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Explicit uniform estimation of rational points
I. Estimation of heights

By Huayi Chen at Paris

Abstract. By using the slope method in Arakelov geometry, we study the complexity
of the singular locus of an arithmetic projective variety and explicit estimations of the arith-
metic Hilbert—Samuel function.

1. Introduction

Let K be a number field and X be a projective variety defined over K. The complexity
of the rational points of X is measured by the height function. Northcott’s theorem asserts
that there are only finitely many rational points of X with bounded height. Namely, for any
real number B > 0, the set

S(X:B) = {P e X(K) | H(P) < B}

is finite, where H (P) is the height of P. Let N(X; B) = #S(X; B) be the counting function
of X. The asymptotic behavior of N(X; B) when B goes to infinity describes the density of
X(K). For example, N(X; B) = O(1) if and only if X (K) is finite.

Among the estimates of the counting function N(X; B), the work of Heath-Brown
[31] is of uniform nature, where the word “uniform” concerns all closed subvarieties with
given degree and dimension in a projective space. His idea is to use a determinant argument
(inspired by Bombieri and Pila [2], and Pila [42]), which can be summarized as follows. The
monomials of a certain degree evaluated on a family of rational points in S(X; B) having
the same reduction modulo some prime number form a matrix whose determinant is zero
by a local estimation. Hence there exists a hypersurface of X containing all rational points
in the family. The set S(X; B) is then covered by several hypersurfaces of bounded degree.
The upper bound of N(X; B) is thus obtained by estimating the number of these auxiliary
hypersurfaces.

The results in [31] are obtained for K = Q. Further research in this direction includes
works of Broberg, Browning, Heath-Brown, Helfgott, Venkatesh, Salberger etc. (see [9],
[12], [13], [14], [15], [24], [33], [32], [44], [45]). In particular, Broberg has generalized [31]
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to the number field case. It should be pointed out that the determinant argument plays an
important role in most of the works cited above.

Based on an observation of Bost that the determinant argument mentioned above is
quite similar to his slope method [3], or to the interpolation matrix method of Laurent [37],
we revisit this problem in the context of Arakelov geometry by using the slope method. The
aim of this approach is twofold. On one hand, it avoids using Siegel’s lemma and hence
treats the problem for all number fields in a uniform way without supplementary difficul-
ties. On the other hand, the geometrical interpretation permits us to establish explicit esti-
mates.

Recall the main result of [9] which generalizes Theorem 14 of [31]. Let X be an
integral closed sub-variety of Px, n € N\{0}. Let d and J be respectively the dimension and
the degree of X, and ¢ > 0 be a positive number. Assume that the ideal I < K[Ty, ..., T,]
of X is generated by homogeneous polynomials of degrees at most 7z, where 7 € N\{0}.
Broberg has proved that there exists an integer a depending only on n, T and ¢, an inte-
ger k satisfying?

k <, ., BYtD/ Vote

and a family (Fl),k: o of homogeneous polynomials of degree < a which are not identically
zero on X and such that

S06:8) < Ulre X(K) | Fi() = 0),

where S(X; B) denotes the set of all rational points of X with height < B.

Note that Heath-Brown had considered the case where X is a hypersurface (that is,
the ideal 7 is principal) defined over Q and Broberg has investigated the general case.

The aim of this article and the companion one [19] is to remove the supplementary
assumption® on the degrees of polynomials generating I and to calculate explicitly the con-
stants @ and k figuring in the above theorem. We shall actually establish the following
result.

Theorem A. Let ¢ > 0 and D be an integer such that
D>max{(e' +1)(207(d+1)+6—2),2(n—d)(6 — 1) +d +2}.

There is an explicitly computable constant C = C(e,0,n,d, K) such that, for any B = e*, the
set S(X; 11_'3) of rational points of X with exponential height < B is covered by no more than

CBU+a0 d+1) L 1 hypersurfaces of degree < D not containing X.

D Here the Vinogradov symbol «, . . signifies that there exists a constant C(n, t,¢) only depending on n, 7
and ¢ such that k < C(n, 7,&) BU+Y/ Ve,

2 From an inexplicit point of view, the assumption on the degrees of polynomials generating I can be
removed by using a result of Kleiman on Hilbert polynomials for geometrically reduced subschemes of a projec-
tive space. We refer to [44], p. 126, for a detailed discussion on this point.
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In the case where X is a plane curve, we prove a refinement of Theorem A and use it
to establish the following estimation.

Theorem B.  Assume that X is an integral plane curve of degree 6. Then, for any ¢ > 0,
one has

#S(X;0) <x 07
This answers a question of Heath-Brown.

For removing the assumption on the generating system of the variety (in an explicit
way), we shall use the theory of Cayley—Chow form to construct a system of generators of
the variety X. This theory, in its classical form, is due to Chow and van der Waerden [21].
Their original objective was to describe a projective variety X by one single homogeneous
equation, called the Chow form of X. Later this theory has been applied in transcendental
number theory by Gelfond [28], Nesterenko [38], Brownawell and Waldschmidt [10], and
Philippon [39]. By [38] (see also [11]), one can explicitly construct a system of generators
of a projective variety from its Chow form in controlling the degrees and the heights of
these polynomials. However, the degrees of the polynomials thus constructed are in general
much larger than the degree of the variety, which leads to an extra error term in the esti-
mate. To overcome this difficulty, we shall use a variant called the Cayley form. This
approach is inspired by a work of Catanese [16] (see also [27]). The Cayley form permits
to construct a system of generators of lower degree. By using this theory, we are able to
remove the supplementary condition on the degree of homogeneous polynomials in the
generating system of X.

The explicit computation of the constants ¢ and k requires highly non-trivial effective
minoration of the arithmetic Hilbert—Samuel function developed in the article [22] of
David and Philippon where higher Chow forms involve, and also several new estimates
in the slope theory. It is known since the article [29] of Gillet and Soulé that the coefficient
of the leading term of the arithmetic Hilbert—Samuel function is equal to the normalized
auto-intersection number in the sense of the arithmetic intersection theory. In order to
obtain explicit lower bounds of the arithmetic Hilbert—Samuel function, we shall reformu-
late the result of David and Philippon in the language of slope method. Note that the lower
bound thus obtained is not asymptotically optimal. The coefficient of its leading term is
smaller than the normalized auto-intersection number. This result will be used to prove
that all rational points of small height are contained in a single hypersurface of low degree.

We also study effective upper bounds of the arithmetic Hilbert—Samuel function (or
more generally, the maximal slope variant of it) and obtain an explicit upper bound in
terms of the essential minimum of the variety. The proof is based on the slope inequality
applied to the evaluation map on points of small height.

It turns out that these results have their own interest in Arakelov geometry, and de-
serve to be written independently. In the forthcoming article [19], we shall prove Theorems
A and B.

This article is organized as follows. In the second section, we establish several slope
inequalities and discuss their arithmetic consequences. The third section is devoted to the
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construction of Cayley forms and its application in the estimation of the complexity of the
singular locus of an arithmetic projective variety. Finally in the fourth section, we discuss
the estimation of the geometric and arithmetic Hilbert—Samuel functions in the framework
of Arakelov geometry. The computation of norms of several tensor operators on Hermitian
spaces are left in the Appendix.

We present the notation and the terminologies that we shall use in the current article
and in [19].

Notation. 1. Denote by K a number field and by Oy its integer ring. If F is a projec-
tive Og-module of finite rank and if V" is a vector subspace of E, the saturation of V in E
is by definition the largest sub-Og-module F of E such that Fx = V. Note that E/F is then
a torsion-free (hence projective) Ox-module.

2. Any maximal ideal p of Ok corresponds to a discrete valuation v, on K. Denote
by [, its resuiue ﬁeld by N, the cardinality of F, and by | - |, the absolute value on K such
that |a| L" “ for any a € K*, which extends contlnuously to the completion K, of K
(with respect to Up)-

For any embedding ¢ : K — C, denote by |- |, the absolute value on K such that
la|, = |o(a)|, where | - | is the usual absolute value on C.

3. By arithmetic projective variety we mean an integral projective Og-scheme which is
flat over Spec Ok.

4. Let X be an arithmetic projective variety. A Hermitian vector bundle on X is a pair
E=(E, (| ‘ll,)s:x—c) Where E is a locally free Ox-module of finite rank, and for any em-
bedding 0 : K — C, || - ||, is a continuous Hermitian metric on E,(C), invariant under the
action of the complex conjugation. The rank of E is defined to be the rank of E, denoted by
rk(E). A Hermitian vector bundle of rank 1 is called a Hermitian line bundle.

5. Let E be a Hermitian vector bundle on Spec Og. The Arakelov degree of E is de-
fined as®

d/e\g(E) := log #(E/(OKsl 4+ OKS,‘)) ~3 > logdet({si, 8:),),
0. K—C

where (s1,...,s,) € E" forms a basis of Ex over K, r = rk(E).
6. Let E be a non-zero Hermitian vector bundle on Spec Ox. The slope of E is

o1 deg(E)
AE) =1 Q) kE

Denote by fi,,,,(E) the maximal value of slopes of all non-zero Hermitian subbundles (i..,
submodule of E equipped with the induced metrics) of E and by f;,(E) the minimal value

3 By the product formula, this definition does not depend on the choice of (si,...,s,).
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of slopes of all non-zero Hermitian quotient bundles (i.e., projective quotient module of E
equipped with the quotient metrics) of E.

7. Let E and F be two non-zero Hermitian vector bundles on SpecOg, and
¢ . Ex — Fx be a non-zero homomorphism. The height of ¢ is defined as

W) = g (Sl + 32 toelol, ).

where [|4[|, and |[|¢[|, are respectively the operator norms of ¢ : Ex, — Fg, and
¢J"C : EJ,C - FJ,C-

8. For any integer n = 1 and any n-tuple (E, ..., E,) of non-zero Hermitian vector
bundles on Spec Ok, denote by o(E}, ..., E,) the difference

=

ﬂmax(El X En) - ﬂmax(Ei)'
i=1

For simplifying notation, we use the expression o) (E) to denote o(E, ..., E).
— —

n copies

2. Slope inequalities

We firstly recall the basic ingredients of Bost’s slope theory (for references, see [3], [5],
(6], [17]), then discuss several slope (in)equalities and their arithmetic consequences. We
begin with the following classical slope (in)equalities relating the source and the target of
a homomorphism between Hermitian vector bundles (see [3], Appendix A).

Proposition 2.1.  Assume that E and F are two Hermitian vector bundles on Spec O
and ¢ : Ex — Fg is a non-zero K-linear homomorphism.

() If ¢ is injective, then fiy,, (E) < fiya(F) + ().
(ii) If ¢ is surjective, then iy, (E) £ fiin(F) + h($).

(iil) If ¢ is an isomorphism, then i(E) = a(F) + ﬂ((lE)h(Arkw)gb).

2.1. A slope equality. We give below a variant of the slope equality in Proposition
2.1 (iii) where the target Hermitian vector bundle can be written as a direct sum of Hermi-
tian line bundles.

Proposition 2.2. Let E be a Hermitian vector bundle of rank r > 0 on Spec Ok and

(Li);c; be a family of Hermitian line bundles on SpecOk. If ¢ : Ex — @ L;  is an injective
iel

homomorphism, then there exists a subset 1y of cardinal r of I such that the following equality
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(1) GE) = | 5 L) + (A (pry, o )|

iEIO

where pr; : @ Lk — @ Li k is the projection.

iel iely
Proof. Since ¢ is injective, there exists /o = I of cardinal r such that pr; o ¢ is an
isomorphism. Therefore, Proposition 2.1 (iii) implies
e N = 1 , 1 - .
A(E) = M(G? Li) +—h(A(pry, 0 9)) == Z; (L) + h(A(prj, 0 4)) |- O
iely 1€l

2.2. Tensor product and image. Let (E;)" , be a family of non-zero Hermitian vec-
tor bundles on Spec Og. One always has (see [20], Corollary 2.5)

(2) /amax(El Q- ® En) = ;ﬂmax(Ei)'

The inverse inequality is a conjecture of Bost [4], which is still an open problem.

Recall (see Notation 8) that if (E;)", is a family of non-zero Hermitian vector bun-
dles on Spec Ok, then o(E}, ..., E,) denotes the difference

— — _ _ n _
Q(Elv s 7En) = ﬂmax(El X ® En) - Zﬂmax(Ei)'
i=1
If all E; are equal to the same Hermitian vector bundle E, we write o) (E) instead of
o(E,...,E).

If L is a Hermitian line bundle on Spec Ok, then for any non-zero Hermitian vector
bundle E on Spec Ok, one has

ﬂmax(E ® Z) = ﬂmax (E) + ﬂ(Z) = ﬂmax(E) + :&max (Z)
Hence o(E, L) = o(L, E) = 0. More generally, for any family (E;);_, of non-zero Hermi-
tian vector bundles, one has o(E\, Ea, ..., E,) = 0 if all Hermitian vector bundles except

at most one among E1,. .., E, are direct sums of Hermitian line bundles.

Let (E;), and (F 7)i=y be two families of non-zero Hermitian vector bundles on
Spec Ok. By (2), one has

(3) Q(Elp'“aEmFl;”'uFm) Z Q(E17"'7E11> +Q(F17"'7Fm)‘
In particular, for any non-zero Hermitian vector bundle £ on Spec O, one has

(4) Vn,me N, o""(E) 2 o (E) + o™ (E).
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Moreover, (2) implies that ¢ (E) =0 for any me N*. Hence by (4), the sequence
(o"(E)), ., is increasing.

Remark 2.3. By the duality between maximal slope and minimal slope
ﬂmin(E) = _lamax (EV), one has

(5) o(EY,.. -, E}) =§ﬂmin(Ei)—ﬂmm(El ® - ® Ey)

Bost’s conjecture can be reformulated as: o(Ey, ..., E,) = 0 for any n-tuple (E;);_, of
non-zero Hermitian vector bundles over Spec Og. For estimations of o, see [23], [8], [20]. By
a result of Bost, one has®

(6) oE,....E,) < %z log(tk E,).

Let E and F be two Hermitian vector bundles on Spec O, and G be a Hermitian vec-
tor subbundle of F @ E. We call image of G in E the smallest sub-Og-module H of E such
that F ® H contains G, equipped with the induced metrics. The minimal slope of H is esti-
mated in Proposition 2.4 below, the proof of which uses the first part of Lemma A.1 in the
Appendix.

Proposition 2.4.  With the above notation, one has
L= = = = = 1
(7) :umin(H) = /umin(G) - Aumax(F) - Q(F? Gv) - E log(rkF)

Proof. Let y be the composed homomorphism F¥ ® G — F¥Y ® F ® E — E, where
the last arrow is induced by the trace homomorphism F¥ ® F — Og. The image of  iden-

tifies with H#. By Lemma A.1 (i), the height of y equals %log(rkF ). Thus Proposition
2.1 (ii) implies

lamin(ﬁ) = lamin(Fv ® G) - h(‘/j)
= Iamin(c_;) +ﬂmin(Fv) - Q(Fv Gv) - % IOg(I'kF) O

Remark 2.5. Assume in the above proposition that F can be written as a tensor
product F| ® - -+ ® F,. Then the same method gives the following variant of (7):

R _ R _ n . _ _ S — 1
(8) :umin(H) é :umin(G) - ;:umax(Fi) - Q(Fl, s 7FVH G ) - 5 IOg(IkF)

2.3. Applications. We give several applications of the slope (in)equalities established
in previous subsections. More applications will be discussed in §3.

4 Learned from a personal note of J.-B. Bost, also obtained by Y. André and E. Gaudron. The proof of a
weaker version (with the coefficient 1 instead of %) can be found in [20].
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In Arakelov theory, the slope inequalities are often applied on evaluation maps to ob-
tain arithmetic results. See [6] for a survey of this method. Classically the evaluation map
means the evaluation of some polynomials at one or several points of an affine space. The
choice of the evaluation map is a crucial step in a typical proof of Diophantine approxima-
tion. Note that in Heath-Brown’s determinant argument, there appears also this procedure.
Evaluation maps in Arakelov geometry are quite similar to classical ones, but their con-
struction is of geometrical nature. Let X be a projective variety over Spec K and L be an
ample line bundle on X. Let Y be a closed subscheme of X andi: ¥ — X be the inclusion
morphism. The evaluation map (of global sections of L) on Y is the K-linear mapping from
H°(X,L) to H(Y,i*L) defined by restriction of sections.

To apply the slope method, we also need a metric structure. Let n > 1 be an in-
teger and £ be a Hermitian vector bundle of rank n+1 on SpecOx. Denote by
m: P(€) — Spec Ok the structural morphism. Let £ := Op(¢)(1) be the universal quotient
of n*£. The Hermitian metrics on £ induce by quotient a structure of Hermitian metrics
(i.e. Fubini—Study metrics) on £ which define a Hermitian line bundle £ on P(&). For any
integer D > 1, let Ep = H°(P(&), L&) and let r(D) be its rank over Ok, which is equal to

D
(n * > For any ¢ € ¥, denote by || - ||

D the norm on Ep , := Ep ®p, , C such that

o, sup

Vs€Epo,  sllosp = sup |Is(x)ll,-

xeP(£x),(C)

Let || - ||,.; be the Hermitian metric of John (cf. [34], see also [26], Definition-Theorem 2.4)
associated to the norm || - || Recall that, for any s € Ep ,, the following inequalities
hold:

(9) ||S||a,sup g HSHJJ é \Y r(D)HsHa.sup?

g,sup*

where r(D) is the rank of Ep. The Ox-module Ep, equipped with the Hermitian metric
| - Il,.s» forms a Hermitian vector bundle Ep on Spec O.

Remark 2.6. As an Og-module, Ep is isomorphic to SP&. Thus for any o € X, the
Hermitian metric on &, ¢ induces by symmetric power a Hermitian metric || - ||, i, On
SPE, c. Denote by SPE the corresponding Hermitian vector bundle on SpecOk. Note
that for any o € Z.;, both metrics | - ||, ; and || - [|,; i, are invariant under the action of
the unitary group U(&,.c, || - ||,), therefore they are proportional and the ratio is indepen-
dent of & (see [7], the proof of Lemma 4.3.6). We denote by Cy(D) the constant such that,

forany 0 + s € Ep ,,
(10) log|isl;.; = logllsll ym + Co(D).
One has
fimin(ED) = fimin (SPE) — Co(D).
Proposition 2.7.  With the above notation, the following inequalities hold.

(11) 0= Cy(D) =log+/r(D), wherer(D)=r1k(Ep).
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Proof. Let s be a non-zero section in H°(P(&,,¢), Ls,c). By definition, one has

1511, sup = [Ill5 = 8]l sym- Hence

D

D
ssup = 51 csup = 1811z, sym = l1s”

||SD|| = ||S o,sym*

As Co(D) = log||s”]|,. , — log||s”|| by (9), we obtain (11). [

o,sym>
D
Remark 2.8. One has r(D) = (n—; ) < (n+1)”, hence
D
(12) Co(D) = 5 log(n +1).

The following proposition gives an explicit lower bound of the minimal slope
of E D-

Proposition 2.9. For any integer D = 1,
(13) ﬂmin(ED) = Dlamin(g) - Q(D)(Ev) - CO(D)

Proof. By definition, one has (see (5))

ﬂmin(‘(_:@D) = Dlamin(g) - :Q(D)(gv)'
Moreover, SPE is a quotient of £22, 50 fi,i,(SPE) = fi,:i,(E®P). Hence we obtain
(14) ﬂmin(ED) = lamin(SDg) - CO(D) = Dﬂmin(g) - Q(D)(gv) - CO(D) 0

Definition 2.10. If P is a rational point of P(€k), it extends in a unique way to a
section P of 7. The height of the point P with respect to £ is by definition the slope (see
Notation 6) of the Hermitian line bundle P*(£) on Spec O, denoted by /;(P).

Proposition 2.11. Let D > 1 be an integer and I be a Hermitian vector subbundle
of Ep. Let Y be the subscheme of P(&) defined by annihilation of 1. Suppose that P is a ra-
tional point of P(Ek) which is not in Y(K). Denote by P the Og-point of P(E) extending P.
For any finite place p of K, let o, be as follows:

{1, (Pmodp) € Y(F,),
oy =

0, else.

Then, for any real number Ny > 0, the following inequality holds:

Dh[j(P) - lamin(l)
(log No)/[K - Q] -

(15) #{ploay, =1,N, = No} =

Proof. Let y: 1 — P*L®P be the homomorphism induced by the evaluation map
Ep — P*L®P Since P ¢ Y(K), the homomorphism 7 is surjective. By the slope inequality
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(Proposition 2.1 (ii)), one has

Dhg(P) 2 1) = H01k) 2 (1) + g S 200 Ny

Therefore the inequality (15) holds. [

Let X be an integral closed subscheme of P(Ex) and 2 be its Zariski closure in P(€).
Denote by

ny.p: Epx = H (P(Ex), LEP) — HO(X, L|$")

the evaluation map on X and by F) the saturatlon of Im(ny ) in HO(Z, £|2P). Namely Fp
is the largest sub-Og-module of H(Z', E\ ) such that Fp x = Im(y p). Note that, for suf-
ficiently large D, the homomorphlsm Ny p 18 surjective, and therefore F. p=HZ, £|

The following result shows that the evaluation on a collection of rational points with
small heights cannot be injective. Let Z = (P;),_; be a collection of distinct rational points
of X. The evaluation map

Nz,p: HO(WEK)aE?D) - @P;KEI(?D

iel
factorizes through 7y ;. Denote by

(16) ¢Z,D:FD,K_>@P1‘*£1(?D

iel
the homomorphism such that ¢, pny p =12 p-
We equip Fp with quotient metrics (from that of Zi p) so that Fp becomes a Hermitian
vector bundle on Spec Ok. Note that the quantity deg(F)p) is the normalized version of the
“D-th height” of X, defined and studied in [43], §2.2.

Proposition 2.12.  Assume that

&nax (F. 1
3116111) h;(P) < 'um%(l)) ~5p logri(D), whereri(D) = rk(Fp).

Then the homomorphism ¢, p, cannot be injective.

Proof.  Assume that ¢, 5, is injective. There exists a subset Iy = I of cardinal r{(D)
such that pr; o ¢, j, is injective. By Proposition 2.1 (i), we obtain that

Amax (Fp) = max Dhy(P;) + h(pry, © 47 p)-
Note that

h(Prlo o ¢Z p) = 10g r1(D).

This leads to a contradiction. [
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3. The complexity of singular locus

In this section, we consider the following problem. Let K be a number field. Given a
closed subvariety X of a projective space Py, we ask how to describe the complexity of the
singular locus of X by the arithmetic invariants of X. When X is a hypersurface in P" de-
fined by a homogeneous polynomial F(7y,...,T,) of degree d, the singular locus of X is
determined by the equations

0 0

F=—F—...

= F=0.
0Ty oT,

Therefore the ideal of Sing(X) is generated by n + 2 polynomials of height < dh(F). In the
general case, the singular locus can be described by using the Jacobian criterion, provided a
system of generators of the ideal of X.

Given a subvariety X = P” of dimension d and of degree J, a method to con-
struct explicitly a system of polynomials defining X is to use the Chow form. The Chow
form @y of X is a multi-homogeneous polynomial of multi-degree (d,...,d) on the multi-
projective space ([P’”)dﬂ. The general theory of Chow and van der Waerden [21] asserts
that set-theoretically any subvariety of dimension d and of degree J of P” is uniquely deter-
mined by its Chow form.

Philippon [39] has defined the height of an arithmetic variety as that of its Chow form
and applied his height theory on criteria of algebraic independence. The Philippon height
can be compared to the Arakelov height [47], [41], [7]. As mentioned in the Introduction,
one can construct explicitly a system of generators of a projective variety from its Chow
form. This permits us in principle to understand the complexity of the singular locus of
the projective variety by using the Jacobian criterion. However, the polynomials in the gen-
erating system obtained from the Chow form usually have degrees much higher than ¢. For
example, if the projective variety is a hypersurface in a projective space defined by a homo-
geneous equation F of degree J, then the generating system obtained from the Chow form
will be the linear space of equations of the form FG, where G runs over all homogeneous
polynomials of degree dd. Therefore, if we try to estimate the complexity of the singular
locus of the variety by using this linear system, supplementary errors will occur in the pro-
cedure of differential and also in that of taking the determinant.

In this article, we adopt the point of view of Cayley form. This approach is inspired
by [27], [16]. The construction of Cayley form is quite similar to that of Chow form. The
only difference is that, in the construction of Chow form, we use Stiefel coordinates; while
in that of Cayley form, we use Pliicker coordinates.

In the following, we recall the definition of Chow form and Cayley form, the compu-
tation of their heights, and the estimation of the complexity of the singular locus of a vari-
ety by using its Cayley form. In the rest of this section, let n € N\{0} and £ be a Hermitian
vector bundle of rank n + 1. Denote by £ the invertible sheaf Op(g)(1) equipped with the
Fubini—Study metrics. By a sub-variety of P(£x) we mean a closed integral subscheme of
P(Ek).

3.1. Chow form and Cayley form. Let W be the product P(£¢) x P(E})*™" and T
be the incidence subvariety of W which classifies all points (&, up,...,us) such that
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E(up) = -+~ = &(ug) = 0. Denote by p: W — P(Ex) and ¢ : W — P(E))*™ the two pro-
jections.

Proposition 3.1. Let X < P(Ek) be a subvariety. Then the set-theoretical intersection
T~ p~Y(X) is irreducible. Furthermore, if we consider T n p~'(X) as a reduced subvariety
of W, then the scheme-theoretical image q(F np (X )) is a hypersurface of multi-degree
(0,...,0).

See [39] for an algebraic proof of this result in its generalized form, see [7], §4.3, for a
geometric proof.

The hypersurface in Proposition 3.1 corresponds to a subspace of rank one of
So(Ey V)@ whose saturation (see Notation 1) in §(£¥)®“") determines a Hermitian
line subbundle @y of S?(£¥)®“) The generic fibre ®y x is called the Chow form
of X.

Remark 3.2. The Philippon height of the arithmetic variety X is defined as

() = g (Stogleal, + 5 o))

where ¢ is a non-zero element in @y, and for any embedding o, M, is the integral opera-
tor with respect to the Mahler measure associated to ¢. By [7], Theorem 4.3.8 (generalizing
some results in [47], [40]), the Philippon height of X is compared to the Arakelov height of
X with respect to £. Recall that the (relative) Arakelov height is defined as

(X)) =g deg(é:(£) " - [2]),

where Z is the Zariski closure of X in P(£). One has

Ion(X) = h(X) = 30(d + 1)y,

1. . . .
where H,, := 1+ 2 + -+ - 4+ —is the n-th partial sum of the harmonic series.
n

Moreover, one has the relation (cf. [7], Proposition 4.3.5 and Theorem 4.3.8)

(17) 0 < hp(X)+ a(Dy) +%(d+ 1)10g<n §5> < %5(d+ 1)H,.

Let s®) (0 <i<d) be variables taking values in the space of antisymmetric ho-
momorphisms from £f to €k, and ¢ be a variable valued in &Y. The mapping
(sO, ..., 59 &) - CI)X,K(s“))é, ...,59¢) is a multihomogeneous polynomial of degree 6 in
each s and of degree (d + 1)d in &. By specifying s, one obtains a linear system Jy x of
homogeneous polynomials of degree (d + 1)J in & € . The heights of these equations can
be estimated by the height of X. The linear system Jy g defines a subscheme X of P(Ek)
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containing X. By [38], Lemma 11, it coincides with X on an open subscheme containing the

regular subscheme X¢;. Furthermore, one has X,.q = X.

In the following, we introduce a variant of the Chow form, called the Cayley form
of X. The advantage of the Cayley form is that we can construct from it a system of gen-
erators of X which are of degree J.

Recall that in the construction of the Chow form, one has actually used the Stiefel
coordinates of the Grassmannian. If we use Pliicker coordinates instead, the same proce-
dure leads to the so-called Cayley form. Let G = Gr(d + 1, £Y,) be the Grassmannian which
classifies all quotients of rank d + 1 of £ (or equivalently, all subspaces of rank d + 1 of
k). Denote by T’ the incidence subvariety of P(£x) x G which classifies all points (&, U)
such that &(U) = 0 (here we consider U as a subspace of £x). Let p’ : P(Ex) x G — P(Ek)
and ¢’ : P(£x) x G — G be the two projections.

Proposition 3.3 (see [27], §3.2.B). Let X = P(Ek) be a subvariety of dimension d and
of degree 6. The set-theoretical intersection T" ~ p'~\(X) is irreducible. Furthermore, if we
consider T' N p'~Y(X) as a reduced subvariety of W', the scheme-theoretical image
q'(T' n p'~Y(X)) is a hypersurface of degree 6 of G

Proof. The incidence variety I'' is a fibration on P(€k) in Grassmannian varieties.
Since X is irreducible, also is T n p’~1(X) = p'|/ (X). Denote by ¥ = I n p'~'(X), con-
sidered as a subvariety of I''. The projection ¢’ being proper, the image Z = ¢/(Y) is a
closed integral subscheme of G. Let ¢ = Spec K’ be a geometric generic point of Z, which
corresponds to a subspace V' of rank d + 1 of k. The fibre Y¢ coincides with the sub-
scheme of Xy defined by vanishing on V. Note that the dimension of Xk is d. So ¢’
maps Y birationally to Z and hence dim Z = dim ¥ = dim G — 1.

To calculate the degree of Z in G, we consider the following equality of cycle
classes:

2] = (d'[c).(P'r) " [X] = 6(q'[0). (P |r) (U],

where U is the projective space associated to an arbitrary quotient space of rank d + 1
of Ek. Note that (¢’|),(p'|+)"[U] is just the first Schubert class in the Grassmannian G
(see [25], §14.7). Therefore the degree of Z isd. [

By Pliicker’s morphism G — P(A“™'£Y), the coordinate algebra B(G) = @ Bp(G)
D=0
of G is a homogeneous quotient algebra of P SD(Ad+15,V<). To explain the role played by
D=0
the Pliicker coordinates, we consider the following construction. Denote by

0:EL® (A Ex) — A&k
the subtraction homomorphism which sends ¢ ® (xp A -+ AXy) to

d

Z(—l)if(xi)xo Ao AXiL] AXipl A e AXg.
i=0
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Let T be the subvariety of P(£x) x P(A“'€Y) which classifies the points (&, ) such that
(& ®a) =0. Let

P P(Ek) x P(ATTEY) = P(Ek) and §: P(Ex) x P(ATTIEY) — P(AITEY)
be the two projections.

Proposition 3.4. Let X <= P(Ek) be a subvariety of dimension d and of degree 6. The
set-theoretical intersection T n p~(X) is irreducible. Moreover, if we consider T p(X)
as _a reduced subvariety of P(Ek) x P(ATEY), then the scheme-theoretical image
g(T'n p! (X)) is a hypersurface of degree 5 of [FD(A‘JHE}Q).

Denote by Wy g the one-dimensional subspace of S"(A‘”T}) which defines the hy-
persurface in Proposition 3.4. We call it the Cayley form of X. The saturation of Wy g in
SO(AI1E), equipped with induced metrics, is called the Cayley form of X. Note that the
incidence variety I’ of P(E) x G is just the intersection of " with P(£x) x G (embedded
in P(£g) x P(AYT'€Y) via the Pliicker morphism).

The relationship between the Pliicker and the Stiefel coordinates (see [27], p. 101, for
details) leads to the following observation. Let iy be a representing element of Wy g, con-
sidered as a homogeneous polynomial of degree § on A%*! Ex. Then the multihomogeneous
polynomial ¢ of multidegree (J,...,J) defined as

—

d+1 copies

¢X(.X0, . ,xd) = lﬁX(xO AN /\xd)
spans the Chow form @y g of X.

Remark 3.5. Similarly to [7], Theorem 4.3.2, the following quantity can be com-
pared to the Arakelov height of X with respect to L:

i (X6) = gy (S oellonl, + 3 Tog M) ).

One has, by [7], Lemma 4.3.4,

~ 1

hen(X) = h;(X) — 557-[1\/,

where

n—+1

1 1
— d+1 —_ e —_ g — —_
N = k(A Ex) — 1 <d+1> Ioand Hy =145+ 4.

Moreover, by [7], Lemma 4.3.6, Remark 1.4.3 and Corollary 1.4.3, we obtain the following
relation:

~ _ 1 N+06 1
0 gl0) + )+ tox( " 7 = 3o
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By using the estimate

log<N;5> <5log(N +1) = (510g<21 1)

<6(d+ 1)log(n+ 1) —dlog((d + 1)!),

one obtains the relation
. 0 0
(18) A(Wx) = —h;(X) — E(d +1)log(n+1) +3 log((d + 1)!).

We construct a system of generators of X from Wy x. Choose a representative ele-
ment Yy in Wy x and consider it as a homogeneous polynomial of degree 0 on A‘”lé'}g.
Let x, yo, ..., ya be variables valued in £x and let & be a variable valued in . For any
i=0,1,...,d, let z; = &(x) y; — E(yi)x. As

ZoN-NZg

d
=) oA AV = S EX)ED)YOA A VAAXA VI A A Ya
i=0

d
=é(x)d(€(X)yo/\~-~Ayd—Zf(yi)yoA--~Ayf_1 AXA Yit1 /\"'/\J/d>a
i=0
we obtain

Uy k(zon-Aza)
. d
= é(X)adlﬁx,KG(x)yo A AYd— ;)f(J/i)J’O A AViCLAXAYipl A A yd>-

By specifying x, yo, ..., yqs in

d
¢X7K(€(x>y0/\"'/\yd—Zé(yi)yo/\"'/\yi1 AXA Yigi A-~Ayd),

i=0

we obtain a linear system Iy x of polynomials of degree o on £y, which also defines the
subscheme X of P(Ek). In fact, an antisymmetric homomorphism & — £k acting on an
element & in £¢ can be written as a linear combination over K of elements of the form
&(x)y — &(y)x, where x and y are elements in k.

Let Ty be the saturated Hermitian vector subbundle of S°& ‘whose generic fibre coin-
cides with Iy x. We are interested in estimating the complexity of 7y, for which we need the

following tensoriel construction of Iy.

Consider the Og-linear homomorphism € ® £2“) ® £¥ — A€ sending

X®WR - ®ya®E
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to

d
EX)yon-AYa =D E(V)VON - AVicl AXAYig1l A+ A Y,
i=0

which induces a homomorphism

(19) l—w)(g) ®1—-(5(£)®(d+1) ®1—*()(8V) N l—-d(Ad+15)7
where for any projective Ox-module of finite type F, I'°(F) is the sub-Og-module of F®’
consisting of all elements which are invariant by the action of the symmetric group Sg.
By the canonical isomorphism I'°(F)" =~ S°(FV), we obtain from (19) a homomor-
phism

S(S(Ad+15v> N SO(EV) ® Sé(gv>®(d+1) ® So(g)
by duality. Denote by fy the composed homomorphism
¥, - S&(Ad+lgV) _ S&(gV) ® Sd(gV)@(d+1) ® SO(g)’

where Wy is the submodule of S° (AdHé’ ¥) corresponding to the Cayley form. Then Iy is

just the saturation of the image (see the paragraph below (6) for definition) of fx(‘¥x) (with
induced metrics) in S°(&).

Proposition 3.6.  With the above notation, the following inequality holds:
(20) ﬂmin(iX) = _hE(X) - Clv
where the constant C; = C\(&,d, ) is defined as
- S/ pv 1 n+o (d+2) (19 7
(21)  Cr = (d 4 2)finas (S°(EY)) + E(d +2)log s )te (r°())
0 0
+3 log((d +2)(n—d)) +§(d +1)log(n +1).

Proof. By Proposition 2.1 and Lemma A.1 (ii), the slope of fy(Wy) is estimated as
follows:

A(fx(Wx)) = a(Px) — h(fy) = a(Px) —g log((d 4+ 2)!- (n— d)).

By (18), this implies

@2) A (F0) = —hg(X) ~ 3 log((d + 2)(n — d)) — 3 (d + 1) log(n + 1).
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By Proposition 2.4 (see also Remark 2.5), we obtain
(23) fimin(Tx) Z A(fx(¥x)) = (d + 2)ftmax (S°(EY))
— 0 "T(T(€)) - % (d + 2)log rk(S°€).

n-—+o

Combining (22) with (23) (note that rk(S°€) = ( 5

)), one obtains (20). [

Remark 3.7. By [5] (see also [30], [26]), one obtains iy, (S°(£Y)) «gd. Further-
more, one has ("2 (T"(€)) « logrk(S°€) < dlog(n + 1). Therefore, C) < , )

3.2. Complexity of the singular locus. In the previous subsection, we have con-
structed explicitly a linear system Iy x which defines a subscheme X of P(£k) contain-
ing X. Since Xyeq = X (see [38], Lemma 11), we obtain X reg  Xreg, Where Xreg and Xieg
are respectively the open subschemes of all regular points of X and of X. Moreover,
since X coincides with X on a dense open subset (loc. cit.), X is a dense open subscheme
of X. By using the Jacobian criterion, we shall construct from Iy g a linear system defining
the singular locus X sing Of X , which contains Xne, the singular locus of X. Before discus-
sing the complexity of X, we treat a slightly general case where we consider a Hermitian
subbundle of certain symmetric power of £ and estimate the complexity of linear systems
constructed from minors of its Jacobian matrix.

For any integer a = 1, denote by D, : S€ — £ ® S* £ the homomorphism of deri-

vation which sends xj - - - x,, to Z Xi ® (X1 Xi_1Xiy1 - X4). Suppose that I is a Hermitian
i=
subbundle of S“£ and that r is an integer such that r > 1. We denote by g ; ) the following
composed homomorphism:
®r
19 Sa(g)@)r DL, g@r ® Sa—1(£)®r N Arg® S(a—l)r(g)’

where the last arrow is 1nduced by canomcal homomorphisms £%®" — A’§ and
Sa- 1(5)@ — Sla=brg, Let F be the image of g; ), equipped with induced metrics. Denote
by I the image of F} ") in S(" bre.

Theorem 3.8. With the above notation, the following inequality holds:

(24) /umm(l ) = riumln( ) G,
where the constant Cy = Cy(&,r,a) is defined as

(25) Ao (ATE) + rlogrk(S9€) + log rk(A"E) + log V! + rloga.

Proof. By Lemma A.1(iii) and (iv), the height of g}r) is bounded from above by
log v/r! + rloga. Therefore, Proposition 2.1 (ii) shows that

(26) :umln (F ) iumln (I® ) log \/V_' - VlOg a

= Vﬂmin(i) - Q(r)(iv) — 10g\/ﬁ —rloga,
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where F\" is the image of ¢\, equipped with induced metrics. Note that (see (6))

oY) < glog(rkl) < glog(rkS“é’).

By Proposition 2.4, one has

~(r =(r N = v 500, 1
@7 fainT") Z fiin (Ff”) = fiar (N'E) = o( A€, F[) = 5 log(tk A'€).
Therefore the required estimation follows from (26), (27) and the inequality
rgv () 1 r 1 a
o(AN'EYVF,) < 3 log(rtk A€) +§rlog(rkS . O

Remark 3.9. (i) One has C5(&,r,a) <; ,a.

(i) When & is a direct sum of Hermitian line bundles, the term o(A’E", F\”) van-
ishes. Hence we can choose C, to be

_ 1
i (ATE) + g logrk(S°€) + 5 logrk(A"€) + log V1 + rloga.
(iii) If Bost’s conjecture (see §2.2) is true, then we can choose
N ra 1 .
Cr = flpax (A'E) + 3 log rk(A"€) + log Vil + rloga.

We apply Theorem 3.8 on Iy = S°€ and on r = n — d. By using the estimate (18), we
obtain the following result:

Theorem 3.10. Let X <= P(Ek) be a subvariety of dimension d and of degree . De-
note by X the Zariski closure of X in P(E). There exists a Hermitian vector subbundle M
of SOV € satisfying

(28) ﬂmin<M> = —(l’l - d)hZ<X) -G

and such that the subscheme of P (&) defined by the vanishing of M contains the singular loci
of fibres of X but not the generic point of Z, where the constant Cy = Cs(€,d,0) is defined
as

(n—d)C\(E,d,0) + Co(E,n — d, 5).

Moreover, one has C5(&,d,6) <z 0.

Proof. We take M =1 5;1‘0”, where Ty is defined in the paragraph below (19). Let X

be the subvariety of P(€x) defined by the vanishing of Iy x and & be its Zariski closure
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in P(€) (which is defined by vanishing of Iy since Iy is saturated). By the Jacobian crite-
rion, the subscheme of P(&) defined by vanishing of M coincides with the locus of singular
points of fibres of &, which contains the locus of singular points of fibres of Z". The inequal-
ity (28) is a consequence of (24) and (20). The last assertion results from Remarks 3.7 and
39(G). O

4. Estimations of Hilbert—Samuel functions

In this section, we discuss the estimations of the geometric and arithmetic Hilbert—
Samuel functions. We fix in this section a Hermitian vector bundle & of rank n + 1 over
Spec Ok and a subvariety X < P(€k) which is of dimension ¢ = 1 and of degree J. Denote
by & the Zariski closure of X in P(€). Let £ = Opg)(1) be the universal line bundle. We
equip it with the Fubini—Study metrics to obtain a Hermitian line bundle £ on P(£). For
any integer D = 1, let Ep := H°(P(€), £L®”) and r(D) be its rank; let F) be the saturation
of the image of Ep in H(Z', L %D ) by the homomorphism of restriction of sections and let
r (D) = I'kFD.

4.1. Estimations of the geometric Hilbert—Samuel function. In this section, we recall
several known results on explicit estimations of the geometric Hilbert—Samuel function. Let
X < P(€k) be a closed subvariety of dimension 4 and of degree 6. We assume that d < n.
The (geometric) Hilbert—Samuel function of X is by definition the function on N\{0}
which sends D e N\{0} to the rank of H°(X,£|$"). By the asymptotic Riemann—Roch
Theorem, one has the following relation:

rk HO(X, £|$P) = %Dd + 0D ).

However, here our concern is to obtain the upper and lower bounds of this quantity which
hold for any D in N\ {0} except an explicit finite subset. In this direction there is a result of
Kollar and Matsusaka [36] which asserts that when X is normal, one has

J (Ky - L§")
0 Dy 9 nd X
tk H (X, L[y ") d!D + 2d— 1)

Dd*l <C. Dd72

where C is an explicitly computable constant depending only on J and (Ky - E!fﬁl), Ky
being the dualizing line bundle of X. However, here we need the estimates independent
of the dualizing sheaf (but asymptotically less precise than that of Kollar and Matsu-
saka). For the upper bound, we refer to the following result of Chardin [18] (see also [46],

[1])-

Proposition 4.1.  For any integer D = 1, one has

(29) k HO(X, £ 2P) §5<D *j_ 1) n (D;f; 1).

The proof relies on the generic hyperplane intersection of X and proceeds by induc-
tion on the dimension d. For details, see [1], §1.2.



20 Chen, Explicit uniform estimation of rational points 1

Remark 4.2. Chardin has actually proved the following upper bound for the func-
tion r(D):

(30) VD = 1, rl(D):rkFD§5<D+d>.

d

As for the lower bound of rk HO(X, £|$"), the following is an elementary result,
which can be found in the book of Kollar [35].

Proposition 4.3. For any integer D = 0, one has

rk HO(X, £|$P) = ((D+1 - 5.

SS9

The proof consists of projecting generically X to a hypersurface of degree d, which we
refer to [35], p. 92.

In [46], Sombra has proved the following (optimal) lower bound for the function
r1(D), which holds for all D.

Proposition 4.4.  For any integer D = 1, one has

d+1 d+1

(31) r1<D)g<D+d+1)_<D—5+d+1>

4.2. Lower bound of the arithmetic Hilbert—Samuel function. In this subsection, we
reformulate a result of David and Philippon [22] on an explicit lower bound of the arith-
metic Hilbert—Samuel function in the framework of the slope method. Note that their
argument relies on the higher Chow forms introduced by Philippon [39]. We begin with
a reminder on it.

Let m = 1 be an integer. Denote by W,, the product variety P(Ex) x P(S™(Ek)") arl
Let I, Wm be the incidence subvariety classifying all points (o, u,...,u,) such that
a®m(uy) = -+ = a®"(uy) = 0, where we have considered a quotient of rank one of
S’”(EK)V as a subspace of rank one of S”(fk). Denote by p, : W, — P(x) and
G = Wi — P(S™( K)) ! the two projections.

The following proposition asserts the existence of the higher Chow forms, which gen-
eralizes Proposition 3.1. This result has also been proved in [39]. See [7] for a geometric
proof.

Proposition 4.5. Let X < P(Ek) be a subvariety. Then the set-theoretical intersection
T, 0 p N (X) is irreducible. Furthermore, if we consider T, 0 p,'(X) as a reduced subvari-
ety of W, then the scheme-theoretical image q, (Fm np H(X )) is a hypersurface of multi-
degree (om?,. .. om?).

Denote by ®% the Hermitian line subbundle of So"° (s™(&)” ) V) corresponding

to the hypersurface in Proposition 4.5. By definition, one has @y = 59
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Remark 4.6. By [7], Proposition 4.3.5 and Theorem 4.3.8, the following relation
holds:

N, + m45

~ = [m] d+1 1
0 < a(@y") + m* hﬁ—(X)—l—E(cH-l)log( s

)= g+ .

where

m n—+m 1 1

In particular, one has

d

= [m 1 Ny +mis\ 1
ﬂ(d)g(])é—md“hL—(X)—E(d—i—l)log( o >+2

By using the estimate

d
m%“@?%zwwmm+n4%w%m

we obtain the inequality
(32) DY) < —m T hp(X) + % (d + D)mSlog(m?s).

In order to obtain an effective estimate of the arithmetic Hilbert—Samuel function, we
need the following algebraic construction of d)g"] given by Philippon in [39].

Denote by A the symmetric algebra Sym, (£). The algebra A4 identifies with
@ HO(P(€),£®P). For any integer m = 1, define

(33) OF! = Symy,, (S™(£)" ),
(34) A= Symg, (€@ $™(€)® ) = Sym,, (0 ®o, &)-

As a symmetric algebra, the Ok-algebra (9['"] is naturally graded. We equip 4" with the
grading which is 1nduced from that of 4, or equlvalently the natural grading corresponding
to the symmetric (9 —algebra structure of Sym, i ((9 ®o, ).

For i€ {0,1,...,d}, let tr; be the image of the trace element of S (&) ® S™(&)"
in A" via the (i + ) -th component of $”(&)*®“V 1t is a homogeneous element of de-
gree m in A", Recall that the trace element corresponds to Id : $”(£) — S (&) through
the natural isomorphism S™(£) ® S™(€)” =~ Homg, (S™(£),S™(£)). Let I be the kernel
of the restriction homomorphism 4 — @ H°(Z,L®P). It is a homogeneous ideal of 4.
Denote Dz0

(35) s — gl 4 glm Ptrg 4+ -+ + A try.

It is a homogeneous ideal of A"
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Proposition 4.7. (i) The ideal

3= (J (3" Ap)
D=0 K

]

of (9}'("] is principal, and is generated by @ ".
(ii) Assume that D = (n—d)(0 — 1) + 1. Then for any integer m = 1, one has

(3[;11] :027] AD+1n(d+1)—d) * 0.

See [39], Proposition 1.5, for the proof of (i), and [22], Proposition 4.2, for that of (ii);
see also [22], p. 528.

By using Proposition 4.7, we obtain the following lower bound of the arithmetic
Hilbert—Samuel function, which reformulates [22], Proposition 4.10, in the language of
the slope theory.

Theorem 4.8. Let X < P(Ek) be a closed subvariety of dimension d and of de-
gree 8, X be the Zariski closure of X in P(E). For any integer D = 1 let Ap = SPE and let Jp
be the kernel of the restriction homomorphism Ap — H®(Z ,L®P). Then, for any integer
D= (n—-d)o—1)+1, one has

(36)  AlAp/3)

S (D—(n—d)(o—-1)—-1)
(d+1)"r(D)

d
5 (D—(n—d)©E—1)—1+d) 10g<<D—(n—d)(§)—l+d>d5)

d+1

2 (d+1)""'r (D) d+1
| o(PrD)) (V)
_§Dlog(n+1)— nD)

where ri(D) = rk Fp = rk(Ap/3p).

Proof. Let m e N\{0} be a parameter which will be chosen in the end of the proof.

Let (’)z"], A" and 3" be as in (33), (34) and (35) respectively. For any integer D > 1, AE')”]

. . . m D m

1S a projective Ok]—module of rank o . The D-th homogeneous component SE)]
n

of 3" can be considered as a sub-OE"]-module of AI[')"]. By definition, one has
sl = oz, @0 Ay tre @ - @O Ap_ try.
D+n
Consider M} := Al [',’7,])‘3[[',"]. It is a sub-0Y-module of
OK

37 AU 4 < ol @ det(4
(37) ol D_K®0KG(D)7
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so it determines an ideal of (9[ by twisting the module by det(AD) Note that here
det(Ap) is defined as Ag(AD)A Let I[m] =3p D Ap_utto® - @ Ap_,, try. One has

My =0 @, A( " )I " By Proposition 4.7 (ii), if
D2(n—-d)—1)+1+md+1)—d

. . ~[m]
(which we always assume in the rest of the proof), then (3" :,m Ap) = 0. Therefore
M l[;ﬂ] #+ 0, and hence the canonical image of .

det SD ® Agf(D) (AD—m tro®@--- @ AD—m trd)
in A%‘KADI 1[)'"] is non-zero. By definition of the Chow form, the canonical homomorphism
det(4p)” ® det(Ip) ® Ap "™ (Ap_ it @ -+ ® Ap_ trg) — S"P)(S"(£)")

factors through

d .
Ve @ ®sEE,

io++ig=rp m j=0

where rp ,, = r1(D) —(d + l)md . Hence the slope inequality implies
(38) —r1(D)  {l Ap/3p) + fimin (AR (A5 5))

<A@y +  max ﬂmax<§5m(5)v®i’>v

o+ +ig=rp,m
where Ap is equipped with symmetric product metrics.

By Proposition 2.1 (ii) and Lemma A.1 (iv), one obtains

~ r r 1
(39 fiin (MG (ARE)) Z i (A55,)"P) = 571(D) logra (D)

= fiun A57) ~ 311(D) logr (D)
Note that Ap_,, is a quotient of E2P~"". Hence
(40)  fiin(Ap"") Z fiin (ESP7 Py
2 11(D)(D — m) iy (€) — o PPN (EY).

Furthermore, if iy, ..., iy are positive integers such that iy + - - - 4+ iy = rp , then

) s (@ 5O ) = i B 570

é _ﬂmin(‘g@mm‘m) é _mrD,mﬂmin(g) to (o, 771)(8\/)

where we remind that rp , := r{(D) — d(d + 1)m¢
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Combining the inequalities (38)—(41), we obtain

~ o= [m]
) AAp]S0) = — ”flq()g)’ 3 log

(1’1 (D)) + Dﬂmin(g)

(Dri(D))(ev
m R ) (&)
_ 1 _ I S

where we have applied (4) and used the fact that (o (€ ¥)), >, is an increasing sequence.

By (32) and the estimate r; (D) < rk(4p) < (n+1)”, we obtain

Ty s M AR m?3log(m?s)
(43) Iu(AD/‘SD) = r (D) [hL_(X) - 5(d + l)ﬂmin(g)] - 5 (d + 1)W
1 o(Pr(D) (Ev)

— 5 Dlog(n+ 1) + Dityin(€) — ThD)

[\

Since the inequality (43) holds for any m satisfying D > (n —d)(0 — 1) + 1 + m(d + 1) — d,

anlg since the term /1;(X) — d(d + 1)1, (€) is non-negative (see [7], Proposition 3.2.4), by
taking

)

v

ID-(n—d)0-1)—1+d|_D—(n—d)d—-1)—1
m_{ d+1 J d+1

we obtain the theorem. []

Remark 4.9. As an Og-module, Ap is isomorphic to Ep. However, the symmetric

product metrics on Ap differ from those of Ep (see §2.3, notably Remark 2.6). Thus, if
we equip Fp with the quotient metric of those of Ep, then for any integer

D= (n—d)(—1)+1, one has

d+1
~ (D—(n—d)d—1)—1) [h:(X) = 0(d + 1) finin (€)]

(44) a(Fp) =z (D) D)™
s(D—(n—d)o—1)—1+d)* D—(n—d)©) - 1+d\
2 r(D)(d +1)*" log<< d+1 )5)

. _ (Dr (D)) gv
— Dlog(n + 1) + Dfi (€) — QTDS),

where we have used the estimate rk(Ep) < (n + 1)”. Recall the following explicit estimates

of the rank of Fp by functions on D, J, and d (see Remark 4.2):

(D) ga(D;d> < %(D+d)d.

Moreover, for D = J, one has (by [46])
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d
_dD—s+2)"

D+d+1> B <D—5—|—d+1> 5 <D—5+d+j>
= d!

rl(D)é( d+1 d+1 -z d

j=1
Combining (44), we obtain that the following inequality holds for any integer D such that
D=zn—-d)0o—-1)+1:

1

(45) Bﬂ(FD> = C4(Dvd75) [hPh(X) - 5(d + 1)/2m1n(g)] - C5(D’ n, g)v

where the constants C; and Cs are defined as

d D—(n—d)6—1)—1\"""
(46) C4(D’d’5)_5(d+1)"“< D+d ) ’
_ _ (Dri(D))(ev
@) D) =logln + 1) ~ () £
d! D—(n—d)6—1)—1+d\*
+2(d+1)d_1< D—0+2 )
O D-—(n—-d)o—1)—1+d
-D log<( d1 5d>>.

Note that one has

Cy(D,d,d) = d!/6(2d +2)"""

and
o(Pri(D) ()

2d
pn(D) |

C5(D,I’l, E) é IOg(n + 1) - ﬂmin(g) -

once D=>2(n—d)(0o—1)+d+2.

4.3. Upper bound of the arithmetic Hilbert—Samuel function. We show that a variant
of Proposition 2.1 permits us to obtain an upper bound of the (normalized) arithmetic
Hilbert-Samuel function g(Fp). We actually find an explicit upper bound of i, (Fp)
which holds for any D = 1. Let us begin by a reminder on the essential minimum.

Denote by K an algebraic closure of K. Let X be a subvariety of P(Ek). The essential
minimum of X (relatively to the Hermitian line bundle £) is by definition

fes(X) :=  sup inf _ h;(P).
0+Ucx PeU(K)
U open in X'

By [48], Lemma 6.5, the essential minimum . (X) is finite, and one has the following
estimate:
h;(X)

5 )

(48) floss(X) =

where /1;(X) is the Arakelov height of X with respect to £, and J is the degree of X,
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Theorem 4.10. For any integer D = 1, one has
" = . 1
(49) iumax(FD) = D:uess(X) +§ IOgVI(D>.

Proof. Let t be a real number such that 7 > ji.(X). Denote by B, the class of alge-
braic points P of X such that /1;(P) < t. Let ¢}, be the evaluation map

* pQD
FD,I?_) @P,CE .
Peb,

By definition, the family B, is Zariski dense in X, so ¢, is injective. By Proposition 2.12,
one has

— 1
fax(Fp) < Dt + 3 logri(D).

Since ¢ > i, (X) is arbitrary, we obtain the assertion. [J

Remark 4.11. The inequality (49), combined with the estimates (48) and the trivial
estimate r\ (D) < (n+ 1)?, gives an explicit upper bound for ., (Fp) in terms of the de-
gree, the dimension and the Arakelov height of X

_ ha(X
(50) D21, Fo) = 2 b 1 Piogln 1 1),

0 2

A. Computation of norms of linear operators

In this appendix, we compute the operator norms of several operators acting on
tensor powers of a Hermitian vector space. These computations have been useful in the
application of the slope inequalities, notably in the estimation of the heights of K-linear
homomorphisms.

Lemma A.1. Let me N and V be a Hermitian space of dimension m.
(i) The canonical homomorphism o.: V @ V'V — C has norm \/m.

ii) For any de{0,...,m—1}, denote by B,: V@ VU @ Vv - ALY the
(i) y def YV Ba
homomorphism which sends x ® yo ® -+ ® yq ® ¢ to

d

EX)yon-AYa =D E(V)VoA " AVilI AXAYig1 A= A Y.
=0

Then the norm of B, is \/(d +2)!/(m —d — 1).
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(iii) For any integer a such that a = 1, denote by D, : SV — V ® SV the homo-
morphism which sends vy - - - v, to

a
o0 ® (V1 V1V V)
i=1

Then the norm of D, is a.

(iv) Let r be an integer such that 1 < r < m. Denote by y, : V&' — A"V the canonical
homomorphism. The norm of y, is /.

Proof. Let (e;);~, be an orthonormal basis of 7 and let (¢;);", be its dual basis,
which is an orthonormal basis of V.

(i) The homomorphism o sends

Z /1(/'61'@@}/ to ;){ji.

1<ijsm

Hence ||o|| = v/m.

(ii) Note that i, sends Y 4;jrei ®e€j, ® - D ej, ® ¢ to
ik

d
(51) > Aijk (5ik€jo A Ny = DO k€ A AN ACIAC, A A ejd> ;
ik a=0

where j stands for (jo, ..., js), and d,3 = 1 if « = f and 6,5 = 0 else. Let uy, . .., uy be inte-

gerssuch that 1 S up < -+ <uy <mand u = (u, . ..,uy). The symmetric group S, acts
d+1 :

on{l,...,m}“" by permuting the components. In other words, o € S4; sends (vo, . .., vs)

t0 (Vy(0); - - -+ Us(a)). Denote by sgn: Sy — {£1} the sign function. If we write (51) as

a linear combination in the basis (ey A - Aey,)| <oy, <m» then the coefficient of

Cug AN Ay, 18

d m

> Sgn(a)’luﬂapo(“"“ (), k

Oce Sfprl k=1

(52) % 3 sen(0) o -

geE 6d+1 i=1 a

= > > sgn(0) o, — 2 2 > s8n(0)Ay,, sk i) ks

geCSyy ) 1<i<m a=00eCS 1 1Zk=m
= U (0) 55 Ug(d) kg
where (@K (1) = (Us(0), - -+ > Ug(a—1) Ky Us(as1)s - - s U(o(a)))- If @ and b are two integers such

that 0 <a+b =d, and if o€ S;,1, we denote by g, an element of S, such that
gab(c) = a(c) for any c€{0,...,d}\{a,b} and that g, ,(a) = a(b), g, ,(b) = o(a). Note
that, with this notation, the equality

iua(u)a”“'“(z)ak - 'luﬂ 5,00 (), k
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holds provided that k = u,(;). Moreover, one has sgn(o) = —sgn(a,, ). Therefore, the for-
mula (52) may be simplified as

d
Z Z sgn(a) i,o(u),i Z Z Z Sgn(‘j'))“u,,(l,).o(“~">(g),k'

ey 1<i<m a=00€e S,y 1<ksm
P Ug(0) -+, Ug(d) kg (0) s U (d)

Hence the norm of B, is equal to \/(d +2)!(m —d — 1).
(iii) For any J = (J;),2, € N, let
JJl=Ji+-+dw, J=J---J, and e/ =¢' - -elreSVIH
Then (eJ)M:a is an orthogonal base of S“V. Note that the norm of e’ is \/J!/a!. For any
integer / = 1,...,m, let o; be the element in N”* whose /-th coordinate is 1 and whose other
coordinates are zero. If x = > Aye’ "is an element of S“V, the homomorphism D, sends x

to 7'|=a

m

Z/bj/ZJ]@]@e = Z Z(J1+1)/1]+1(/>61®6J,

U=a =1 J|=a—1i=1

where we have used the convention e’/ = 0 if J ¢ N™. Therefore

) m J!
[1Da(X)[I” = > Z(Jl +1)%7 0 G
|J|=a—11= (a )!
m (J + D) J'!
= Z Z(J]‘l’l)}u%Jra([)ﬁ:a Z 2 ZJI _QZHXH
|J|=a—11=1 (a—1)! |J'|=a
Hence the norm of D, is a.

(iv) The homomorphism 7y, sends Z iiej ® - Qe to Z Aiej A -+ Ne;, where
i=(i,...,i,)e{l,...,m}". The symmetrlc group S, acts on {1 .,m}" such that g € G,
sends (i1, ..., i) t0 (ix(1), - -, ig(). With this notation, ) Z;e; A--- Ae; is simplified as

i

> ( > sgn(a)/l{,(l-))e,-1 RN

1<5i<<iy <m \oeC,

As (ej A -Ae€)|<jc.ci<m 15 an orthonormal basis of A"V, we obtain that

I = vV#S, =il O
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