. Let M be a finitely generated B-module.
Then

length,(M) = > [B/n: A/m]lengthp (My).
neSpec(B)
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In particular, if B is flat over A, then

rka(B)length,(A) = Y [B/n: A/m|lengthy (By).
neSpec(B)
Proof. — Let 0 — M’ — M — M"” — 0 be an exact sequence of finitely generated
B-modules. Then, both sides of the above first equation are additive with respect to
the exact sequence. Therefore, we may assume that M = B/n for some n € Spec(B).
In this case, it is obvious. O

4.4.6. Lemma. — Let A be an integral domain and B be a flat A-algebra. If we
denote the structure homomorphism A — B by ¢, then ¢~ (P) = {0} for any P €
Assp(B).

Proof. — We set P = ann(b) for some b € B\ {0}. If there is a € ¢—*(P) \ {0},
then ¢(a)b = 0. Since B is flat over A, ¢(a) is regular, so that b = 0. This is a
contradiction. 0

4.4.7. Lemma. — Let f : Y — X be a proper and surjective morphism of integral
scheme of finite type over a field k such that dim X = dimY . For an extension filed
K of k, if X' := X Xgpec(k) Spec(k’), Y :=Y Xgpec(r) Spec(k’) and f': X' — Y is
the induced morphism, then

LX) = [k(Y) s (XY,

Proof. — By Lemma any irreducible component of X’ (resp. Y’) maps sur-
jectively to X (resp. Y) by X’ — X (resp. Y/ — Y). Moreover, we can find a
non-empty Zariski open set U of X such that f~1(U) — U is finite and flat. Note
that if we set U’ := U Xgpec(r) Spec(k’), then f’_l(U’) = f~1U) X Spec(k) Spec(k’)
and f’fl(U’) — U’ is finite and flat. Therefore, we may assume that f is finite and
flat, so that the assertion is a consequence of the second formula in Lemma [£.45] O

4.4.8. Definition. — Let Z = a1Z1 + --- + a,Z, be an [-dimensional cycle on X
and Lo, ..., L; be integrable adelic line bundles. Then (Lo---L; | Z)g is defined to
be .
(Lo---Li | Z)s == Zlaj( LO’ZJ Ll|z.,ﬂ )s'
j=
In the case where Lo, ..., L; are all equal to the same adelic line bundle L, we call it
the height of the cycle Z with respect to L, and denote it by hi(Z).

4.4.9. Theorem (Projection formula). — Let f : Y — X be a morphism of
projective schemes over K and Ly, . .., L; be integrable adelic line bundles on X. For
an l-cycle Z on'Y,

(f*(Lo) -+ f*(Li) | Z)s = (Lo~ Li | fu(Z))s.

Proof. — First let us see the following:
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4.4.10. Claim. — If f is a surjective morphism of projective integral schemes over
K, then

ey ey Jdeg(f) (Lo Li)s  if dim X = dimY,
ko s {0 if diim X < dim Y.

In other words,
(f*(Lo) -+ f* (L) | Y)s = (Lo Ly | fo(Y))s.

Proof. — We choose rational sections sq, ..., sq of Lg, ..., Ly, respectively such that
div(sp), ...,div(sq) intersect properly on X and f*(div(sg)),..., f*(div(sq)) intersect
properly on Y. Let K, be the completion of K with respect to w € Q, X, :=
X Xgpec(k) SpPec(Ky,), Yo, := Y Xgpec(k) SPec(Ky,) and f, : Y, — X,, be the induced
morphism. Further let 7x,, : X, = X and 7y, : ¥, = Y be the projections. Then
the following diagram is commutative.

waHwa

WY,W\L lﬂX,w

Since X and Y are integral, f*(div(s;)) is well defined as a Cartier divisor. Moreover,
Ty, (f*(div(s;))) and div(s;)w = 7%, (div(s;)) are defined because 7y, and 7x ., are
flat. Therefore, f%(div(s;),) is defined as a Cartier divisor on Y, for each i =0,...,d.
Let Y,1,.-.-,Yym, (resp. Xu1,...,Xwn,) be irreducible components of Y, (resp.
Xo)-

First we assume that dim X < dimY. Then, by Proposition [3.6.4

( f2diviso)us—log lsoly )y, , -+ f2(div(sa)us — 10 sal)ly, ) =0

for all j =1,...,m,. Therefore,

(£2(div(s0)e, — logsol,.) -+ F5(diV(sa)u, ~ log|sal,o.)) =0,

and hence the assertion follows.
Next we assume that dim X = dimY. For each i € {1,...,n,}, let

Joi={je{l,....mu}| fu(Yo,;) = X0}
and
Juo={1,...;nu} \ (Jup U---Udyn,).
By Proposition ifje i (ie{l,...,ny,}), then

(£ (iviso)an —Toglsol)ly, , -+ F2(div(sa)e —Togsalo )y )

J

w,

= deg(fw|yw’j)( (div(s0)w, —log[solp.)lx_ . -+ (div(sa)w, —log |sd\%)|wai )w.
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Moreover, if j € J, 0, then

( f(@iv(so)er ~1oglsole )y, -+~ Faldiv(sa)en ~loglsalo. )l ) =0.
Thus, by Lemma [4.4.7] one has

(2 (iv(s0)us — 108 s0],,) - F2(div(sa)us ~log [sal,.,))
= dog(f) ((div(so)a. ~og[soly.) - (Aiv(sa)u, ~ logsal.)) -
Therefore,
(f*(Lo) -~ f*(L1))s
= [ (rolaiv(so)s, ~Toglsolp) - fo(div(su)u o sl ) _v(d)

= de(s) [ ((@iviso)os =108 Is0ls.) -+ (div(sa)en — o8 |suls.)) v(d)

= deg(f)(Lo--- L1)s-

as required. O

In general, if we set Z = a1Zy + - -+ + a, Z,, then, by Claim [£.4.10]
(f*(Lo) -+ £ (T) | Z)s =Y a;(f*(Lo) -+ f*(L0) | Z)s
j=1

=2 ai(Lo - Li| fo(Z)s = (Lo Lu | fu(2))s:

O

4.5. Polarized adelic structure case

Let K be a finitely generated field over Q and n be the transcendental degree of
K over Q. Let (%; 41, ..., ,) be a polarization of K and S = (K, (2, A,v), $) be
the polarized adelic structure by (%; .1, ..., ) (for details, see Section .

Let X be a d-dimensional projective and integral scheme over K. We choose a
projective arithmetic variety 2 and a morphism « : 2"~ — 2 such that the generic
fiber of Z© — %A is X. Let Lg,..., Ly be invertible Ox-modules. We assume that
there are C*°-metrized invertible O z--modules 2y = (£, ho), ..., Laq = (L4, hq) in
the usual sense on arithmetic varieties such that %, ..., %, coincides with Lg, ..., Lg
on X. Note that, for each w € Q, Z; yields a smooth metric ©iw of L; ., that is, if
w € Qo then ¢; , = hi|7r71(w)3 ifwe Q\ Qu, then ¢;, is the model metric induced
by the model (27,.%;). We denote {(Li u, ¢i.w)twea by Li.

4.5.1. Proposition. — (Lo---Lyg)s = (Lo Lq-7*(H1) 75 (H))
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Proof. — We prove the assertion by induction on d. Clearly we may assume that 2
is normal. If d = 0, that is, dim 2" = n + 1, then it is an easy consequence of [49]
Lemma 1.12, Lemma 1.15, Proposition 5.3, Lemma 5.15 and Theorem 5.20].

We assume that d > 0. Let us choose a non-zero rational section sy of .%,. Let
div(sg) = a121 + - -+ 4+ a2, be the decomposition as a cycle. Then one has

+/ 710g|80|h061(?ﬁ) A /\Cl(Z) /\Cl(ﬂ*%) VANEERWAN Cl(ﬂ*%).
Z(C)

Note that

/ —log |solnec1 (L) A Aer(Za) Ner(*FA) A -+ A ey (n* )
Z(C)

:/ </ 10g|50h001(i”1)/\~~/\61(fd)> () N New(I).
2(C) Z(C)/%(C)

Here we consider the following claim:

4.5.2. Claim. — Let ) : % — € be a surjective morphism of projective arithmetic
varieties. Let M1, ..., Mg (resp. D4, ... ,@n) be metrized integrable invertible Qg -
modules (resp. Og-modules) such that d+n = dim % . Let %;, be the generic fiber of
V: % — €. Then

(s g 7T 7D
(g, Maly,)) (D D), ifd=dim,
0, if d < dim %,

Proof. — This is a consequence of the projection formula (cf. [49, Theorem 5.20]).
O

By the above claim, if Z is a prime divisor on 2" with 7(Z) # %, then
(?1 L .ﬂ*(%l) . ..ﬂ*(%d) . (Z’O))

_ (92”1\27] Ll g, V(A Ay (n(Z),0)), if codim(n(Z); B) =1,
0, if codim(w(Z); ) > 2,

where Z, is the generic fiber of Z — 7(Z). Therefore, if we set

{Ih ={ie{l,....,r} | n(Z) = B},
Ir:={ie{l,....r} | n(2;) =T}
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for T' € Q\ Qo, and denote
Zai(yl Ly (HO) T (H) - (20,0))
i=1

by T, then, by Example [3.5.2] and hypothesis of induction on d, one has
7= al(@1 - Zu-7" ()7 (H) - (2:,0))
i€l
+ > N (@ Ly 7 ()7 () - (20,0))
TeQ\ Q. i€lr

= Zai(zllzi”'zd‘zi)s

i€l

+ Z (%1“'%d'(r,0))/ —log |s0|perc1(L1, o1r) -+~ c1(La, par),

re\ Qe Xpn
where Z; is the generic fiber of Z; — £ for i € I,. Thus, by (3.14),
(Lo La-7* ()" (Hn) = > ai( Tnl -+ La

i€l

+/ (/ —log |30|¢>0,w01(L1,801,w) : "Cl(LdaQDd,w)> v(dw) = (zl - Lq)s,
Q \Jxan

Z,;)S

as required. O
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