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Explicit uniform estimation of rational points
I1. Hypersurface coverings

By Huayi Chen at Paris

Abstract. We obtain an explicit uniform estimate for the number of rational points
in a projective plane curve whose heights do not exceed the degree of the curve.

1. Introduction

This article is a continuation of [12]. Let K be a number field and X be a sub-variety
of Pk of dimension d and of degree J. The purpose of this article is to establish the follow-
ing explicit estimate (see Theorem 4.2):

Theorem A. Let ¢ > 0 and D be an integer such that
D>max{(e +1)(207(d+1)+6—2),2(n—d)(6 — 1) +d + 2.

There is an explicitly computable constant C = C(e,0,n,d, K) such that, for any B = e*, the
set S\(X; B) of regular rational points of X with exponential height < B is covered by not

more than CB*99 4+ hypersurfaces of degree < D not containing X.

This theorem generalizes some results of Heath-Brown [16], Theorem 14, and Bro-
berg [6], Theorem 1, in the sense that we estimate explicitly the degree and the number of
the auxiliary hypersurfaces needed to cover the set of rational points with bounded height.

The strategy of Heath-Brown in the proof of [16], Theorem 14, consists of establish-
ing that a family of rational points having the same reduction modulo a “large” prime
number are contained in one hypersurface (not containing X) with “low” degree. This
idea is inspired by results of Bombieri—Pila [1] and Pila [22], and has been developed later
in [6], [7], (8], [9], [10], [14], [17], [18], [23], [24].

Suggested by Bost, we adapt the above idea into the framework of his slope method
(2], [3], [4]. Note that Bogomolov has asked a similar question on the possibility of replac-
ing the method of Heath-Brown by arguments in Arakelov geometry (see [13], Question
34). We consider the evaluation map from the space of homogeneous polynomials to the
space of values of these polynomials on a family of rational points. If the rational points
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in the family have the same reduction modulo some finite place p of K such that the norm
of p is big, then the (logarithmic) height of this evaluation map is very negative. Hence by
the slope inequality, the evaluation map cannot be injective and thus we obtain a non-zero
homogeneous polynomial whose image by the evaluation map vanishes. The desired hyper-
surface is obtained as the zero locus of the homogeneous polynomial.

The flexibility of the geometric framework (see Theorem 3.1) permits us to develop
several interesting variants. For example, instead of considering the reduction modulo a fi-
nite place p, we treat the case where the family of rational points has the same reduction
modulo some power of p. In other words, we can take a finite place p with relatively lower
norm and consider a family of rational points whose p-adic distances are very small. Such a
family is contained in a hypersurface of lower degree. This argument permits us to prove
that the constant C figuring in Theorem A depends on the degree of K over Q but not on
the discriminant. Another variant consists of taking into account the local Hilbert—Samuel
functions of the variety, which generalizes a result of Salberger [23], Theorem 3.2. This per-
mits us to sharpen the constant C in Theorem A in the case where X is a plane curve and B
is small. As a consequence, we obtain the following result.

Theorem B. Assume that X is an integral plane curve of degree 6. Then, for any ¢ > 0,
one has

#5(X;0) <x 677,
This gives an answer to a question of Heath-Brown [13], Question 27.

To obtain an explicit upper bound for the number and the degree of the auxiliary hy-
persurfaces, we need several effective estimates in algebraic geometry and in Arakelov ge-
ometry, which shall be recalled in the second section. In the third section, we explain the
conditions which ensure that a family of rational points lies in the same hypersurface of
low degree. Finally, in the fourth section, we estimate the number of hypersurface needed
to cover rational points; in the fifth section, we discuss the plane curve case.

We keep Notation 1-8 introduced in [12], §2. Remind that K denotes a number field
and Ok denotes its integer ring. We shall also use the following notation.

Notation. 9. Denote by n € N\{0} an integer and by & the trivial Hermitian vector
bundle of rank n + 1. In other words, £ = O%(Hl), and for any embedding ¢ : K — C, the
canonical basis of £ is an orthonormal basis of | - || .. See Notation 4 for the notion of Her-
mitian vector bundles.

10. Denote by £ the universal quotient sheaf on P, = P(€), equipped with the
Fubini—Study metrics.

11. Any point P = (xp : ...: x,) € P"(K) gives rise to a unique Og-point P € P(£).
The height of P (with respect to £) is by definition the slope (see Notation 6) of P*(L),
denoted by 4(P). Note that one has

| | "
W) =g (S tog max bl +5 5 10w,

peSpm Ok g K—C j=0
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See Notation 2 for the definition of the absolute values [-[, and |-[,. Define
H(P) :=exp([K : Q]i(P)). Remind that here the logarithmic height function / is absolute
(i.e., invariant under finite field extensions of K), while the exponential one H is relative.

12. For any integer D = 1, let Ep be the Og-module H(P(€), L®?), equipped with
the John metrics || - ||, ; associated to the sup-norm || - || We remind that the sup-norm
is defined as follows:

g,sup*

Vs e ED ®0K,(i C’ HsHogsup = SDE”I()C) HS(X)H(T'
xePl

The John norm | - ||, ; is @ Hermitian norm on Ep ®p, , C such that

5116, sup = lIsllo, s = V1k(ED) - [Is

ag,sup”’

D
Denote by r(D) the rank of Ep. One has r(D) = (n —1; )

13. Let X be an integral closed subscheme of P} = P(Ek). Let d be the dimension
of X and ¢ be the degree of X. Recall that one has J = deg(cl(EK)d - [X]). Denote by Z
the Zariski closure of X in P(&). The (relative) Arakelov height of X is denoted by /;(X).
Recall that

1

Ko des@@" ).

14. For any integer D > 1, let Fp be the saturation (in H(Z, £|$")) of the image of
the restriction map

ny.p: Epx = H'(P(Ex, LZ")) — H(X,LIR"),

namely Fp is the largest sub-Ogx-module of H(Z,£|2") containing Im(#y p) and such
that Fp x = Im(yy p)gx. We equip Fp with the quotient metrics (from the metrics of Ep)
so that Fp becomes a Hermitian vector bundle on SpecOk. Denote by r(D) the rank
of FD.

15. Let p be a maximal ideal of Ok with residue field F,. For any point in Z'(F,),
denote by O¢ the local ring of 2" at £ and by m. the maximal ideal of O;. Note that O is
a local algebra over Ok ,. Denote by H: : N — N the Hilbert—Samuel function of O;/pO:
(which is the local ring of Zf, at &), namely,

H; (k) = rke, (me/pO:)* [ (ms /p0:)F).

Let (qg(m))le be the increasing sequence of non-negative integers such that the integer
k € N appears exactly H:(k) times. Let Qz(m) = g¢(1) + - -+ + ge(m). Denote by u.: the
multiplicity of the local ring O;/pO;. Recall that one has

He (k) = (d’_“fl)!kd—l +o(k").
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16. For any real number B > 0, let S(X;B) be the subset of X (K) consisting of
points P such that H(P) < B (see Notation 11 for the definition of H(-)). Denote by
S1(X; B) the subset of S(X; B) of regular points. Define N(X; B) and N,(X; B) to be the
cardinality of S(X; B) and S;(X; B) respectively.

17. For any maximal ideal p of Ok, ¢ € Z(F,) and B > 0, denote by S(X; B, ¢) the
set of points P € S(X; B) whose reduction modulo p is &. Define

SiI(X;B,p)= U S(X;B,9),
cex(Fy)
¢ regular

where ¢ regular means that ¢ is a regular point of Z,, or equivalently, O¢/pO; is a regular
local ring.

18. More generally, for any maximal ideal p and any a € N\{0}, denote by Ap the
Artinian local ring Ok, /p“Ok,,. For any pomt ned (A ) denote by S(X; B, #) the set of
points in S(X; B) whose reduction modulo p“ coincides with 7. We shall use the fact that

Vae N\{0}, Vée Z2(F,), S(X;B,&= | S(X;B7).
nea(4\")
&=(mod p)

19. We introduce several constants as follows:
o 1 X
= (d+ 2 (S'(EY)) + 5 (d +2) log 1k(5°€)
) 0
+3 log((d +2)(n—d)) +§(d +1)log(n+ 1),

1
G = % log rk(S°€) + 5 log rk(A"1E) +log/(n— d)! + (n — d) logs,
C; = (l’l — d)C] + G

Recall that the constant C| has been defined in [12], (21)." With the notation of [12], The-
orem 3.8, the constant C, is just C>(E,n — d,0) (see also Remark 3.9 loc. cit.). Finally, the
constant C; appears in [12], Theorem 3.10. Recall that one has C; «, 4 0 (see Theorem 3.10
loc. cit.).

20. By the effective version of Chebotarev’s theorem (cf. [20], see also [25], Theorem
2) there exists an explicitly computable constant o(K) such that, for any real number x = 1,
there exists a finite place p € £, such that N, € (x,«(K)x]. This is an analogue of Ber-
trand’s postulate for number fields.

2. Reminders

We recall in this section several results that we shall use in the sequel. They are either
well known or described in [12].

! Since $° is a direct sum of Hermitian line bundles, the quantity o2 (T"*(E)) vanishes (see [12], §2.2).
Furthermore, when £ is trivial, one has fi,, (A" 7€) =0
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2.1. Let (P;);.; be a collection of distinct rational points of X (see Notation 13) and
D = 1 be an integer. Assume that the evaluation map f : Fp x — €D Pl.*£®D 1S an isomor-

phism (see Notation 14). Then the equality iel

AFp) = |5 Dh(Py) + H(A"®)p)

ri(D) |ict
holds. In particular, one has
ﬂ(FD 1 ri(
1 < A"
(1) D = Suph(P) Drl(D)h( /)
where 2(A"P)f) is defined as
WA ) = g (Stoel AP, + 5 1ol A" ).

A slight variant of this argument shows that, if (P;),_; is a family of rational points
of X such that

7 F 1
@) sup h(Py) < PmaFo) Ly,
et D 2

then there exists a hypersurface of degree D in P¢ not containing X which contains all ra-
tional points P;. See [12], Proposition 2.12, for details.

2.2. For any integer D = 1, one has the following estimates:

o (P - (o) 2 ner= e 26(7 1),

See [11] for the upper bound and [26] for the lower bound.
2.3. For any integer D = 2(n — d)(0 — 1) + d + 2, one has

A(Fp) d!
D = 52d+2)

Y

(4)

p h;(X) —log(n+1) — 24,

where /1;(X) is the Arakelov height of X. See [12], Theorem 4.8 and Remark 4.9, for details.

2.4. Since Fp is a quotient of Ep, one has (see Notation 12)

(5) ﬂ(FD) = ﬂmin(ED) = — Dlog(n + 1)

| —

We refer to [12], Corollary 2.9, for the proof. Note that this bound is much less precise than
(4). However, it works for any integer D = 1.
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2.5. For any integer D = 1, one has

f(Fp) <

(6) ) hE(X)—i—%log(n—l—l).

| =

See [12], Remark 4.11.
2.6. There exists a Hermitian vector subbundle M of S©@-D#-4)¢ such that
(i) fgin(M) = —(n— d)h;(X) — Cs,

(i1) the subscheme of P(£) defined by vanishing of M contains the singular loci of
fibres of 2 but not the generic point of %,

where the constant Cs is defined in Notation 19. This result has been proved in [12], Theo-
rem 3.10. In particular, the singular locus of X is contained in a hypersurface of degree
(0 — 1)(n — d) not containing X.

2.7. Suppose that P € X (K) is a regular point and P is the Og-point of P(€) extend-
ing P. For any maximal ideal p of Ok, if the reduction of P modulo p is a singular point of
Zr,, we write o, (P) = 1, else we write o, (P) = 0. We have shown in [12], Proposition 2.11,
that, for any real number Ny > 0, the following inequality holds:

(n—d)(d — Dh(P) + (n — d)h;(X) + C3
7) 2, ) = (log No)/K Q] ‘

In fact, it suffices to apply [12], Proposition 2.11, to the special case I = M, where M is as
in §2.6.

2.8. The following estimates of binomial coefficients will be used:

(]V—llcc7'+l)k §<JZ>§ (N—(kle)/2)k7 Nzkzl

The second inequality comes from the comparison of the arithmetic and the geometric
means:

N+(N=1)+-+(N—k+1)\*
‘ )

N(N—-1)---(N—-k+1) §(
3. Existence of the auxiliary hypersurface
The purpose of this section is to establish the following theorem.
Theorem 3.1. Let S = (p;);c; be a finite family of maximal ideals of Ok and

(@) € (N\{0})”. For each p;, let n; be a point in %(Ag')) (see Notation 18) whose reduc-
tion modulo p is denoted by &;. Assume that (;);. ; are distinct. Consider a family (P;), ; of
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rational points of Xx such that, for any i € I and any j € J, the reduction of P; modulo p;'j
coincides with n;. Assume that (see Notation 11, 14 and 15)

A(Fp) logri(D) 1 Q¢ (r1(D)) 4
8 h(P; — ! logN,’ .
®) e’ (P) < D T K :Q] ;g5 Dri(D) o8N
Then there exists a section s € Ep g which does not vanish identically on Xk and such that
P; ediv(s) forany i€l

This theorem generalizes a result of Salberger [23], Theorem 3.2, in two aspects. On
one hand, we treat projective varieties over a number field; on the other hand, we consider
a family of thickenings of points over finite places.

The proof of Theorem 3.1 consists of adapting the idea of Bombieri—Pila and Heath-
Brown in the framework of the slope method. Note that Broberg has generalized [16], The-
orem 14, to the number field case, which corresponds to the case where |/| =1 and a; =1
here. However, his method is different from ours. In fact, the slope method permits us to
avoid using Siegel’s lemma. Moreover, in (8), there appears only the degree of the number
field K but not the discriminant.

The following subsections are devoted to the proof of Theorem 3.1 and to discuss
several applications. We first estimate the heights of the determinants of some evaluation
maps. This stage is quite similar to the determinant argument of Bombieri—Pila and
Heath-Brown. Then we use the slope inequality to obtain the desired result. To apply the
theorem, we need explicit estimates of the functions Q¢ and ri(D), which we discuss in the
end of this section.

3.1. Estimation of norms.
Lemma 3.2. Let A be a ring and M be an A-module.

(i) If N is a sub-A-module of M such that M /N is generated by q elements, then for
any integer m = ¢, we have A" M = (A" IN) A (A'M).

i) f M=My>M,>--->M;> M > is a decreasing sequence of sub-A-
modules of M such that, for any i = 1, M;/ M., is isomorphic to a principal ideal of A,
then for any integer r = 1, we have

ANM=MAMA- - AM,.

Proof. (ii) is a consequence of (i). To prove (i), by induction it suffices to establish
the case where m = r + 1. Since M /N is generated by ¢ elements, we have A" (M /N) =0
(see [5], Chapter I11, §7, n° 3, Proposition 3). Furthermore, since the kernel of the canonical
homomorphism of exterior algebras AM — A(M/N) is the ideal generated by N (loc. cit.),
we obtain that A" 'M = N A (A'M). O

Lemma 3.3. Let k be a field equipped with a non-archimedean absolute value | - |, U
and V' be two k-linear ultranormed spaces of finite rank and ¢ : U — V be a k-linear
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homomorphism. Let m be the rank of U. For any integer 1 < i < m, let

b=l gl
codim W=i—1

If i > m, let 1; = 0. Then for any integer r > 0, we have

©) 1Al = Ei[-

Proof.  Let ¢ > 0 be an arbitrary positive real number. We shall construct a decreas-
ing filtration of U,

(10) U=U20,2 2 U,

such that |||, || < 4; +&. By definition, there exists a vector x,, € U of norm 1 such that
[|0(xm)|| < Zm + &. Suppose that we have chosen Uiy > - -+ > Uy, such that [lp[y, || < 4 +¢
for any i + 1 < j < m. Since U, has codimension i in U, the set of vectors x € U of norm
1 with ||¢(x)|| < 4; + ¢ can not be contained in U;;;. Pick an element x; € U\ U;;; of norm
1 with ||g(x;)|| = 4; +&. Let U; be the linear subspace generated by x; and Uiy;. Since the
norm of U is ultrametric, one obtains ||¢|y || < 4; + & By induction we can construct the
filtration as announced. By Lemma 3.2, one obtains

A"l = ljll(li +é).

Since ¢ > 0 is arbitrary, the proposition is proved. []

3.2. A preliminary result on local homomorphisms. Let p be a maximal ideal of Ok
and ¢ be an Fy-point of 2. Suppose given a family (f;),<,<,, of local homomorphisms of
Ok, p-algebras from O (see Notation 15) to Ok ,. Let E be a free sub-Og .p-module of finite
type of O¢ and let f be the Ok p-lmear homomorphism (filg);<;<pm: £ — O - As fiisa
homomorphism of Og p-algebras it is surjective. Let a be the kernel of f1 One has
O¢/a = Ok, . Furthermore, since O¢ is a local ring of maximal ideal mg, one has mg > a.
Moreover, since f is a local homomorphism, the equality a + pOs = m¢ holds. For any
integer j = 0, a//a/*! is an Oy /a = Ok ,-module of finite type, and

Fr ®o,, (a//a7!) = (a/p0:)!/(a/p0e) ™" = (me/p0:)! [ (me/pO:) .

By Nakayama’s lemma, the rank of a’ '/a/t! over Ok, is equal to the rank of
(me/pO:) [ (mz/pO:) ! over F,, that is, H¢(j) according to Notation 15. The filtration

Oé:aojal D'~-Daj3aj+l o BRI
of O induces a filtration

(11) F:E=Enad®>Enad > . sEnd sEndt >...

of E whose j-th subquotient E n a//E n a/*! is a free Ok ,-module of rank < H:(j).
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Assume that ¢ € N\{0} is such that the reductlons of f; modulo p? are the same (in
other words, the composed homomorphisms O LA Ok.p» — Ok p/p“Ok , are the same),
then the restriction of f on E N a’/ has norm < N, ~Ja_In fact, for any 1 <i < m, one has
fi(a) = p“Ok , and hence fi(a’/) = pYOk .

By Lemma 3.3, we obtain the following result.

Proposition 3.4. Let p be a maximal ideal of Ox and &€ Z(F,). Suppose that
(fi)1<i<m is a family of local Ok -linear homomorphisms from Q¢ to Ok ,, whose reductions
modulo p® are the same, where a € N\{0}. Let E be a free sub-Ok ,-module of finite type
of Oz and = (filg)<;<m Then, for any integer r = 1, one has

(12) 1Ak ]| < N, &0,

where N, is the degree of F, over its characteristic field. See Notation 15 for the definition

of Q.

Proof. Consider the filtration (11) above. The restriction of f on Ena’/ has
norm < N, 7, which implies that (see Notation 15 for the definition of ¢¢)

; < N—4()a
erclfI;K HfK‘WH = Np ’
codim W=j—1
where we have used the fact that rk(E n a/) — rk(E n a/*') < H:(j). The inequality (12)
then follows from Lemma 3.3. []

3.3. Proof of Theorem 3.1. Let D =1 be an integer. Let Fj and r(D) = rk F be as
in Notation 14. Assume that the section predicted by the theorem does not exist. Then the
evaluation map f : Fp ¢ — €D P; Lk is injective. By possibly replacing / by a subset, we

iel
may suppose that f is an isomorphism. For any embedding ¢ : K — C, one has

Dy oA, = Togl 1, = Tog /i (D),

where the second inequality comes from the definition of metrics of John (see Notation 12).

Furthermore, f is induced by a homomorphism of Og-modules Fp — @ P; L®P where
iel

P; denotes the Og-point of Z extending P;. Hence for any finite place p of K, one has

logl| A", < 0.

Let j e J. For each i € I, the Og-point P; defines a local homomorphism from O, to
Ok, p, which is O, -linear. By taking a local trivialization of £ at &;, we identify Fp with a
sub- (’)K p,-module of O,. Proposition 3.4 then implies that

logl|A"P)f ||, < —Q¢ (r1(D)) log Ny

We then obtain (see §2.1)

~/ T » b
ﬂ(gD) < S,‘j? h(P;) + i logri (D) — [Kl Ql 7o Q%S:I((D)))

logN;‘/.’7
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which leads to a contradiction. Thus the evaluation homomorphism Fp x — @ P;‘E®D is
iel

not injective. In other words, there exists a homogeneous polynomial of degree D which

is not identically zero on X but vanishes on each P;.

3.4. Applications. Let p be a maximal ideal of Ok and ¢ be a rational point of ZF,.
Recall (see Notation 15) that O denotes the local ring of 2 at £, m: denotes its maximal
ideal, and the local Hilbert—Samuel function of & is defined as

He (k) := rkp, ((me/pOe)* / (me/p02)* ).

In some particular cases, the local Hilbert—Samuel function of ¢ can be explicitly
estimated.

(i) If & is regular (i.e., the local ring O:/pO; is regular), then one has

H:(k) = (k—;iz 1) for any k = 0.

(i) Assume that the local ring O:/pO; is one-dimensional and Cohen—Macaulay
(that is, mg/pO; contains a non zero-divisor of O:/p0;), then by [21], Theorem 1.9, one
has H:(k) < p: for any integer k = 0, where y: denotes the multiplicity of the local ring
O¢/pO¢. Moreover, if k = p: — 1, then one has He(k) = - (see [19], Theorem 2).

Proposition 3.5.  Let p be a maximal ideal of Ok, & be a rational point of Zy,, and r be
an integer, r = 1.

(i) If the Fy-point ¢ is reqular, then (see Notation 15 for the definition of Q)

ar1 T

(13) 0:(r) > (d1)

() Ifd = 1 and & is Cohen—Macaulay, then

r? r
(14) Qc(r) = 2—%—2—%

Proof. Let U; be the partial sum function of H:. Namely,

One has

0:(U-(K)) = 32 JH:())

J=0

Moreover, if r € (Us(k — 1), Us(k)], then one has Qs (Us(k — 1)) < Q¢(r) < Q¢ (Ue(k)).
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(1) In the case where ¢ is regular, one has

1 w5050 = (0)
Therefore
o:(veh) =32ty = (V4 4 ) = na (VT ) =a (G

Let r be an integer in (Uz(k — 1), Us(k)]. One has

(16)  Qc(r) = Qe(Uelk — 1)) + k(r — Us(k — 1))

k+d—-1 k+d—-1 k+d
() (T = (00)
k+d

d
:kr—d—HUf(k—l) >d—H(k—1)V,

where in the last inequality, we have used the estimate Us(k — 1) < r. Note that (see §2.8)

d
r < Us(k) = <kji‘d> < (k+(d; 1)/2)

implies

(17) k= (rd))i — (d +1)/2.
Combining with (16), we obtain that (13) holds.

(i) Assume that d =1 and O:/pO; contains a non zero-divisor, then one has
1 < He(k) < p: for any integer k = 1. Let (ax),», be the increasing sequence of non-

negative integers such that the integer 0 appears exactly one time, and other integers appear
exactly u: times. Note that one has g¢(k) = a; for any k € N\{0}. Hence

0:(1) =34 <>zk§ak EAA+) + A+ 1) =1 - ped)

=A+1)(r—-1)— A(A +1)=A+1)(r—1-u:A/2),
where 4 = V;—IJ Using the fact that
¢

r—1 pe—1 r—1
He He He

we obtain
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Remark 3.6. When d = 1, the estimate (13) is less precise than (14). The reason is
that in the last inequality of (16), we have used the estimate U:(k — 1) < r but not the
more precise one Usg(k — 1) <r—1.

Corollary 3.7.  Let (p;);.; be a finite family of maximal ideals of Ok and & > 0. For

any jeJ, let ae N\{0}, ¢ € X (Fy,) be a regular rational point of Xy, and 1; € %’(A,(Jf"))
whose reduction modulo p; is &;. If '

(13) X logNy = (1+0)(ogB+ [K : Qlogln + 1)+,
jeJ

then, for any integer D such that

(19) D> (e +1)(67i(d+3)/246-2),
there exists a hypersurface of degree D of Pk not containing X which contains
n S(Xa B7 ’7/)
jeJ

Proof. Assume that such hypersurface does not exist. By Theorem 3.1, one has

logB _ A(Fp) logri(D) 0: (r1(D)) log Ny
D T2

(20) K : Q] 2D ‘e Dr(D) [K:Q]

1\

Moreover, since ¢; is regular, Proposition 3.5 shows that

1 d 1 d+3
O (r1(D)) 2 (d!)dd+ lrl(D)”d — 2d—:_2dr1(D).
Hence
Q: (r1(D)) > n(D)  (d+3)d
Dr(D) ~ 7 d+1 D (2d +2)D°

By a result of Sombra recalled in §2.2, one has (for D = ¢ — 2)

(D —d+2)¢

D+d+1> B (D—5+d+1> 5 <D—6+d+j)
d!

”1(D>Z< d+1 iv1 )T x d

J=1
Combining with (5) and the trivial estimate r, (D) < (n + 1)”, (20) implies

1\

log B

d D-0+2 (d—|—3)d> log Ny

1 1
10g(n+1)—510g(”+1)+(5“’d+1 D (2d +2)D) i [K : Q)

Or equivalently

1o d logN,  logB logNy (1 d d+3
5 s 1 ))Dp < iy 52+ 22 q).
<ld+1];[K:@] K. q ognt )) —];[K:@](dd+l( )t 202 )
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By the hypothesis (18), the left side is not less than

e 1 d logN{,lf’
! .

l+e d—|—1]§,[K:@] ’

which implies that
D< (e +1)(679(d+3)/2+5—2).
This contradicts (19). [

Corollary 3.8.  Assume that 2" is Cohen—Macaulay and d = 1. Let (v;);.; be a finite
family of maximal ideals of Og and & > 0. For any je€J, let a; e N\{0}, & € Z'(Fy,) and
;€ %(Aéfj)) whose reduction modulo p; is ;. If

log Ny
(21) > ———=(1+¢)

(log B+ [K : Q]log(n + 1)),
jes M

SRS

then for any integer D such that
(22) D>(1+eH)d—-2+07",

there exists a hypersurface of degree D of P" not containing X which contains () S(X; B, n;).
jeJ

Proof. The proof is quite similar to that of Corollary 3.7. By Proposition 3.5, one
has the estimate

O5(n(D) _ n(p) 1
Dri(D) = 2usD Zuij'

Assume that the hypersurface does not exist. By Theorem 3.1, one has

los B log N/
o8 +log(n+1) =3 £ p”(

5 D-5+2 1
K : Q] =K Q ' B ’

2/15_,- D 2,uéjD

or equivalently

logNy &  logB logNy  (5(6—2) 1
D o 0 982 1)) < s ).
Q;mmmm@[Kmm %w+>)_z : _< 2 +D

By the assumption (21), one obtains

e Zlonga/_’ ) > log Ny '52—25—1—1
I+eic[K: Q] 2uy ~ jey [K: Qug, 2 ’

D<(1+ehH@—-24071.

The last formula leads to a contradiction. []
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4. Covering rational points by hypersurfaces

In this section, we explain how to suitably cover S;(X; B) and S(X; B) by hypersur-
faces of low degree. If p is a maximal ideal of Ok and & is a singular rational point of
Z (Fy), there seems to be no general explicit estimate of the local Hilbert—Samuel func-
tion Qs> The idea of Heath-Brown is to consider only regular points. The difficulty then
comes from the fact that the reduction modulo p of a regular point P in X (K) is not nec-
essarily regular. Hence we need to estimate the “‘smallest”” maximal ideal p such that P spe-
cializes to a regular point modulo p. This has been obtained in [16] and in [6] by using the
Jacobian criterion. Here we prove that the singular loci of fibres of 4 are actually con-
tained in a divisor whose degree and height are controlled.

Lemma 4.1. Let Ny > 0 be a real number and r the integral part of the number

(n—d)(0—1)log B+ ((n—d)h;(X) + C3)[K : Q)
log Ny

(23) +1,

where the constant Cs is defined in Notation 19. If py, ..., p, are r distinct finite places of K
such that N, = Ny for any i, then

1

S1(X;B) = U Si1(X; B, p;).
=1

Proof. With the notation of §2.7, if P is a rational point in S;(X; B) which does not
lie in any S (X; B, p;), then one has a, (P) = 1 forany i = 1,...,r. Hence, by §2.7, one has

(n—d)(6 — Dh(P) + (n — d)h(X) + Cs
r= )= (og N/ K Q] ’

which leads to a contradiction. []

Theorem 4.2. Let ¢ > 0 be an arbitrary positive real number. Let D be an integer such
that

D>max{(e ' +1)(079(d+3)/2+5—2),2(n—d)(6 — 1) +d +4}.
There exists an explicitly computable constant C(¢,0,n,d, K) such that, for any B = ¢°, the
set S|(X;B) is covered by not more than C(e,0,n,d, K)B+9° 10 hypersurfaces of de-
gree D not containing X.

Proof. In the first stage, we assume that

(2d +2)**! 5[ logB
d! K : Q)

3
hp(X) < —|—§10g(n—|—1)+2d .

2 In the case where 4 is Cohen—Macaulay, there are explicit estimates (see for example [27]). However,
they are far from optimal.
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Let M € N\{0} be the least common multiple® of 1,2,...,[K : Q]. Let Ny € (0,+00) be
such that

1 d+1
logNg = (1 4+¢)074 dj\_l (log B+ [K : Q]log(n+1)).

Let r be the natural number as in Lemma 4.1. Note that one has

A1
r < 1 ogB—i—Az+17
log Ny

where

d+1
A =m—d)o—1) —s—%(n—d)é,

Ay =K : @]<c3 +(2d+di!2)d+15<g log(n + 1) +2d>>.

Recall that the constant Cs; is defined in Notation 19. Since we have assumed that
log B = ¢, the value of r is bounded from above by a constant 43 which depends only
on M, ¢, n, d and o:

A 14
Ay = M 1te A

(1+e)07i(d +1)/d

By Bertrand’s postulate, there exist r distinct prime numbers py,..., p, such that
No < pi £2'Nyforanyie {1,...,r}. We choose, for each i, a maximal ideal p; of Ok lying

r

over p;. By Lemma 4.1, one has S;(X; B) = |J Si(X; B, p;). Note that, for any i, N, is a
i=1

power of p; whose exponent f; divides M (since f; < [K : Q]). Let a; = M /f:.

Let & be an arbitrary regular [, -point of Zf, . By Corollary 3.7, we obtain that, for
any y € & (A )) whose reduction modulo p;is &, S (X; B,n) is contained in a hypersurface
of degree D not containing X. Note that there exists at most N, (l_ —1d points in Z'(A4 (I_ ) (see
Notation 15) whose reduction modulo p; equals &; and the cardinal of Z'(F, ) does not ex-
ceed 5dN;i . Hence S (X; B, p;) is covered by at most

24 SAN® = 5dp®/* = sdpMd < 2™MI5aN M
P; 1

hypersurfaces of degree D not containing X . Therefore, S;(X; B) is covered by at most

roo ) . ‘—‘l
5dN0Md Z 21Md é édrerd«n + 1)[K.@]B)(1+ )0 d(d+1)
i=1

3 One has 2/€¢) < M < [K : Q™9 See (28], p. 30, for a proof.
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such hypersurfaces. So the theorem is proved with the constant
N
(25) Cle,6,n,d, K) = 6dA327"5M (n 4 1)1H90 (d+1IK:Q]

Now we treat the case where

log B d 3
K Q] " 50d+2)™ hy(X) =3 log(n +1) = 2¢.

By §2.1, inequality (2) and §2.3, we obtain that the set S(X; B) is contained in a hypersur-
face of degree D in P” which does not contain X. The theorem is also true in this case. []

Corollary 4.3. With the notation of Theorem 4.2, assume that d = 1. For any positive
real number B = e¢, one has

(26) #S(X7B) = (C(&é,n?d7 K) + 1)5DB<1+£)2/{;,

Proof. By Bézout’s theorem, the intersection of each hypersurface in the conclusion
of Theorem 4.2 and X contains at most D rational points. Hence the corollary follows
from Theorem 4.2 (see also §2.6). [

Remark1 4.4. (i) Observe that one has A4 «,s0 and A, <, ,0 and hence
A3 <5400 143, Therefore, one has

1

log C(e,0,n,d,K) < k.0 4.

Moreover, the constant C(e,d,n,d, K) does not depend on the discriminant of K (but on
the degree of K over Q).

(i) The original strategy of Heath-Brown corresponds essentially to the case where
a; =1 for any i. By taking a larger Ny, his strategy also allows to obtain an explicit
upper bound with the same exponent. However, the choice of maximal ideals forces us
to use Bertrand’s postulate for the number field K where the discriminant of K is inevitable,
according to a counter-example of Heath-Brown that Browning has communicated to
me.

5. The case of a plane curve
In this section, we assume that X is an integral plane curve (thatis, d = 1 and n = 2).
Note that the model 2 of X is Cohen—Macaulay since it is a subscheme of Pg_ defined
by one homogeneous equation. We obtain, for “small” value of B, an explicit estimate of

#S(X; B).

Theorem 5.1.  Assume that d =1 andn =2. Let D = [2(6 — 2 +0° Y] + 1. Then, for
any real number B € (e, e°"), one has

(27) #S(X; B) < C4(K, BYoD,
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where

logB + (K : Q]log2

\/log B

Cy4(K, B) = (\/log B+ 1)a(K)*V'°e5 2 ex

log B+1
0o—1
10 B log B+1 ’
R P

a(K) being the constant introduced in Notation 20.

Proof. Let Ny € (0,4 00) be such that

log B+ [K : Q]log2

log Ny =4
g0 log B

Let r = [y/log B]. Choose a family (p,;);,_, of distinct maximal ideals of Ok such that
Ny =N, = a(K)'Ny, where a(K) is the constant of Bertrand’s postulate introduced in

Notation 20. For any (&;);_, € H X (Fy,), let
i=1
Note that one has

28) sxB=|U U SX:BH|lv U SX:BE)L).

=1 ¢ex(F,) Lo
E)ie [1Z(F

oy @)fae [12(E)
,uii>(5/\/logB

Let p e {py,...,p,}. Assume that ¢ is an F,-point of 2, whose multiplicity s satis-
fies u; < 6/+/log B. One has

log Np log Ny

pe  — /+/logB 5

By Corollary 3.8 (the case where ¢ = 1 and |J| = 1), there exists a hypersurface of degree D
not containing X which contains S(X; B, ). Note that the cardinal of the set

(logB + [K : Q]log2).

Ulee () e <0/viog B}

does not exceed

[\S}

< ra(K)” N¢.

lIA
™-

I
—_

(29) S #PAF,) < SN
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Letie{l,...,r}. By Bézout’s theorem (see [15], 5-22, p. 115), one has

(30) > pelpe—1) =00 - 1).

EeX(Fy,)
Hence
0—1
5 — \/logB’

which implies that the number of r-tubes (&;);_, € H Z (Fp,) with u: = 6/+/log B does not
exceed

Y
(31) (log B)' ( W)

Note that the inequality (30) also implies that u: <6 for any & e Z(F,,). Therefore, if

#{¢e 2(Fy,) |u: >6/+/log B} < (log B)

(&);_; is an element in [] Z'(F,,), then one has

i L > rlOgéNO > g(logB+ K : Q]log2),

where the second inequality comes from the estimate r = /log B. Still by Corollary 3.8,
one obtains that S (X : B, (fi);zl) is contained in a hypersurface of degree D not contain-
ing X.

By (28), (29) and (31), the set S(X; B) is contained in a family of hypersurfaces of
degree D not containing X, and the number of the hypersurfaces in the family does not
exceed

ra(K)* N2 + (log B) ( o1

0—+/logB

By Bézout’s theorem the intersection of each hypersurface with X contains at most 6D ra-
tional points. Therefore, we obtain

) = C4(Ka B)

4+S(X; B) < C4(K,B)oD. [

Remark 5.2. The logarithmic of the first summand of C4(K,0) is

logd log2
glogd + K AJlog2 5 /iog5+2)loga(K) + log(y/logd + 1) « /logd (6 — o0),

v/logod

while the logarithmic of the second summand is

(v/logo + 1) (loglog5 + log< < 4/logd -loglogd (0 — o0).

=)
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Hence there exists a constant Mg which only depends on K such that

C4(K, 5) < MK\/log()‘»loglog()‘—h/log()‘ «x 5¢
for any & > 0.

Corollary 5.2. Assume that X is an integral plane curve of degree 6. Then, for any
&> 0, one has

#S(X;0) <x 677
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