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Abstract We propose a positivity condition for vector bundles on a projective variety
and prove an algebraicity criterion for formal schemes. Then we apply the algebraicity
criterion to the study of formal principle in algebraic geometry.
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1 Introduction

Let k be a field and X be an integral projective scheme over k. Suppose given an
integral closed subscheme Y of X and a formal closed subscheme ̂V of ̂XY , and
assume that the scheme of definition of ̂V is Y . The formal subscheme ̂V is said to
be algebraic if the dimension of ̂V equals that of the Zariski closure of ̂V in X . The
algebraicity of formal schemes plays an important role in Grothendieck’s formal exis-
tence theorem, and has many applications in arithmetic geometry (when the field k is
a number field), such as the algebraicity of formal leaves of foliations [3], rationality
of formal germs of functions on algebraic curves [5], Grothendieck-Katz conjecture
(see [6]), etc.

An algebraic criterion has been proposed by Bost [3], asserting that the formal
subscheme ̂V is algebraic when Y and ̂V are smooth, Y has dimension �1 and the
normal bundle NY ̂V is ample. The proof relies on a result of Hartshorne [18] con-
cerning the transcendence degree of the function field of a formal scheme. Note that
Bost’s algebraicity criterion can be compared to a previous result of Gieseker [10] on
formal principle in algebraic geometry, where Hartshorne’s work is also an impor-
tant element in the proof. Let (W, A) be a pair of projective algebraic varieties over
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172 H. Chen

Spec k, where A is a closed subvariety of W of dimension �1. We say that the formal
principle holds for the pair (W, A) if for any pair of algebraic varieties (W ′, A), the
existence of an isomorphism between the formal schemes ̂WA and ̂W ′

A (we require
that the isomorphism extends the identity map of A) implies that A has a common
étale neighbourhood in W and in W ′. Gieseker has proved that if A and W are smooth
and if the normal bundle NAW is ample, then the formal principle holds for (W, A).

The analogue of the ampleness in the complex analytic setting is Grauert positiv-
ity, namely the zero section of the dual bundle is exceptional. Comparing Gieseker’s
work to similar results in complex analytic and algebraic geometry, notably those
of Commichau and Grauert [8], Hirschowitz [22], and Bǎdescu and Schneider [2],
suggests that the ampleness condition in Bost’s criterion may be largely weaken.

In this work, we study the algebraicity of formal schemes in algebraic geometry by
using ideas from Arakelov geometry. In the following, we assume that the scheme Y
is of dimension �1 and is locally of complete intersection in ̂V . Note that vanishing
of the highest cohomology group is a crucial argument in [18], which can also be
interpreted as vanishing of global sections of certain vector bundle by Serre duality.
Inspired by this observation, we establish the following result.

Theorem A Assume the following condition P3(Y, N ):

there exist an ample line bundle L on Y and λ > 0 such that, for all integers n
and D with n/λ > D > λ, one has H0(Y, Sn(N∨) ⊗ L⊗D) = 0.

The formal scheme ̂V is algebraic.

The above positivity condition P3, which may appear technical at first sight, is
closely related to the classical method of “auxiliary polynomials” in Diophantine
approximation, or its avatar the slope method in Arakelov geometry. We refer the
readers to Bost [4, §2.3] for the relation between positivity conditions and his slope
method, and to Chen [7, §4.2.4] for an analogue of the condition P3 in Arakelov
geometry and its relation with the arithmetic invariants.

Note that the condition P3(Y, N ) is satisfied when the vector bundle N is ample,
or more generally, is ample along a generic curve in Y , and can be easily verified in
diverse geometric situations. In positive characteristic case, the condition P3(Y, N )

does not follow directly from the ampleness of N by Serre duality: in general Sn(N∨)

is not isomorphic to Sn(N )∨ when n exceeds the characteristic of k. An essential step
turns out to be a generic hyperplane section argument (see Proposition 3). This argu-
ment permits to reduce the problem to the case of curves, where Hartshorne’s method
is valid, even in positive characteristic case. Moreover, we show by an example (see
Proposition 13) that the condition P3 is in general much weaker than the amplitude.
In the case of k = C, P3 can also be compared with conditions in a differential geo-
metric flavor. Namely, in the case where N is a line bundle, the condition P3(Y, N ) is
satisfied once the Levi form of N equipped with a hermitian structure has at leat one
positive eigenvalue at every point in Y (C) (see Proposition 14).

The algebraicity criterion given in Theorem A can be applied to the study of formal
principle in algebraic geometry, and leads to the following result.
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Algebraicity of formal varieties and positivity 173

Theorem B Let (W, A) be a pair of smooth projective varieties where A has dimen-
sion �1. Assume that the normal bundle NAW verifies the condition P3, then the
formal principle holds for the pair (W, A).

The comparison of the condition P3 to various positivity conditions shows that
Theorem B generalizes the result of Gieseker [10]. Moreover, Theorem B can also be
compared to the approach of Bǎdescu and Schneider [2] (see Remark 4).

The article is organized as follows. In the second section, we establish an abstract
algebraicity criterion of formal schemes and prove Theorem A. In the third section,
we define and compare several positivity conditions. Finally in the fourth section, we
apply the algebraicity criterion to the study of formal principle.

2 An abstract algebraicity criterion

In this section, we give an abstract algebraicity criterion of formal subschemes. This
generalizes a result of Bost [4, Lemma 2.4] to higher dimensional case. The idea
consists of interpreting the dimension of the formal subscheme by the asymptotic
behaviour of the Hilbert function of an ample line bundle on it. We begin by introduc-
ing the notation and some assumptions.

1. The expression k denotes a field of arbitrary characteristic.
2. We fix a projective k-scheme q : X → Spec k and an integral closed subscheme

Y of X , and assume that dim(Y ) � 1. We also fix a closed formal subscheme ̂V
of ̂XY , which admits Y as the scheme of definition.

3. We assume
(1) the formal scheme ̂V is Zariski dense in X ,
(2) the scheme Y is locally of complete intersection in ̂V .
Note that in the study of algebraicity of ̂V , the assumption (1) is not essential.
In fact, if Z is the Zariski closure of ̂V in X , then ̂V is also a closed formal sub-
scheme of ̂ZY . If we replace X by Z , then we reduce our problem to the case
where the assumption (1) is fulfilled.

4. For i ∈ N, denote by Vi the i th infinitesimal neighbourhood of Y in ̂V . One has
successive closed immersions

Y = V0 ⊂ V1 ⊂ V2 ⊂ · · ·
and the locally ringed space ̂V identifies with the inductive limit lim−→ Vi . Denote

by ϕi : Vi → X the immersion and ϕ : ̂V → X the morphism of locally ringed
spaces induced by (ϕi )i�0.

5. We say that the formal subscheme ̂V is algebraic if dim(̂V ) equals the dimension
of the Zariski closure of ̂V in X (which equals dim(X) by the assumption ((1)
above). Remind that dim(̂V ) is defined as the supremum of Krull dimensions of
all local rings of ̂V .

6. Denote by N the normal bundle of Y in ̂V . Note that the rank of N is equal to
dim(̂V ) − dim(Y ).

7. We fix an ample line bundle L on X . For any integer D � 1, denote by ED :=
H0(X, L⊗D).
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8. For all integers i and D such that i � 0 and D � 1, let ηi
D be the evaluation

map from ED to H0(|Y |, ϕ∗
i L⊗D), where ϕi : Vi → X is the closed immersion.

Let Ei
D be the kernel of ηi−1

D (i � 1). It is the space of global sections of L⊗D

vanishing at Vi . Define E0
D = ED by convention.

9. Denote by I the ideal sheaf of Y in ̂V . By definition, the ideal sheaf of Vi in ̂V is
Ii+1. The exact sequence

0 �� ϕ∗L⊗D ⊗O
̂V

(

Ii/Ii+1
)

�� ϕ∗
i L⊗D �� ϕ∗

i−1L⊗D �� 0

induces (by identifying ϕ∗L⊗D ⊗O
̂V

Si N∨ with L|⊗D
Y ⊗OY Si N∨) a commutative

diagram whose line is exact:

0 �� H0
(

|Y |, L|⊗D
Y ⊗ Si N∨

)

�� H0
(|Y |, ϕ∗

i L⊗D
) �� H0

(|Y |, ϕ∗
i−1 L⊗D

)

ED

ηi
D

��

ηi−1
D

�����������������

This induces an injective homomorphism of vector spaces over k:

γ i
D : Ei

D/Ei+1
D −→ H0

(

|Y |, L|⊗D
Y ⊗ Si N∨)

.

Lemma 1 With the notation 8, there exists a constant c > 0 such that, for all integers
i � 0 and D � 1, one has rk(Ei

D/Ei+1
D ) � c(i + D)d−1 where d is the dimension

of ̂V .

Proof Since there is an injective k-linear map (see notation 9)

Ei
D/Ei+1

D −→ H0
(

|Y |, L|⊗D
Y ⊗ Si N∨)

,

the rank of Ei
D/Ei+1

D is bounded from above by that of

H0
(

|Y |, L|⊗D
Y ⊗ Si N∨) ∼= H0

(

P(N∨), π∗L|⊗D
Y ⊗ ON∨(i)

)

,

where π : P(N∨) → Y is the projection. Since the dimension of P(N∨) is d − 1, we
obtain the result.

Proposition 1 If

lim inf
D→∞

∑

i�0(i/D) rk
(

Ei
D/Ei+1

D

)

∑

i�0 rk
(

Ei
D/Ei+1

D

) < +∞, (1)

then the formal scheme ̂V is algebraic.
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Proof Let λ > 0 be an integer. By the previous lemma, there exists a constant c > 0
such that rk(Ei

D/Ei+1
D ) � c(i + D)d−1 holds for integers D � 1 and i � 0, where d

is the dimension of ̂V . Hence

∑

i�0

i

D
rk

(

Ei
D/Ei+1

D

)

�
∑

i�λD

i

D
rk

(

Ei
D/Ei+1

D

)

� λ
∑

i�λD

rk
(

Ei
D/Ei+1

D

)

= λ

⎡

⎣

∑

i�0

rk
(

Ei
D/Ei+1

D

)

−
∑

0�i<λD

rk
(

Ei
D/Ei+1

D

)

⎤

⎦

� λ
∑

i�0

rk
(

Ei
D/Ei+1

D

)

− cλ
∑

0�i<λD

(i + D)d−1

� λ
∑

i�0

rk
(

Ei
D/Ei+1

D

)

− cλ2(λ + 1)d−1 Dd .

We have assumed that ̂V is dense in X , which implies
⋂

i�0 Ei
D = 0. Hence by the

asymptotic Riemann–Roch theorem (see for example [25, 1.2.19]),

∑

i�0

rk
(

Ei
D/Ei+1

D

)

= rk(ED) ∼ degL(X)

dim(X)! Ddim X (D → +∞) .

Therefore we obtain

lim inf
D→∞

∑

i�0(i/D) rk
(

Ei
D/Ei+1

D

)

∑

i�0 rk
(

Ei
D/Ei+1

D

) � λ − lim sup
D→∞

dim(X)!cλ2(λ + 1)d−1 Dd

degL(X)Ddim X
.

Suppose that ̂V is not algebraic, that is dim X > d. Then

lim sup
D→∞

dim(X)!cλ2(λ + 1)d−1 Dd

degL(X)Ddim X
= 0.

Therefore

lim inf
D→∞

∑

i�0(i/D) rk
(

Ei
D/Ei+1

D

)

∑

i�0 rkK

(

Ei
D/Ei+1

D

) � λ.

Since λ is arbitrary, we obtain

lim inf
D→∞

∑

i�0(i/D) rk
(

Ei
D/Ei+1

D

)

∑

i�0 rk
(

Ei
D/Ei+1

D

) = +∞.
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The above result leads to the following criterion of the algebraicity of ̂V , which was
mentioned in Sect. 1 as Theorem A.

Theorem 1 Assume that (Y, N ) satisfies the following condition:

there exists λ > 0 such that, for any integer D > λ and any integer i > λd, one
has H0(Y, Si N∨ ⊗ L|⊗D

Y ) = 0,

then the formal subscheme ̂V is algebraic.

Proof Since each subquotient Ei
D/Ei+1

D identifies via γ i
D with a vector subspace of

H0(Y, L|⊗D
Y ⊗ Si N∨) (see notation 9), for each integer D > λ,

∑

i�0

i

D
rkK

(

Ei
D/Ei+1

D

)

=
∑

0�i�λD

i

D
rkK

(

Ei
D/Ei+1

D

)

� λ
∑

0�i�λD

rkK

(

Ei
D/Ei+1

D

)

� λ
∑

i�0

rkK

(

Ei
D/Ei+1

D

)

.

The assertion then follows from Proposition 1.

3 Positivity conditions

The results obtained in the previous section, notably Theorem 1, suggest that a suit-
able condition on the normal bundle NY ̂V implies the algebraicity of ̂V . Motivated by
this observation, we propose the following condition for vector bundles on projective
schemes.

Definition 1 Let Z be a projective scheme of dimension �1 defined over k and E be
a non-zero vector bundle on Z . We say that the pair (Z , E) satisfies the condition P3
if, for any line bundle L on Z , there exists λ > 0 such that, for all integers d and n
with d > λ and n > λd, one has H0(Z , Sn E∨ ⊗ L⊗d) = 0.

With this notation, the result of Theorem 1 can be written as

P3(Y, NY ̂V ) �⇒ ̂V is algebraic.

The main purpose of this section and the next one is to compare the condition P3 to
some classical conditions and show that it is a very weak positivity condition for vector
bundles. In order to simplify the presentation, we introduce the following notation.

Definition 2 Let Z be a projective scheme of dimension �1 over Spec k and E
be a non-zero vector bundle on Z . If E is ample, we say that (Z , E) satisfies the
condition P1.

Recall that a non-zero vector bundle E on Z is said to be ample if for any coherent
OZ -module F , there exists an integer n0 > 0 such that, for any integer n � n0, the
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sheaf Sn E ⊗ F is generated by its global sections over Z . Any non-zero quotient
bundle of an ample vector bundle is still ample.

We shall prove P1(Z , E) ⇒ P3(Z , E) when Z is an integral projective scheme
(see Theorem 2 and the remark afterwards). In the particular case where E is a line
bundle, this is a consequence of Serre duality. In fact, one has

H0
(

Z , E∨⊗n ⊗ L⊗d
)

= Hm
(

Z , E⊗n ⊗ L∨⊗d ⊗ ωZ

)

,

where m is the dimension of Z , and ωZ denotes the dualizing sheaf of Z . Then the
relation P1(Z , E) ⇒ P3(Z , E) results from Serre’s vanishing theorem (see for exam-
ple [25, Theorem 1.2.6]). A similar argument also works for vector bundles in the
case where the characteristic of k is zero, where we use [26, Theorem 6.1.10]. When
the characteristic p of k is positive, the situation becomes more subtle: the relation
Sn(E∨) ∼= (Sn E)∨ does not hold in general. Our main contribution here is to intro-
duce a “generic curve” argument (Proposition 3), which permits to reduce the problem
to the particular case of projective curves, where the implication P1 ⇒ P3 follows
from a result of Hartshorne [18, Lemma 6.1]. More precisely, we shall introduce the
following auxiliary condition P2, which is clearly weaker than P1, and we establish
the implication P2 ⇒ P3.

Definition 3 Let Z be an integral projective scheme of dimension �1 over Spec k and
E be a non-zero vector bundle on Z . We say that (Z , E) satisfies the condition P2 if
there exist an integral projective scheme W of dimension �1 defined over an extension
(possibly transcendental) k′ of k, together with a dominant k-morphism h : W → Z
such that h∗E is an ample vector bundle on W .

3.1 Some properties of conditions P1 and P2

We begin with a reminder on several elementary properties of ampleness and refer to
the works of Hartshorne [17,19] for details.

One has
P1(Z , E) ⇐⇒ P1(P(E),OE (1)), (2)

where OE (1) is the universal line bundle on P(E). Moreover, if W is another projective
scheme over Spec k and f : W → Z is a finite surjective k-morphism, then

P1(Z , E) ⇐⇒ P1(W, f ∗E). (3)

Lemma 2 Let f : W → Z be a quasi-compact morphism of schemes, Z ′ be an affine
scheme, g : Z ′ → Z be a morphism of schemes and E be a vector bundle on W . Let
W ′ = W ×Z Z ′ and π : W ′ → W be the first projection. If W is quasi-compact and
quasi-separated and if E is ample, then E ′ = π∗(E) is ample on W ′.

Proof By [17, 3.2], it suffices to verify that the universal line bundle on P(E ′) is
ample. By [13, II.4.1.3], we obtain the following commutative diagram whose squares
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are cartesian:

P(E ′) ��

�p

��

W ′

�π

��

�� Z ′

g

��
P(E) �� W

f
�� Z

where p : P(E ′) → P(E) is the projection. Moreover, one has OE ′(1) ∼= p∗(OE (1)).
Since E is ample on W , OE (1) is ample on P(E), hence Z -ample. By [13, II.4.6.13],
OE ′(1) is Z ′-ample. Since Z ′ is affine, OE ′(1) is ample by [13, II.4.6.6].

Remark 1 By Lemma 2, if Z is a projective scheme of dimension �1 defined over a
field k, E is a non-zero vector bundle on Z , and k′ is an extension of k, then

P1(Z , E) �⇒ P1 (Zk′ , Ek′) .

The converse is also true, which is a consequence of the cohomological criterion of
ampleness (see [26, Theoreme 6.1.10]) and the base change formula for cohomological
groups.

The following proposition for the condition P2 is analogous to the relation (3).

Proposition 2 Let W and Z be two integral projective schemes of dimension �1 over
Spec k and f : W → Z be a surjective k-morphism, then

P2(W, f ∗E) �⇒ P2(Z , E).

If in addition f is finite, then

P2(Z , E) �⇒ P2(W, f ∗E).

Proof “P2(W, f ∗E) �⇒ P2(Z , E)”: Let V be an integral projective scheme of
dimension �1 defined on an extension k′ of k and h : V → W be a dominant k-
morphism such that h∗( f ∗(E)) is ample. Then the k-morphism f h : V → Z is
dominant and ( f h)∗E = h∗( f ∗E) is ample.

“P2(Z , E) �⇒ P2(W, f ∗E)”: Let V be an integral projective scheme of dimen-
sion �1 defined over an extension k′ of k and h : V → Z be a dominant k-morphism
such that h∗E is ample. Let V ′ = V ×Z W and p : V ′ → W , q : V ′ → V be the two
projections:

V ′ q ��

p

��
�

V

h
��

W
f

�� Z
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Since f is surjective, also is q (cf. [16] I.3.6.1), hence f p = hq is dominant (because
h is). Let w0 be the generic point of W and z0 be the image of w0 in Z . Since f is finite
and surjective, the point z0 is the only generalization of itself (hence is the generic
point of Z ). Therefore z0 lies in the image of h since h is dominant. Moreover, w0 is
the only point in W whose image in Z is z0. So w0 is in the image of p and thus the
morphism p is dominant.

Let V ′
1 be an irreducible component of V ′ which maps surjectively to V . The mor-

phism q being finite and surjective, the integral scheme V ′
1 has dimension �1 and w0

lies in the image of V ′
1 by p. Let p1 be the restriction of p on V ′

1. The morphism p1
is dominant, and the vector bundle p∗

1( f ∗E) = (q∗h∗E)|V ′
1

is ample since q is finite
and surjective and h∗E is ample. The assertion is thus proved.

Given an integral projective scheme Z of dimension n � 1 over Spec k, for any
integer m ∈ {1, . . . , n}, there exists a “generic m-fold W in Z” such that the pull-back
of any ample vector bundle on Z is ample on W (see the proposition below). This
result will be an essential step in the comparison of the positivity conditions P1 and
P3, established in Theorem 2. The main idea is to intersect Z by a pencil of hyper-
planes and then extend the base field to the function field of the parameter space of
the pencil. This procedure permits to reduce the dimension of the variety in keeping
the information of vanishing of global sections (see Lemma 4).

Proposition 3 Let Z be an integral projective scheme of dimension n � 1 defined
over a field k. For each integer m such that 0 < m < n, there exist a pure transcen-
dental extension k′/k, an integral projective scheme W of dimension m over Spec k′,
and a dominant k-morphism from W to Z such that for any ample vector bundle E on
Z, the vector bundle h∗(Ek′) is ample on W .

Proof By induction we reduce the proposition to the case where m = n − 1. Let M
be a vector space of dimension n + 1 over k. Having chosen a basis of M over k,
we can identify the scheme P = P

n
k with either the projective bundle P(M) of M

over Spec k, or the projective bundle P(M∨) of M∨ in considering the dual basis. By
Noether normalization [9, Lemma 13.2], there exists a finite and surjective morphism
g from Z onto P = P(M). Denote by P̌ := P(M∨). Let I be the incident subscheme
of P ×k P̌ , namely the closed subscheme of P ×k P̌ defined by the relation f (x) = 0
( f ∈ M∨, x ∈ M). It is a subscheme of codimension 1 in P ×k P̌ . Let T = Z ×P I .
Consider the following commutative diagram:

T

�
��

j �� Z ×k P̌

�

π ��

gP̌

��

Z

g

��
I

i
�� P ×k P̌

�

pr1 ��

pr2

��

P

��
P̌ �� Spec k
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180 H. Chen

where π is the first projection, i : I → P ×k P̌ are j : T → Z ×k P are canonical
closed immersions. Let k′ be the field of rational functions on P̌ . It is a pure transcen-
dental extension of k and its transcendence degree over k is n. Let Pk′ := P ⊗k k′,
Zk′ := Z ⊗k k′. Define Tk′ by the following cartesian diagram

Tk′

��

u �� T

pr2 ◦gP̌◦ j

��
Spec k′ �� P̌

Consider the following commutative diagram

Tk′ u ��

jk′
��

�

T

j
��

Zk′

gk′
��

��

�

Z ×k P̌
π ��

gP̌

��
�

Z

g

��
Pk′ ��

��
�

P ×k P̌ pr1 ��

pr2

��
�

P

��
Spec k′ �� P̌ �� Spec k

The schemes Zk′ and Tk′ are projective over Spec k′. Moreover, as fields are universally
catenary (see [9, corollary 13.5]), one has

dim Tk′ = dim T − dim P̌ = dim I − dim P̌ = 2n − 1 − n = n − 1.

Since pr1 i : I → P is surjective, also is π j : T → Z . Furthermore, locally for the
Zariski topology, the morphism pr1 i : I → P is a fibration with fibre P

n−1. By base
change, also is π j : T → Z . This shows that the scheme T is integral. The canonical
projection u : Tk′ → T is thus dominant. Therefore, the morphism π ju : Tk′ → Z
is also dominant. If E is an ample vector bundle on Z , by Lemma 2, Ek′ is ample
on Zk′ . Since jk′ is a closed immersion, j∗k′(Ek′) is ample on Tk′ . Finally, by taking
an irreducible component of (Tk′)red, we obtain an integral projective scheme W of
dimension n − 1 over Spec k′ together with a morphism h : W → Zk′ which is the
composition of jk′ with the closed immersion of W in Tk′ so that the morphism from
W to Z is dominant and that, for any ample vector bundle E on Z , h∗(Ek′) is ample
on W .
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Remark 2 (1) An interesting by-product of the above proof is that, the field k′ can
be chosen such that its transcendence degree over k is

∑

m<i�n

i = 1

2
(n2 + n − m2 − m).

(2) A particular case (where m = 1) of Proposition 3 shows that, for any integral pro-
jective scheme Z of dimension �1 over Spec k and any non-zero vector bundle
on Z , the condition P2(Z , E) is equivalent to:

there exists an integral projective curve C defined over an extension k′ of k
together with a dominant k-morphism h : C → Z such that h∗E is an ample
vector bundle on C.

3.2 Properties of the condition P3

In this subsection, we discuss several basic properties of the condition P3.

Lemma 3 Let Z be a projective scheme on Spec k, L be an ample line bundle on Z
and F be a torsion-free coherent OZ -module. There exist two integers a, m > 0 and
an injective homomorphism from F into (L⊗m)⊕a.

Proof Since F is torsion-free, the canonical homomorphism

θF : F −→ F∨∨

is injective. Since L is ample, it exists an integer m > 0 such that L⊗m ⊗ F∨ is
generated by its global sections, i.e., there exists an integer a and a surjective homo-
morphism

ϕ : O⊕a
Z −→ L⊗m ⊗ F∨.

By passing to dual modules we obtain an injective homomorphism

L∨⊗m ⊗ F 1⊗θF �� L∨⊗m ⊗ F∨∨ ϕ∨
�� O⊕a

Z

which induces an injective homomorphism F → (L⊗m)⊕a .

Proposition 4 Let Z be a projective scheme of dimension �1 and E be a vector bundle
on Z. Then the condition P3(Z , E) is equivalent to each of the following conditions:

(1) for any line bundle L on Z and any torsion-free coherent OZ -module F , there
exists λ > 0 such that, for all integers d and n satisfying n/λ > d > λ, one has

H0(Z , Sn E∨ ⊗ L⊗d ⊗ F) = 0.
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(2) there exists an ample line bundle L on Z such that, for any torsion-free coherent
OZ -module F , there exists λ > 0 such that, for all integers d and n satisfying
n/λ > d > λ, one has

H0
(

Z , Sn E∨ ⊗ L⊗d ⊗ F
)

= 0.

(3) there exist an ample line bundle L on Z and a real number λ > 0 such that, for
all integers d and n satisfying n/λ > d > λ, one has

H0
(

Z , Sn E∨ ⊗ L⊗d
)

= 0.

Proof “(1) �⇒ (2) �⇒ (3)” are trivial. “P3(Z , E) �⇒ 1)”: Let L1 be an ample line
bundle on Z such that L2 := L1 ⊗ L∨ is very ample. By Lemma 3, there exist two
integers m and a together with an injective homomorphism from F into (L⊗m

1 )⊕a . It
induces an injective homomorphism

Sn E∨ ⊗ L⊗d ⊗ F −→ Sn E∨ ⊗
(

L⊗(d+m)
1

)⊕a ⊗ L∨⊗d
2 .

Since L⊗d
2 is very ample, it has a non-zero global section, which induces an injective

homomorphism from L∨⊗d
2 to OX . Therefore, we obtain an injective homomorphism

Sn E∨ ⊗
(

L⊗(d+m)
1

)⊕a ⊗ L∨⊗d
2 −→

(

Sn E∨ ⊗ L⊗(d+m)
1

)⊕a
.

If (Z , E) verifies the condition P3, there exists λ > 0 such that, for all integers d
and n satisfying n/λ > d > λ, one has H0(Z , Sn E∨ ⊗ L⊗(d+m)

1 ) = 0. Hence

H0(Z , Sn E∨ ⊗ L⊗d ⊗F) = 0 since it is a subgroup of H0(Z , Sn E∨ ⊗ L⊗(d+m)
1 )⊕a .

“(3) �⇒ P3(Z , E)”: Let L ′ be a line bundle on Z . There exists an integer m >

0 such that L⊗m ⊗ L ′∨ is very ample. Hence there exists an injective homomor-
phism OZ → L⊗m ⊗ L ′∨ which induces an injective homomorphism L ′ → L⊗m .
Therefore, for all integers n > 0 and d > 0, one has an injective homomorphism
Sn E∨ ⊗ L ′⊗d −→ Sn E∨ ⊗ L⊗md which induces an injective homomorphism of
global sections:

H0
(

Z , Sn E∨ ⊗ L ′⊗d
)

−→ H0(Z , Sn E∨ ⊗ L⊗md).

The implication “(3) �⇒ P3(Z , E)” then follows from this relation.

Proposition 5 Let Z be a projective scheme over Spec k, E be a non-zero vector
bundle on Z and F be a non-zero quotient bundle of E. Then

P3(Z , E) �⇒ P3(Z , F).
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Proof Let ϕ : E → F be the canonical surjective homomorphism which induces an
injective homomorphism ϕ∨ : F∨ → E∨. Thus, for any line bundle L on Z and all
positive integers n and d, one has an injective homomorphism

Sn (

F∨) ⊗ Ld −→ Sn (

E∨) ⊗ Ld .

Therefore

H0
(

Z , Sn (

E∨) ⊗ Ld
)

= 0 �⇒ H0
(

Z , Sn (

F∨) ⊗ Ld
)

= 0.

Lemma 4 Let h : W → Z be a dominant morphism of integral schemes. If F is a
vector bundle on Z such that H0 (W, h∗(F)) = 0, then H0(Z , F) = 0.

Proof Let w and z be the generic point of W and Z respectively. Since h is dominant,
one has h(w) = z. If s ∈ H0(Z , F) is non-zero, then s(z) �= 0, so its image in
H0(W, h∗(F)) is non-zero since the canonical homomorphism Fz −→ h∗(F)w is
injective.

Proposition 6 Let Z be an integral projective scheme over Spec k. Let k′/k be a
field extension and W be an integral projective scheme over Spec k′. Suppose given a
dominant k-morphism from W to Z. Then for any non-zero vector bundle E on Z,

P3(W, h∗E) �⇒ P3(Z , E).

Proof Let L be an arbitrary line bundle on Z . If P3(W, h∗E) holds, then there exists
λ > 0 such that, for all integers n and d satisfying n/λ > d > λ, one has

H0
(

W, Sn(h∗E)∨ ⊗ (h∗L)⊗d
)

= H0
(

W, h∗ (

Sn(E∨) ⊗ L⊗d
))

= 0.

Therefore, by Lemma 4, one obtains H0(Z , Sn(E∨)⊗ L⊗d) = 0. Since L is arbitrary,
the condition P3(Z , E) holds.

Proposition 7 Let Z be a projective scheme over Spec k and E be a non-zero vector
bundle on Z. If k′/k is a field extension, then

P3(Zk′ , Ek′) ⇐⇒ P3(Z , E).

Proof For any quasi-coherent OZ -module F , one has (by [14, III.1.4.15], see also
[15, IV.1.7.21])

H0(Zk′ ,Fk′) ∼= H0(Z ,F) ⊗k k′.

Moreover, if L is an ample line bundle on Z , then Lk′ is ample on Zk′ . Hence the
proposition follows by Proposition 4 (3).

Lemma 5 Let π : W → Z be a surjective morphism of projective schemes over
Spec k. If L is a line bundle on W which is relatively ample with respect to π , then
there exists an ample line bundle M on Z such that L ⊗ π∗M is ample.
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Proof Since L is relatively ample with respect to π , there exist an integer n > 0, a
non-zero vector bundle E on Z and a closed immersion f : W → P(E) which is
compatible with π and such that L⊗n ∼= f ∗(OE (1)). Denote by p : P(E) → Z the
projection. One has the following commutative diagram

W
f ��

π

��

P(E)

p
����

��
��

��

Z

Since Z is projective, there exists an ample line bundle M on Z such that E ⊗ M⊗n

is an ample vector bundle. One has P(E) ∼= P
(

E ⊗ M⊗n
)

, and

OE⊗M⊗n (1) ∼= OE (1) ⊗ p∗M⊗n .

Since f is a closed immersion and E ⊗ M⊗n is ample, one obtains that

(

L ⊗ π∗M
)⊗n = f ∗ (OE (1)) ⊗ f ∗(p∗M)⊗n

= f ∗ (OE (1) ⊗ p∗M⊗n) ∼= f ∗ (OE⊗M⊗n (1)
)

is ample.

Proposition 8 Let π : W → Z be a surjective morphism of projective schemes
over k. If F is a non-zero vector bundle on W which is ample relatively to π , then
there exists an ample line bundle M on Z such that F ⊗ π∗M is ample.

Proof Let q : P(F) → W be the canonical morphism and L := OF (1). Since F is
ample relatively to π, L is ample relatively to f = πq. We apply Lemma 5 to f and
L , and obtain that there exists an ample line bundle M on Z such that L ⊗ f ∗M is
ample. As L ⊗ f ∗M = L ⊗q∗(π∗M) is isomorphic to OF⊗π∗ M (1), the vector bundle
F ⊗ π∗M is ample.

Proposition 9 Let Z be a projective scheme of dimension �1 over Spec k and E be
a non-zero vector bundle on Z. Then

P3
(

P(E∨),OE∨(−1)
) ⇐⇒ P3(Z , E).

Proof Denote by π the projection morphism from P(E∨) to Z .
“�⇒”: Let L be a line bundle on Z . Since (P(E∨),OE∨(−1)) verifies the condition

P3, there exists λ > 0 such that, for all integers d and n satisfying n/λ > d > λ,

H0
(

P(E∨),OE∨(n) ⊗ π∗L⊗d
)

= 0.

By the canonical isomorphism

π∗
(

OE∨(n) ⊗ π∗L⊗d
) ∼= π∗ (OE∨(n)) ⊗ L⊗d ∼= Sn E∨ ⊗ L⊗d ,
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one obtains that, for n > λd,

H0
(

Z , Sn E∨ ⊗ L⊗d
)

= H0
(

P
(

E∨)

,O(n) ⊗ π∗L⊗d
)

= 0.

“⇐�”: By Lemma 5, there exists an ample line bundle M on Z such that L =
π∗M ⊗OE∨(1) is ample on P(E∨). If the condition P3(Z , E) is fulfilled, there exists
a constant λ > 0 such that, for all integers d and n satisfying n/λ > d > λ, one has
H0(Z , Sn E∨ ⊗ M⊗d) = 0. Hence

H0
(

P
(

E∨)

,OE∨(n) ⊗ L⊗d
) ∼= H0

(

Z , Sn+d E∨ ⊗ M⊗d
)

vanishes if n > (λ − 1)d. Since L is ample on P(E∨), the pair (P
(

E∨),OE∨(−1)
)

satisfies the condition P3.

3.3 The case of curves

If Z is a scheme and E is a vector bundle on Z , the expression 	n(E) denotes Sn(E∨)∨.
If n! is invertible on Z , then 	n(E) is canonically isomorphic to Sn E . This does not
hold in general. We recall below a result of Hartshorne, which will be used to compare
the conditions P1 and P3 in the case of curves (Proposition 10). See [18, Lemma 6.1]
for the proof of the Lemma.

Lemma 6 (Hartshorne) Let C be an integral projective curve over Spec k, E be a
vector bundle of rank r > 0 on C, L be an ample line bundle on C, and F be a
coherent OC -module. If E is ample, then there exists an integer λ > 0 such that, for
all integers n and d satsifying n/λ > d > λ,

H1
(

C, 	n(E) ⊗ L⊗−d ⊗ F
)

= 0.

Proposition 10 Let C be an integral projective curve over Spec k and E be a non-zero
vector bundle on C. Then

P1(C, E) �⇒ P3(C, E).

Proof By Serre duality, (C, E) verifies the condition P3 if and only if there exists an
integer λ > 0 such that, for all integers n and d satisfying n/λ > d > λ, one has

dim H1
(

C, 	n(E) ⊗ L⊗−d ⊗ ωC

)

= 0,

where ωC is the dualizing sheaf of C . So Lemma 6 implies that, if E is ample, then
(C, E) satisfies the condition P3.

The following Propositions 11 and 12 show that the conditions P1 and P3 are actu-
ally equivalent for line bundles on curves and for vector bundles on curves defined
over a field of characteristic 0.
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Proposition 11 Let C be a regular projective curve over Spec k and L be a line bundle
on C. Then

P1(C, L) ⇐⇒ P3(C, L).

Proof By Proposition 10, P3(C, L) is a consequence of P1(C, L). In the following,
we prove the converse implication. It suffices to prove deg L > 0. Let L ′ be an ample
line bundle on C such that deg(L ′) > g, where g is the genus of C . By the condition
P3(C, L), there exists an integer n > 0 such that

dim H0(C, L⊗−n ⊗ L ′) = 0.

By Riemann–Roch theorem, we obtain

dim H0 (

C, L⊗−n ⊗ L ′) − dim H0
(

C, ωC ⊗ L⊗n ⊗ L ′∨)

= 1 − g − n deg(L) + deg(L ′).

Hence

n deg(L) � 1 − g + deg(L ′) > 0.

Proposition 12 Let C be a regular projective curve over Spec k and E a non-zero
vector bundle on C. Assume that the characteristic of k is 0. Then

P1(C, E) ⇐⇒ P3(C, E).

Proof We only need to prove P3(C, E) ⇒ P1(C, E). Since C is a curve, it suffices to
prove that, for any coherent OC -module F , the cohomology group H1(C, Sn E ⊗ F)

vanishes for sufficiently large n. Let L be an ample line bundle on C . There exists
an integer d such that L⊗d ⊗ F ⊗ ω∨

C is generated by its global sections on C .
Hence there exist an integer a > 0 and a surjective homomorphism ϕ : (L⊗−d ⊗
ωC )⊕a → F . Since (C, E) satisfies the condition P3, there exists n0 > 0 such that
H0

(

C, Sn(E∨) ⊗ L⊗d
) = 0 for any n � n0. By Serre duality, this is equivalent to

H1
(

C, Sn(E) ⊗ L⊗−d ⊗ ωC

)

= 0

since Sn(E) ∼= 	n(E). As C is a curve, ϕ induces a surjective homomorphism (since
the second cohomology group vanishes)

H1
(

C, (Sn(E) ⊗ L⊗−d ⊗ ωC )⊕a
)

−→ H1 (

C, Sn(E) ⊗ F)

.

Therefore H1 (C, Sn(E) ⊗ F) = 0.
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3.4 Comparison of positivity conditions in general case

In this subsection, we prove P2 �⇒ P3. We also show by a counter example that the
condition P2 is in general strictly weaker than the ampleness, even in the case of line
bundles (on a projective variety of dimension �2).

Theorem 2 Let Z be an integral projective scheme of dimension �1 over Spec k and
E be a non-zero vector bundle on Z. Then

P1(Z , E) �⇒ P2(Z , E) �⇒ P3(Z , E).

Proof “P1(Z , E) �⇒ P2(Z , E)” is trivial.
“P2(Z , E) �⇒ P3(Z , E)”: By Remark 2, there exist an integral curve C over an

extension of k and a dominant morphism h : C → Z such that h∗E is ample on C .
By Proposition 10, (C, h∗E) verifies the condition P3. Finally, since h is dominant,
by Proposition 6 the condition P3(Z , E) holds.

Remark 3 Let Z be a projective scheme over Spec k which is reduced, and E be a
vector bundle on Z . Assume that each irreducible component of Z has dimension �1.
If for any irreducible component Zi of Z , the pair

(

Zi , E |Zi

)

satisfies the condition
P2. Then by the above theorem, the condition P3(Zi , E |Zi ) holds for each i and hence
P3(Z , E) holds. As the restriction of an ample vector bundle on Z to each irreducible
component of Z is ample, we obtain in particular P1(Z , E) ⇒ P3(Z , E) for any
non-zero vector bundle E on Z .

We now show an example where the condition P2 holds but P1 fails.

Proposition 13 Let Z and Z ′ be two integral projective schemes of dimension �1
over k. Let E and E ′ be respectively a non-zero vector bundle on Z and Z ′. Denote
by W the fibre product Z ×k Z ′. Let pr1 : W → Z and pr2 : W → Z ′ be the two
projections, and F = pr∗1 E ⊗ pr∗2 E ′. If one of the vector bundles E and E ′ is ample,
then P2(W, F) holds.

Proof We may assume that E is ample on Z . Let k′ be the field of rational functions

on Z ′. Then Wk′ = Zk′ and Fk′ = E⊕ rk(E ′)
k′ . Hence Fk′ is ample on Wk′ .

In the following (Proposition 14), we compare P3 to a positivity condition in the
context of complex analytic geometry.

Lemma 7 Let Z be a compact complex analytic variety and (L , h) be a smooth hermi-
tian line bundle on Z. If L has a holomorphic section which does not vanish identically
on Z, then there is a point z ∈ Z such that the Levi form 
(L , h)z on z is semi-positive.

Proof Let e be a holomorphic section of L which does not vanish identically on Z .
Let z0 be a point of Z where the function ‖e‖ attains the maximum. The existence
of such point results from the compactness of Z . By Lelong-Poincaré theorem, in an
open neighbourhood of z0 one has


(L , h) = −
√−1

2π
∂∂ log ‖e‖2.

123



188 H. Chen

Let U be an open set of C and j : U → X be a holomorphic map whose image
contains z0 and such that the pull-back of L on j (U ) is trivialized by the section e.
One has

j∗
(L , h) = −
√−1

2π
∂∂ log ‖e ◦ j‖2 = − 1

4π

( ∂2

∂x2 + ∂2

∂y2

)

log ‖e ◦ j‖2dx ∧ dy,

where (x, y) is the natural coordinate of C. Since j is arbitrary, we obtain that

(L , h)x0 is semi-positive.

Proposition 14 Let Z be a smooth projective variety over Spec C and L be a hermi-
tian line bundle on Z an(C). If for any z ∈ Z, the Levi form 
(L) is not semi-negative
on z, then (Z , L) satisfies the condition P3.

Proof Suppose that P3(Z , L) is not verified. Assume that L ′ is a hermitian line bundle
on Z and (ni , di )i�1 is a sequence in N

2
>0 such that limi→+∞ ni/di = +∞ and that

H0
(

Z , L∨⊗ni ⊗ L ′⊗di
)

�= 0

for any i � 1. By Lemma 7, for any integer i � 1, there exists a point zi ∈ Z(C) such
that the hermitian forme −ni
(L)zi + di
(L ′)zi is semi-positive. In other words, the
hermitian form 
(L)zi − (di/ni )
(L ′)zi is semi-negative. Since Z an(C) is compact,
there exists a subsequence of (zi )i�1 which converges to some point z0 ∈ Z an(C).
Since di/ni tends to 0 when i → +∞, by passing to limit, we obtain that 
(L)z0 is
semi-negative. This is absurd.

4 Application to formal principle

Formal principle has been originally considered in complex analytic setting by Grauert
[11] (see also the related work [27]) and studied in papers such as [12,20,21,23,24].
Given a complex analytic space M and a compact complex analytic subspace A (of
dimension �1) of M . We say that the formal principle holds for the pair (M, A) if for
any other pair (M ′, A′) of complex analytic space M ′ and a compact complex analytic
subspace A′ of M ′, the formal neighbourhoods of A and A′ being isomorphic implies
the existence of a biholomorphism from an open neighbourhood of A in X onto an
open neighbourhood of A′ in X ′. The formal principle does not hold in general. In fact,
Arnold [1] has constructed a torus embedded in a complex manifold M of complex
dimension two whose normal bundle is trivial. The formal neighbourhood of the torus
is isomorphic to that of the zero section in its normal bundle, but there is not any
biholomorphism between an open neighbourhood of the torus in M and that of the
zero section in the normal bundle.

Under suitable conditions on the normal bundle NA M of A in M (here we assume
that A is locally a complete intersection in M), one can establish the formal principle
for the pair (M, A). Curiously, the formal principle holds when NA M verifies either
a negativity condition [11,20] or a positivity condition [8,12,22,27]. For example,
Grauert [11], Hironaka and Rossi [20] have proved the formal principle under the
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hypothesis that the subvariety A is strongly exceptional in X , that is, A is contractible
to a point. This condition holds when the normal bundle NA M is negative (in the sense
of Grauert, namely its zero section admits a strongly pseudoconvex neighbourhood, or
equivalently its zero section is contractible to one point). On the other hand, Nirenberg
and Spencer [27], Hironaka [21], Griffiths [12] have proved that the formal principle
holds if NA M is positive. Later Commichau and Grauert [8] and Hirschowitz [22]
have proved the formal principle under a weaker positivity condition for the normal
bundle.

The formal principle in algebraic geometry has been studied by Gieseker [10] (see
Theorem 4.2 loc. cit.). His result can be considered as a counterpart of Griffiths’ work
[12] in algebraic geometry. The main purpose of this section is to establish a criterion
of formal principle (Theorem 3) which generalizes Gieseker’s work, by using the alge-
braicity condition (Theorem 1). We begin by introducing several notions concerning
formal principle in algebraic geometry.

(1) We call (noetherian) scheme pair any pair (W, Z) consisting of a noetherian
scheme W with a reduced closed subscheme Z of W .

(2) Let (W, Z) and (W ′, Z ′) be two scheme pairs. We call morphism of scheme
pairs from (W, Z) to (W ′, Z ′) any morphism of finite type from W to W ′ whose
restriction on Z defines a morphism from Z to Z ′.

(3) Let (W, Z) be a scheme pair. We call an étale neighbourhood of (W, Z) a scheme
pair (U, Z) together with a morphism of scheme pairs from (U, Z) to (W, Z)

whose restriction on Z is the identity morphism on Z and which is étale on any
point of Z .

(4) Two scheme pairs (W, Z) and (W ′, Z) are said to be equivalent in a formal
neighbourhood if there exists an isomorphism of formal scheme ϕ : ̂WZ → ̂W ′

Z
whose restriction on Z is the identity morphism.

(5) Two scheme pairs (W, Z) and (W ′, Z) are said to be equivalent in an étale neigh-
bourhood if there exist a scheme pair (U, Z) and two morphisms f : (U, Z) →
(W, Z) and g : (U, Z) → (W ′, Z) which define an étale neighbourhood of
(W, Z) and of (W ′, Z), respectively.

(6) Let (W, Z) be a scheme pair. We say that the formal principle holds for (W, Z) if
for any scheme pair (W ′, Z), the equivalence of (W, Z) and (W ′, Z) in a formal
neighbourhood implies their equivalence in an étale neighbourhood.

Gieseker has proved that a pair (X, Y ) of smooth projective varieties with dim(Y ) �
1 satisfies the formal principle once the normal bundle NY X is ample (see [10, Theorem
4.2]). The following theorem (mentioned in Sect. 1 as Theorem B) extends his result
to the case where NY X verifies the condition P3.

Theorem 3 Let (X, Y ) and (W, Y ) be two pairs of smooth projective varieties over
a field k. Assume that dim(Y ) � 1 and that the normal bundle of Y in X satisfies the
condition P3. Then the pairs (X, Y ) and (W, Y ) are equivalent in a formal neighbour-
hood if and only if they are equivalent in an étale neighbourhood. In other words, the
formal principle holds for the scheme pair (X, Y ).

Proof “⇐�” is a direct consequence of [10, Lemma 4.5].
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“�⇒”: Let � : Y
(Id,Id) �� Y ×k Y �� X ×k W be the diagonal morphism from

Y into X ×k W . Assume that ϕ : ̂XY → ̂WY is an isomorphism of formal scheme
whose restriction on Y is the identity morphism. Consider the “formal graph” of ϕ

	ϕ : ̂XY −→ (X̂ ×k W )�(Y )

which identifies ̂XY with a formal subscheme of (X̂ ×k W )�(Y ). Since NY ̂XY ∼= NY X

satisfies the condition P3, 	ϕ(̂XY ) is algebraic in (X̂ ×k W )�(Y ), i.e., there exists
a closed subscheme Z of X ×k W containing �(Y ) such that dim Z = dim ̂XY

(= dim X = dim W ) and that ̂Z�(Y ) ⊃ 	ϕ(̂XY ). Let v : ˜Z → Z be the normalization

of Z . It induces a morphism ̂
˜Zv−1(Y ) → ̂ZY , whose restriction on 	ϕ(̂XY ) (which

is formally smooth) is an isomorphism. Hence we obtain the existence of an integral
subscheme ˜Y in ˜Z such that v|

˜Y : ˜Y → Y is an isomorphism and that v̂ induces an iso-

morphism v̂ : ̂
˜Z

˜Y → 	ϕ(̂XY ). Therefore, the morphisms of formal schemes induced
by the morphisms of pairs pr1 ◦v : (˜Z , ˜Y ) → (X, Y ) and pr2 ◦v : (˜Z , ˜Y ) → (W, Y )

are isomorphisms, where pr1 : Z → X and pr2 : Z → W are projections. By [10,
Lemma 4.5], (˜Z , ˜Y ) define a common étale neighbourhood of (X, Y ) and (W, Y ).

Remark 4 The comparison between the ampleness and the condition P3, namely
Theorem 3.22 and Proposition 3.24, shows that the above theorem generalizes the
algebraic counterpart of a result of Griffiths [12] on formal principle (see [10, p.1150]).

Theorem 3 can also be compared with an approach of Bǎdescu and Schneider [2].
In fact, they proved that, given a pair (X, Y ) of a smooth projective variety X and a
smooth closed subvariety Y of dimension d, if the normal bundle NY X is (d−1)-ample
in the sense of Sommese [28], then Y is G2 in X (in the terminology of Hironaka and
Matsumura, see [19, p. 190]), namely the field of formal rational functions on ̂XY is
a finite extension of k(X). Thus by [10, Theorem 4.2], the formal principle holds for
(X, Y ) once NY X is (d − 1)-ample.

Recall that a vector bundle E on a projective variety Y is said to be k-ample if there
exists some integer r > 0 such that OE (r) is generated by global sections and if for any
coherent sheaf F on Y there exists an integer N (F) > 0 such that H j (Y, Sn E ⊗ F)

vanishes for all integers j and n such that j > k and n � N (F). In particular, the
0-ampleness is just the classical ampleness condition. In view of Serre duality, if the
characteristic of k is zero, then the vanishing condition in (dim Y − 1)-ampleness of
E is quite similar to the condition P3(Y, E). However, in the condition P3 we do not
require the freeness of OE (r) (which actually implies that OE (1) is nef). In particular,
Proposition 13 provides an example where the condition P3 holds where the vector
bundle could contain a very negative part.
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