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1. Introduction

The study of Euclidean lattices has a long history and has many applications
in diverse branches of mathematics such as number theory, Lie theory, convex
geometry, cryptography etc. By definition a Euclidean lattice is a discrete
subgroup of a Euclidean space which has maximal rank over Z. Equivalently,
we can also view a Euclidean lattice as a free abelian group of finite rank E,
equipped with a Euclidean norm on ER = E ⊗Z R. Among the invariants of
Euclidean lattices, the successive minima of Minkowski have a central interest
in geometry of numbers. Given a Euclidean lattice (E, ‖.‖) of rank r, the ith
minimum of (E, ‖.‖) is defined as the smallest r > 0 such that the lattices
points of length 6 r span a vector subspace of ER whose rank is at least i.
In order to facilite the presentation of the article, we denote by ν̂i(E, ‖.‖) the
opposite logarithmic version of the ith minimum, defined as

ν̂i(E, ‖.‖) := − ln inf{r > 0 : rk({x ∈ E : ‖x‖ 6 r}) > i}.
The family

spanZ({x ∈ E : ‖x‖ 6 r}), r > 0
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form a flag of sub-Z-modules of E, which is called the Minkowski reduction of
the Euclidean lattice (E, ‖.‖).

Motivated by the similarity of arithmetic properties of number fields and
function fields, Stuhler [25] has considered Euclidean lattices as the analogue
of vector bundles over a smooth projective curve and developed a Harder-
Narasimhan theory in the arithmetic setting. The starting point is the Arakelov
degree function. Let (E, ‖.‖) be a Euclidean lattice. The Arakelov degree of
(E, ‖.‖) is defined as

(1.1) d̂eg(E, ‖.‖) := − ln‖e1 ∧ · · · ∧ en‖det,

where {ei}ni=1 is a basis of E over Z, and ‖.‖det is the determinant norm on
det(ER) associated with ‖.‖, defined as

∀ η ∈ det(ER), ‖η‖det := inf
(x1,...,xn)∈En
η=x1∧···∧xn

‖x1‖ · · · ‖xn‖.

If {ei}ni=1 is a basis of E over Z, then ‖e1 ∧ · · · ∧ en‖det identifies with the
volume of the fundamental domain

{t1e1 + · · ·+ tnen : (t1, . . . , tn) ∈ [0, 1]n}.

Therefore the value of (1.1) does not depend on the choice of the basis of E
over Z. It is actually the opposite logarithmic version of the covolume of the
lattice in classic geometry of numbers. Arakelov degree is also similar to the
notion of degree in the setting of vector bundles over a smooth projective curve.
In particular, if

0 // E′ // E // E′′ // 0

is a short exact sequence of free abelian groups of finite rank, ‖.‖ is a Euclidean
norm on E, ‖.‖′ is the restriction of ‖.‖ on E′R, and ‖.‖′′ is the quotient norm
of ‖.‖ on E′′R, then the following equality holds

(1.2) d̂eg(E, ‖.‖) = d̂eg(E′, ‖.‖′) + d̂eg(E′′, ‖.‖′′).

Moreover, it can be shown that, if E1 and E2 are two subgroups of E, then
the following inequality holds

(1.3) d̂eg(E1 ∩ E2) + d̂eg(E1 + E2) > d̂eg(E1) + d̂eg(E2),

where for any subgroup F of E, the expression F denotes the Euclidean lattice
consisting of F and the restriction of ‖.‖ on FR.

Assume that the Euclidean lattice E = (E, ‖.‖) is non-zero, the slope of (E)
is defined as

µ̂(E) :=
d̂eg(E)

rkZ(E)
.
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Let µ̂max(E) be
sup

{0}6=F⊂E
µ̂(F ),

where F runs over the set of all non-zero subgroups of E. The quantity
µ̂max(E) is called the maximal slope of E. If for any subgroup F of E, µ̂(F )
is bounded from above by µ̂(E), or equivalently µ̂(E) = µ̂max(E), we say that
the Euclidean lattice E = (E, ‖.‖) is semi-stable. By using the relations (1.2)
and (1.3), Stuhler has proved that there exists a unique subgroup Edes of E
such that

µ̂(Edes) = µ̂max(E)

and which contains all subgroups F satisfying µ̂(F ) = µ̂max(E). The subgroup
Edes equipped with the restriction of ‖.‖ is called the destabilising sublattice of
the Euclidean lattice E. This construction allows to obtain a flag of subgroups
of E

(1.4) 0 = E0 ( E1 ( . . . ( Ed = E

such that Ei/Ei−1 is the destabilising sublattice of E/Ei−1. It is also the
unique flag of subgroups of E such that each subquotient Ei/Ei−1 is free and
that the following inequalities hold

µ̂(E1) > . . . > µ̂(Ed/Ed−1).

This is an arithmetic analogue of a result of Harder and Narasimhan (see [20]
Lemma 1.3.7). For this reason, the flag (1.4) is called the Harder-Narasimhan
filtration of E. The construction above allows to define another series of
arithmetic invariants of Euclidean lattices, called successive slopes. Let E =
(E, ‖.‖) be a non-zero Euclidean lattice and n be the rank of E over Z. Let

0 = E0 ( E1 ( . . . ( Ed = E

be the Harder-Narasimhan filtration of E. We denote by {µ̂i(E)}ni=1 the
decreasing sequence of real numbers, in which µ̂(Ej/Ej−1) appears exactly
rkZ(Ej) − rkZ(Ej−1) times. One can also interpret µ̂i(E) as the slope on the
interval [i, i + 1] of the Harder-Narasimhan polygone of (E, ‖.‖), which is the
piecewise affine function on [0, rkZ(E)] whose graph is the upper boundary
of the convex envelop of points of coordinates (rkZ(F ), ‖.‖F ), where F is a
subgroup of E and ‖.‖F is the restriction of ‖.‖ on FR. Later this theory
has been developed by Grayson [18] in the setting of lattices over an algebraic
integer ring. Inspired by these results, Bost [4] has proposed a slope method in
the setting of Hermitian vector bundles over an arithmetic curve, and has used
it as a tool to interpret the approach of Masser and Wüstholz [22] to Faltings’
finiteness theorem [12, 13] on the set of isomorphism class of abelian varieties
over a number field which are isogenous to a given abelian variety. The slope
method has also been applied in [5] (see also the survey lecture [6]) to study the
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algebraicity of formal schemes over a number field and applications to several
problems of Diophantine geometry, including the conjecture of Grothendieck-
Katz [21]. The slope theory has been generalised by Gaudron [14] to the
setting of adelic vector bundles over a global field, in taking into account
non-Hermitian norms over Archimedean places, and non-algebraic norms over
finite places. More generally, as shown in [11, §4.3], an analogue of Harder-
Narasimhan theory also holds for adelic vector bundles over an M -field in the
sense of Gubler [19].

Compared to Minkowski’s successive minima, the successive slopes have
several advantages in view of applications to Diophantine geometry. First,
the successive slopes remain unchanged by a finite extension of the number
field (see [4] Proposition A.2). Second, the successive slopes behave better by
passing to dual. More precisely, if (E, ‖.‖) is a non-zero Euclidean lattice of
rank n ∈ N>0, for any i ∈ {1, . . . , n} one has

(1.5) µ̂i(E, ‖.‖) + µ̂n+1−i(E
∨, ‖.‖∗) = 0,

where ‖.‖∗ denotes the dual norm of ‖.‖ on E∨R
∼= (ER)∨. If we replace

successive slopes by successive minima in the above formula, in general the
equality does not hold and we only have an inequality of the form

ν̂i(E, ‖.‖) + ν̂n+1−i(E
∨, ‖.‖∗) 6 0.

The lower bound of ν̂i(E, ‖.‖)+ν̂n+1−i(E
∨, ‖.‖∗) is a deep problem in geometry

of numbers, known as transference problem. Third, by the additivity of the
Arakelov degree function (1.2), for any non-zero Euclidean lattice E of rank
n ∈ N>0, the following equality holds

d̂eg(E) =

n∑
i=1

µ̂i(E).

If we replace the successive slopes by successive minima, the equality does
not hold in general. It is however possible to estimate the difference between
the Arakelov degree (which is the sum of successive slopes) and the sum of
successive minima: Minkowski’s second theorem can be interpreted as

(1.6) 0 6 d̂eg(E)−
n∑
i=1

ν̂i(E) 6 n ln(2)− ln(vn),

where vn is the Lebesgue measure of the unit ball in Rn.
In the works mentioned above, the slopes play the role of Minkowski’s min-

ima in the geometrisation of Diophantine approximation. Hence the compari-
son of these series of invariants becomes an interesting problem. This problem
is not only important in the philosophic aspect to confirm the adequacy of
the slope method to Diophantine problems, but also useful in the explicit
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estimation of error terms appearing in a Diophantine argument. In the lit-
erature, Soulé [24, §1.2.5] has firstly pointed out, without providing concrete
estimates, that given a Euclidean lattice E, for any i ∈ {1, . . . , rkZ(E)}, µi(E)
and νi(E) should be close. However, compared to Minkowski’s second theorem
(1.6), which could be considered as the comparison between the averages of
slopes and minima, the comparison between each slope and the corresponding
Minkowski’s minimum turns out to be much harder. The first explicit com-
parison between successive slopes and minima has been given by Borek [2] in
the setting of Hermitian vector bundles over an arithmetic curve. For the sake
of simplicity, we recall his result for Euclidean lattices. Let E be a Euclidean
lattice of rank n ∈ N>0. Borek has shown that, for any i ∈ {1, . . . , n}, one has

(1.7) 0 6 µ̂i(E)− ν̂i(E) 6 i
(

ln(2)− 1

n
ln(vn)

)
,

where vn is the Lebesgue measure of the unit ball in Rn. His method consists
in applying Minkowski’s second theorem to sub-lattices of (E, ‖.‖). Note that
the case where i = 1 could be considered as an interpretation of Minkowski’s
first theorem. However, in view of (1.6), which can be rewritten as

0 6
n∑
i=1

(
µ̂i(E)− ν̂i(E)

)
6 n ln(2)− ln(vn),

the upper bound in (1.7) seems to be too weak when i is large.
In [9], a uniform upper bound for the difference between slopes and minima

has been announced and the details of proof were given in [10]. The main idea
is to show that the difference between the last slope and the last minimum
dominates that of other slopes and corresponding minima. More precisely, we
have the following result (see [10, Theorem 3.7], see also [16, §4.2]).

Theorem 1.1. — Let δ : N>0 → R>0 be the map sending any n ∈ N>0 to

sup{µ̂n(F )− ν̂n(F ) : F is a Euclidean lattice of rank n}.

Then, for any non-zero Euclidean lattice E and any i ∈ {1, . . . , rkZ(E)} one
has

µ̂i(E)− ν̂i(E) 6 δ(rkZ(E)).

Combined with the transference theorem of Banaszczyk [1], which implies
that

(1.8) δ(n) 6 ln(n),

we deduce from Theorem 1.1 the following result. For any non-zero Euclidean
lattice E and any i ∈ {1, . . . , rkZ(E)}, one has (see [10, Theorem 1.1])

(1.9) 0 6 µ̂i(E)− ν̂i(E) 6 ln(rkZ(E)).
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Note that Stirling’s formula implies that

ln(2)− 1

n
ln(vn) >

ln(n)

2
− 1

2
ln
(eπ

2

)
+

1

2n
ln(πn).

Hence the upper bound of (1.9) improves considerably the result of Borek when
i/n� 1, and is better than the upper bound of Borek once i > 8.

The proof of Theorem 1.1 relies on a general principle of comparison between
R-filtrations on a finite-dimensional vector space, which can be found in [9,
Lemma 1.2.1]. The R-filtrations on a finite-dimensional vector space can be
identified with ultrametric norms on the vector space, where we consider the
trivial absolute value on the underlying field. Let k be a field, equipped with
the trivial absolute |.|0, namely

∀ a ∈ k, |a|0 =

{
1, if a 6= 0,

0, if a = 0.

If V is a finite-dimensional real vector space, as ultrametric norm on V , we
refer to a map ‖.‖0 : V → R>0 which satisfies the following conditions:
(1) for any a ∈ k and x ∈ V , one has

‖ax‖0 = |a|0 · ‖x‖0 =

{
‖x‖, if a 6= 0,

0, if a = 0,

(2) for any (x, y) ∈ V × V , the strong triangle inequality

‖x+ y‖0 6 max{‖x‖0, ‖y‖0}

holds,
(3) for x ∈ V , ‖x‖0 = 0 if and only if x is the zero vector.

Such ultrametric norms seem to be very simple. In particular, they induce the
discrete topology on the real vector space. However, they actually describe very
interesting structures, which are closely related to the arithmetic geometry of
Euclidean lattices.

The rest of article is organised as follows. In the second section, we explain
the geometry of ultrametrically normed vector spaces over a trivially valued
field. In the third section, we give a simplified version of Banaszczyk’s proof of
the transference theorem. In the fourth and last section, we explain the variants
and generalisations of the comparison result and further research topics.

2. Geometry of trivially valued fields

Let k be a field. In this section, we consider the trivial absolute value |.|0
on k, which takes constant value 1 on k \ {0}. If V is a finite-dimensional
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vector space over k, equipped with an ultrametric norm ‖.‖, for any R > 0,
the central ball of radius R in V , defined as

(2.1) BR(V, ‖.‖) := {x ∈ V : ‖x‖ 6 R},

is a k-vector subspace of V . In fact, the strong triangle inequality shows that
BR(V, ‖.‖) is invariant by addition, and the fact that we consider the trivial
absolute value on k implies that BR(V, ‖.‖) is stable by multiplication by a
scalar in k.

Definition 2.1. — Let (V, ‖.‖) be a finite-dimensional vector space over k.
For any i ∈ {1, . . . ,dimk(V )}, let

λi(V, ‖.‖) := sup{t ∈ R : rkk(Be−t(V, ‖.‖)) > i}.

The sequence
λi(V, ‖.‖), i ∈ {1, . . . ,dimk(V )}

is decreasing. They are analogous to successive minima of Euclidean lattices.

Interestingly, the construction of Harder-Narasimhan filtration is also valid
for ultrametrically normed finite-dimensional vector spaces over a trivially
valued field. We begin with the definition of the degree function.

Definition 2.2. — Let V be a finite-dimensional vector space over k,
equipped with a norm ‖.‖. Let r be the dimension of V over k. We denote by
‖.‖det the norm on det(V ) = Λr(V ) defined as follows:

∀ η ∈ det(V ), ‖η‖det = inf
(x1,...,xr)∈V r
η=x1∧···∧xr

‖x1‖ · · · ‖xr‖.

Note that det(V ) is a one-dimensional vector space over k. Therefore the norm
function ‖.‖det is constant on det(V )\{0}. We denote by deg(V, ‖.‖) the value

− ln‖η‖det,

where η is an arbitrary non-zero element of det(V ). If in addition the vector
space V is non-zero, we define the slope of (V, ‖.‖) as

µ(V, ‖.‖) :=
deg(V, ‖.‖)

rkk(V )
.

The maximal slope of (V, ‖.‖) is defined as

sup
{0}6=W⊂E

µ(W, ‖.‖W ),

where W runs over the set of all non-zero vector subspaces of V , and ‖.‖W
denotes the restriction of ‖.‖ to W .
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We consider the analogue of the semi-stability condition in the setting of
ultrametrically normed finite-dimensional vector space over a trivially valued
field. Let us keep the notation of Definition 2.2 and assume that the vector
space V is non-zero. We say that (V, ‖.‖) is semi-stable if the following equality

µmax(V, ‖.‖) = µ(V, ‖.‖)
holds. This condition is equivalent to requiring that the restriction of ‖.‖ to
V \ {0} is a constant function (see [11] Proposition 4.3.61), and the maximal
slope of (V, ‖.‖) is equal to

− ln inf
x∈V \{0}

‖x‖.

Therefore the smallest non-zero central ball

Vdes =
{
x ∈ V : ‖x‖ 6 inf

y∈V \{0}
‖y‖
}

equipped with the restricted norm is semi-stable of slope µmax(V, ‖.‖). It also
contains all non-zero vector subspaces of V which have µmax(V, ‖.‖) as their
slope. Therefore, the construction of Harder-Narasimhan filtration is also valid,
which leads to the existence of a unique sequence

0 = V0 ( V1 ( . . . ( Vd = V

such that each subquotient Vj/Vj−1 equipped with the subquotient norm (de-
noted by Vj/Vj−1) is semi-stable and that

µ(V1/V0) > . . . > µ(Vd/Vd−1).

Moreover, for j ∈ {1, . . . , d}, Vj identifies with the central ball of radius
exp(−µ(Vj/Vj−1)). In particular, {λi(V )}ni=1 identifies with the sequence of
successive slopes of V , namely the decreasing sequence of real numbers in which
µ(Vj/Vj−1) appears exactly rkk(Vj)− rkk(Vj−1) times.

Proposition 2.3. — Let V be a non-zero finite-dimensional vector space over
k and ‖.‖1 and ‖.‖2 be ultrametric norms on V . Let α be the operator norm
of the identity map (V, ‖.‖1)→ (V, ‖.‖2), namely,

α := sup
x∈V \{0}

‖x‖2
‖x‖1

.

Then, for any i ∈ {1, . . . , rkk(V )}, one has

(2.2) λi(V, ‖.‖1) 6 λi(V, ‖.‖2) + ln(α).

Proof. — Let t be a real number such that λi(V, ‖.‖1) > t. By definition the
ball Be−t(V, ‖.‖1) has rank > i over k. Since α is the operator norm, one has

Be−t(V, ‖.‖1) = {x ∈ V : ‖x‖1 6 e−t}
⊂ {x ∈ V : ‖x‖2 6 αe−t} = Be−(t−ln(α))(V, ‖.‖2),
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which implies that Be−(t−ln(α))(V, ‖.‖2) has rank > i over k and hence

λi(V, ‖.‖2) > t− ln(α).

Since t ∈ R such that t < λi(V, ‖.‖1) is arbitrary, the inequality (2.2) holds.

We have seen that, in the framework of ultrametrically normed finite-
dimensional vector spaces over a trivially valued field, the analogues of slopes
and minima are the same. We can serve it as a model to understand various
arithmetic invariant. Let E = (E, ‖.‖) be a Euclidean lattice. We equip R
with the trivial absolute value and define a norm ‖.‖ν̂ on ER = E ⊗Z R as
follows:

∀x ∈ ER, ‖x‖ν̂ := inf{R > 0 : x ∈ VectR({y ∈ E : ‖y‖ 6 R})}.

Note that, for any R > 0, the central ball of radius R of (ER, ‖.‖ν̂) is given by

BR(ER, ‖.‖ν̂) = spanR({y ∈ E : ‖y‖ 6 R}).

By definition, for any i ∈ {1, . . . , rkZ(E)}, one has

(2.3) λi(ER, ‖.‖ν̂) = ν̂i(E, ‖.‖).

This construction thus relates the successive minima of (E, ‖.‖) to an ultra-
metric norm on ER. A similar construction exists for successive slopes. To
explain this point, the following proposition is important. In order to simplify
the presentation, for any non-zero Euclidean lattice F , we denote by ν̂min(F )
the last minimum of F , namely

ν̂min(F ) := ν̂rkZ(F )(F ).

Proposition 2.4. — Let (E, ‖.‖) be a Euclidean lattice. For any R > 0, the
central ball of radius R of (E, ‖.‖ν̂) is given by∑

{0}6=F⊂E
ν̂min(F )>− ln(R)

FR,

where F runs over the set of all non-zero subgroups of E such that ν̂min(F ) >
− ln(R).

Proof. — Let F be a non-zero subgroup of E such that ν̂min(F ) > − ln(R),
then F admits a basis over Z which consists of elements of norm (with respect
to ‖.‖) 6 R. Therefore, any vector in FR is generated over R by elements
x ∈ F such that ‖x‖ 6 R, which shows that FR ⊂ BR(ER, ‖.‖ν̂). Conversely,
as BR(ER, ‖.‖ν̂) is spanned over R by vectors s ∈ E such that ‖s‖ 6 R, we
obtain that

ν̂min(BR(ER, ‖.‖ν̂) ∩ E) > − ln(R),
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where the last minimum is defined to be +∞ by convention when the inter-
section BR(ER, ‖.‖ν̂) ∩ E is {0}. Since BR(ER, ‖.‖ν̂) is spanned over R by
BR(ER, ‖.‖ν̂) ∩ E, we obtain that

BR(ER, ‖.‖ν̂) ⊂
∑

{0}6=F⊂E
ν̂min(F )>− ln(R)

FR.

Definition 2.5. — For any non-zero Euclidean lattice F , we denote by
µ̂min(F ) the minimal slope of F , which is defined as

µ̂min(F ) := µ̂rkZ(F )(F ).

If E is a Euclidean lattice, we denote by ‖.‖µ̂ the norm on ER (where R is
equipped with the trivial absolute value) such that the ball of radius R > 0 is
given by ∑

{0}6=F⊂E
µ̂min(F )>− ln(R)

FR.

The following proposition is fundamental in the reformulation of Harder-
Narasimhan filtration in terms of geometry over a trivially valued field. We
refer the readers to [7, §2.2.2] for a proof in the setting of R-filtrations, see also
[11, Remark 1.1.40].

Proposition 2.6. — Let (E, ‖.‖) be a non-zero Euclidean lattice.
(1) For any i ∈ {1, . . . , rkZ(E)}, one has λi(ER, ‖.‖µ̂) = µ̂i(E, ‖.‖).
(2) If 0 = E0 ( E1 ( . . . ( Ed = E is the Harder-Narasimhan filtration of

(E, ‖.‖), then
0 = E0,R ( E1,R ( . . . ( Ed,R = ER

is the Harder-Narasimhan filtration of (ER, ‖.‖µ̂).

Definition 2.7. — Let n be a positive integer. We denote by δ(n) the fol-
lowing value

sup{µ̂min(E)− ν̂min(E) : E is a Euclidean lattice of rank n}.
Note that the function n 7→ δ(n) is increasing. In fact, if E and F are two
Euclidean lattices, one has

µ̂min(E ⊕ F ) = min(µ̂min(E), µ̂min(F )),(2.4)

ν̂min(E ⊕ F ) 6 min(ν̂min(E), ν̂min(F )),(2.5)

where (2.4) comes from the interpretation of µ̂min as the infimum of slopes of
quotient lattices.
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We can now explain the proof of the comparison principle between minima
and slopes.

Theorem 2.8. — Let E be a non-zero Euclidean lattice and n be the rank of
E over Z. For any i ∈ {1, . . . , n} one has

(2.6) 0 6 µ̂i(E)− ν̂i(E) 6 δ(n).

Proof. — For any non-zero subgroup F of E, one has

0 6 µ̂min(F )− ν̂min(F ) 6 δ(rkZ(F )) 6 δ(n),

where the first inequality is a consequence of Hadamard’s inequality, see [2]
and [10, Proposition 3.4]. By Proposition 2.4 and the construction of ‖.‖ν̂ , one
has

‖.‖µ̂ 6 ‖.‖ν̂ 6 eδ(n)‖.‖µ̂.
By Proposition 2.3, for i ∈ {1, . . . , n}, one has

λi(ER, ‖.‖ν̂) 6 λi(ER, ‖.‖µ̂) 6 λi(ER, ‖.‖ν̂) + δ(n).

By Proposition 2.6 and the formula (2.3), we obtain (2.6).

3. Transference problem

Theorem 2.8 reduces the comparison problem between successive minima
and slopes to an upper bound of the difference between the minimal slope and
the last minimum. If we consider the difference between the maximal slope
and the first minimum instead, Minkowski’s first theorem implies that, for any
non-zero Euclidean lattice E of rank n, one has

µ̂1(E)− ν̂1(E) 6 ln(2)− 1

n
ln(vn),

where vn denotes the Lebesgue measure of the unit ball in Rn. One might
expect that the upper bound of µ̂min(E)− ν̂min(E) would follow from a classic
result of geometry of numbers. However, this problem seems to be much
deeper and get involved more tools. In this section, we give a simple proof of
Banaszczyk’s transference theorem and deduce an upper bound for the function
δ(.). In the rest of the section, we fix a non-zero Euclidean lattice E = (E, ‖.‖).
Let n be the rank of E over Z and 〈 , 〉 be the Euclidean inner product on ER
associated with the norm ‖.‖. Let E∨ be the dual Z-module of E. We equip
(E∨)R ∼= (ER)∨ with the dual Euclidean norm ‖.‖∗. Note that (E∨, ‖.‖∗)
is a Euclidean lattice, and the following equality holds (see for example [11,
Proposition 4.3.8] for a proof):

(3.1) d̂eg(E, ‖.‖) + d̂eg(E∨, ‖.‖∗) = 0.
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Definition 3.1. — For any subset A of ER, we denote by ρ(A) the sum∑
x∈A

e−π‖x‖
2 ∈ [0,+∞].

Similarly, if B is a subset of E∨R , we denote by ρ(B) the sum∑
α∈B

e−π‖α‖
2
∗ ∈ [0,+∞].

Proposition 3.2. — For any x ∈ ER one has ρ(E + x) < +∞, where by
definition

E + x := {u+ x : u ∈ E}.
Moreover, the function ρE : ER → R defined as ρE(x) := ρ(E + x) is smooth
and E-periodic.

Proof. — Let (ej)
n
j=1 be a basis of E. As all norms on Rn are equivalent, there

exists c > 0 such that

∀ (a1, . . . , an) ∈ Rn, ‖a1e1 + · · ·+ anen‖2 > c(a21 + · · ·+ a2n).

Therefore, for x = b1e1 + · · ·+ bnen ∈ ER,

ρ(E + x) 6
∑

(a1,...,an)∈Zn
e−cπ((a1+b1)

2+···+(an+bn)2)

=
n∏
`=1

(∑
a∈Z

e−cπ(a+b`)
2
)
< +∞.

The E-periodicity of the function ρE(.) follows directly from the definition.
Finally, any formal partial derivative (possibly of higher order) of the series
defining ρE can be written as

(3.2)
∑
u∈E

P (u+ x)eπ‖u+x‖
2

where P (.) is a polynomial on ER. Note that for any δ > 0 there exists
C > 0 such that ‖P (y)‖ 6 Ceδ‖y‖

2 for any y ∈ Rn. Therefore the series (3.2)
converges uniformly on Rn. Hence ρE is smooth on ER.

Proposition 3.3. — For any y ∈ ER, one has

(3.3)
∫
ER

e−π‖x‖
2−2πi〈x,y〉 dx = e−π‖y‖

2
,

where dx denotes the unique Haar measure on ER such that the parallelotope
spanned by an orthonormal basis of ER has volume 1.
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Proof. — Recall that for any θ ∈ R one has

(3.4)
∫
R

e−πt
2−2πiθt dt = e−πθ

2
.

This can for example be deduced from the classic equality
∫
R e−πt

2
dt = 1 via

the asymptotic study (when R ∈ R>0, R→ +∞) on the integral of the analytic
function z 7→ e−πz

2 along the contours formed by the segments linking −R, R,
R+ iθ, −R+ iθ, −R successively. Moreover, the formula (3.3) in the particular
case where y vanishes follows also from the equality

∫
R e−πt

2
dt = 1 by Fubini’s

theorem.
In the following, we assume that y is non-zero. We pick an orthonormal

basis of ER which contains the vector ‖y‖−1y. By a change of variables, we
obtain, using Fubini’s theorem, that∫

ER

e−π‖x‖
2−2πi〈x,y〉 dx =

(∫
R

e−πt
2

dt

)n−1 ∫
R

e−πt
2−2πit‖y‖dt = e−π‖y‖

2
,

where the last equality comes from (3.4). The proposition is thus proved.

The following proposition gives the Fourier expansion of the function ρE(.).

Proposition 3.4. — For any x ∈ ER, one has

(3.5) ρ(E + x) = exp
(
d̂eg(E)

) ∑
α∈E∨

e2πiα(x)−π‖α‖
2
∗ ,

where in the expression α(x), we consider α as a linear form on ER by the
identification (E∨)R ∼= (ER)∨. In particular the following equality holds

(3.6) ρ(E) = exp
(
d̂eg(E)

)
ρ(E∨).

Proof. — Let D be a fundamental domain of the lattice E and L2(D,C) be
the space of square-integrable complex-valued function on D. We equipped it
with the following inner product

∀ (f, g) ∈ L2(D,C), 〈f, g〉L2 := exp
(
d̂eg(E)

) ∫
D
f(x)g(x) dx.

Then (e2πiα(
.))α∈E∨ forms an orthonormal basis of (L2(D,C), 〈 , 〉L2). There-

fore the series of functions

(3.7) exp
(
d̂eg(E)

) ∑
α∈E∨

e2πiα(
.)
∫
D
ρ(E + y)e−2πiα(y) dy
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converges in L2(D,C) to the restriction of ρE on D. Moreover, one has∫
D
ρ(E + y)e−2πiα(y) dy =

∫
D

∑
u∈E

e−π‖y+u‖
2−2πiα(y) dy

=

∫
ER

e−π‖x‖
2−2πiα(x) dx = e−π‖α‖

2
∗ ,

where the last equality comes from (3.3). Since ρE is continuous (see Propo-
sition 3.2) and

∑
α∈E∨ e−π‖α‖

2
∗ < +∞, the series (3.7) actually converges uni-

formly to ρE |D. The equality (3.5) is thus proved.
The particular case of (3.5) with x = 0 gives (3.6).

Corollary 3.5. — (a) For any x ∈ ER one has ρ(E + x) 6 ρ(E).
(b) For any x ∈ ER and any t ∈ ]0, 1[ one has ρ(t(E + x)) 6 t−nρ(E), where

n is the rank of E over Z.

Proof. — By (3.5), one has

ρ(E + x) 6 exp
(
d̂eg(E)

) ∑
α∈E∨

∣∣e2πiα(x)−π‖α‖2∗∣∣
= exp

(
d̂eg(E)

) ∑
α∈E∨

e−π‖α‖
2
∗ = ρ(E),

which proves (a), where the last equality comes from (3.5).
For any t > 0, the subgroup tE of ER forms a Euclidean lattice in ER. The

subgroup t−1E∨ of E∨R forms also a Euclidean lattice in E∨R , which identifies
with the dual lattice of tE. Therefore, for any x ∈ Rn and any t ∈ ]0, 1[ one
has

ρ(t(E + x)) 6ρ(tE) = exp
(
d̂eg(tE)

)
ρ(t−1E∨)

6 exp
(
d̂eg(E)− nt

)
ρ(E∨) = e−ntρ(E),

where the first inequality comes from (a) and the second one comes from the
hypothesis t ∈ ]0, 1[, and the equalities comes from (3.5). The assertion (b) is
thus proved.

The following lemma is a key argument in the proof of Banaszczyk’s trans-
ference theorem. For any r > 0, we denote by Br the central ball of radius r
in (ER, ‖.‖). Namely Br := {y ∈ ER : ‖y‖ 6 r}.

Lemma 3.6. — For all r > 0, t ∈ ]0, 1[ and x ∈ ER, one has

(3.8) ρ((E + x) \Br) 6 e−π(1−t)r
2
t−

n
2 ρ(E),

where n = rkZ(E). If r >
√

n
2π , then one has

(3.9) ρ((E + x) \Br) 6 e
n
2
−πr2

( n

2πr2

)−n
2
ρ(E).
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Proof. — One has

ρ((E + x) \Br) =
∑
u∈E

‖u+x‖>r

e−π‖u+x‖
2

=
∑
u∈E

‖u+x‖>r

e−πt‖u+x‖
2
e−π(1−t)‖u+x‖

2

6 e−π(1−t)r
2
ρ(t

1
2 (E + x)) 6 e−π(1−t)r

2
t−

n
2 ρ(E),

where the last inequality comes from Corollary 3.5 (b). Thus the inequality
(3.8) is proved. Taking t = n/(2πr2) we obtain (3.9).

Theorem 3.7 (Banaszczyk). — Let (E, ‖.‖) be a non-zero Euclidean lattice
and n = rkZ(E). One has

(3.10) ν̂n(E, ‖.‖) + ν̂1(E
∨, ‖.‖∗) > − ln(n).

Proof. — In the case where n = 1, one has

ν̂1(E, ‖.‖) = d̂eg(E, ‖.‖) and ν̂1(E
∨, ‖.‖∗) = d̂eg(E∨, ‖.‖∗).

Hence (3.10) follows from (3.1).
In the rest of the proof we assume that n > 2. Denote by r the unique

positive number in [
√

n
2π ,+∞[ such that (1)

(3.11) exp
(n

2
− πr2

)( n

2πr2

)−n
2

=
1

4
.

Let t0 be the unique solution on [0,+∞[ of the equation

te1−t =
1

4
.

A numerical computation shows that t0 < 3.7. Since n > 2, we obtain that
(t0e

1−t0)
n
2 6 1

4 and hence 2πr2/n < t0 and r <
√
nt0/2π.

For any b > 0 one has

ν̂1(b
−1E∨, ‖.‖∗) = ν̂1(E

∨, ‖.‖∗)− ln(b)

and
ν̂n(bE, ‖.‖) = ν̂n(E, ‖.‖) + ln(b).

Therefore by dilating the lattice E we may assume without loss of generality
that ν̂1(E∨, ‖.‖∗) = − ln(r). We reason by contradiction and assume that

(3.12) ν̂n(E, ‖.‖) < ln(r)− ln(n).

1. Note that the function t 7→ (e1−tt)
n
2 is strictly decreasing on [1,+∞[, takes value 1 at

t = 1, and tends to 0 when t→ +∞.
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By (3.5), for any x ∈ ER one has

ρ(E + x) = exp
(
d̂eg(E)

) ∑
α∈E∨

e2πiα(x)−π‖α‖
2
∗

> exp
(
d̂eg(E)

)
(1− ρ(E∨ \B∗r ))

> exp
(
d̂eg(E)

)(
1− 1

4
ρ(E∨)

)
,

(3.13)

where B∗r := {ϕ ∈ E∨R : ‖ϕ‖∗ 6 r} denotes the central ball of radius r in the
dual Euclidean space (E∨R , ‖.‖∗), and the last inequality comes from (3.9) and
(3.11), which lead to ρ(E∨ \B∗r ) 6 1

4ρ(E∨). As

ρ(E∨) = 1 + ρ(E∨ \B∗r ) 6 1 +
1

4
ρ(E∨),

one has ρ(E∨) 6 4
3 . Hence we deduce from (3.13) that

(3.14) ρ(E + x) >
2

3
· exp

(
d̂eg(E)

)
=

2

3
· ρ(E)

ρ(E∨)
>

1

2
ρ(E).

Let s := exp(−ν̂n(E, ‖.‖)) and H be the vector subspace of ER generated
by Bs ∩ E. By definition, H is a strict vector subspace of ER. We pick an
element x ∈ H⊥ such that ‖x‖ = 2/3. Then one has e−π‖x‖

2
< 1

4 and

(3.15) ρ((E ∩H) + x) = e−π‖x‖
2
ρ(E ∩H) 6 e−π‖x‖

2
ρ(E) <

1

4
ρ(E).

Note that

s− ‖x‖ > n

r
− 2

3
= r +

(n
r
− r − 2

3

)
.

Note that, since r <
√
nt0/2π and n > 2, one has

n

r
− r − 2

3
>

√
2πn

t0
−
√
nt0
2π
− 2

3
>

√
4π

t0
−
√
t0
π
− 2

3
> 0

where the last inequality comes from the fact that t0 < 3.7. Therefore, by
(3.9) one has

(3.16) ρ((E \H) + x) 6 ρ((E + x) \Bs−‖x‖) 6 ρ((E + x) \Br) 6
1

4
ρ(E).

The inequalities (3.15) and (3.16) lead to ρ(E+x) < 1
2ρ(E), which contradicts

(3.14). The theorem is thus proved.

Corollary 3.8. — For any non-zero Euclidean lattice E one has

µ̂min(E, ‖.‖)− ν̂min(E, ‖.‖) 6 ln(rkZ(E)).

In other words, for any n ∈ N>1, δ(n) 6 ln(n).
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Proof. — Let n be the rank of E over Z. By (2.6), one has

µ̂1(E
∨, ‖.‖∗) > ν̂1(E

∨, ‖.‖∗),

which implies, by (3.1) and (3.10), that

−µ̂n(E, ‖.‖) > −ν̂n(E, ‖.‖)− ln(n).

4. Further discussions

4.1. Adelic vector bundles. — The comparison principle (Proposition
2.3) actually applies to general number fields and allows to compare several
arithmetic invariants.

Let K be a number field and let MK be the set of all places of K. For
v ∈ MK , we denote by |.|v the absolute value in the class v which extends
either the usual absolute value or a certain p-adic absolute on Q (in the former
case, v is said to be Archimedean, while in the latter case, v is said to be
non-Archimedean). We denote by Kv and Qv the completion of K and Q with
respect to the absolute value |.|v, respectively. Note that the product formula
shows that

(4.1) ∀ a ∈ K \ {0},
∑
v∈MK

[Kv : Qv] ln |a|v = 0,

As adelic vector bundle on SpecK (cf. [14, §3]), we refer to the datum
E consisting of a finite-dimensional vector space E over K, equipped with a
family (‖.‖v)v∈MK

of norms, indexed by the places of K, which satisfies the
following conditions:
(1) for any v ∈MK , ‖.‖v is a norm on EKv = E ⊗K Kv,
(2) there exists a basis (ei)

n
i=1 of E such that the relation

∀ (λ1, . . . , λn) ∈ Kn
v , ‖λ1e1 + · · ·+ λnen‖ = max

i∈{1,...,n}
|λi| · ‖ei‖

holds for all but finitely many places v.
If ‖.‖v is induced by an inner product when the place v is Archimedean, and is
ultrametric when v is non-Archimedean, we say that the adelic vector bundle
E is Hermitian. If the norm ‖.‖v is pure (namely its image is contained in that
of |.|v) for any non-Archimedean place v, we say that the adelic vector bundle
E is pure. In the case where E is a one-dimensional K-vector space, we say
that E is an adelic line bundle on SpecK. Note that an adelic line bundle is
necessarily Hermitian.

Let E be a Hermitian adelic vector bundle on SpecK and K ′/K be a finite
extension. We denote by E ⊗K K ′ the Hermitian adelic vector bundle on
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SpecK ′ consisting of the K ′-vector space E ⊗K K ′ and norms (‖.‖w)w∈MK′ ,
such that, for any v ∈MK and any w ∈MK′ lying over v,
(a) in the case where v is non-Archimedean, ‖.‖w is the largest ultrametric

norm on E′K′w
∼= EKv ⊗Kv K ′w extending ‖.‖v,∗∗,

(b) in the case where v is Archimedean, ‖.‖w is the Hilbert-Schmidt tensor
product of ‖.‖v and the absolute value |.|w on K ′w.

We refer the readers to [11, §1.3] for more details about the extension of norms.
Let E = (E, (‖.‖v)v∈MK

) be a Hermitian adelic vector bundle on SpecK.
For any non-zero element s of E, we define

d̂egE(s) := −
∑
v∈MK

[Kv : Qv]

[K : Q]
ln‖s‖v.

Note that the product formula (4.1) shows that

∀ a ∈ K \ {0}, d̂egE(as) = d̂egE(s).

If K ′ is a finite extension of K and if s is a non-zero element of EK′ , we
use the simplified notation d̂egE(s) to denote d̂egE⊗KK′(s). Since the sum of
local degrees of a finite separable extension is equal to the global degree (see
for example [23] Chapter II, Corollary 8.4), if K ′′/K ′/K are successive finite
extensions and if s is a non-zero element of EK′ , then one has

d̂egE⊗KK′(s) = d̂egE⊗KK′′(s),

where on the right-hand side of the formula, we consider s as a non-zero element
of E ⊗K K ′′. This observation allows to consider d̂egE(.) as a function on
E ⊗K Ka, where Ka is a fixed algebraic closure of K.

Given an adelic vector bundle E = (E, (‖.‖v)v∈MK
) on SpecK, we construct

an adelic line bundle det(E) as follows. The vector space part of det(E)
is give by the maximal exterior power of E. For any v ∈ MK , we equip
det(EKv)

∼= det(E)⊗K Kv with the determinant norm ‖.‖v,det, defined as

∀ η ∈ EKv , ‖η‖v,det = inf
(xi)

n
i=1∈EnKv

η=x1∧···∧xn

‖x1‖v · · · ‖xn‖v.

The Arakelov degree of E is defined as

d̂eg(E) := −
∑
v∈MK

[Kv : Qv]

[K : Q]
ln‖η‖v,det,

where η is a non-zero element of det(E). Note that this definition does
not depend on the choice of the non-zero determinant vector η (this is a
consequence of the product formula (4.1)). Note that the Arakelov degree
function thus constructed satisfies the inequalities in the form of (1.2) and
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(1.3) for Hermitian adelic vector bundles. Hence an analogue of Harder-
Narasimhan’s theorem is valid and leads to the notion of successive slopes
µ̂i(E) for a Hermitian adelic vector bundle E.

The notion of minima can also be naturally generalised to the setting adelic
vector bundles. There actually exist several versions of successive minima. We
recall below some of them. We fix a non-zero adelic vector bundle E and let n
be the rank of E over K and i be an arbitrary element of {1, . . . , n}.
(1) The Bombieri-Vaaler ith minimum of E is defined as the supremum

ν̂BV
i (E) of the set of t ∈ R such that there exists a family of K-linearly
independent vectors {s1, . . . , si} in E which satisfies the following condi-
tion: for any j ∈ {1, . . . , i}, ‖sj‖v 6 1 for any non-Archimedean place v
and ‖sj‖σ 6 e−t for any Archimedean places σ.

(2) The Roy-Thunder ith minimum of E is defined as the supremum ν̂RTi (E)
of the set of t ∈ R such that there exists a K-linearly independent family
{s1, . . . , si} of vectors in E satisfying d̂egE(sj) > t for any j ∈ {1, . . . , i}.

(3) The absolute ith minimum of E is defined as the supremum ν̂absi (E)
of the set of t ∈ R such that there exists a Ka-linearly independent
family {s1, . . . , si} of vectors in E ⊗K Ka satisfying d̂egE(sj) > t for any
j ∈ {1, . . . , i}.

Note that, if s is a non-zero element of E such that ‖s‖ 6 1 for any non-
Archimedean place v and ‖s‖σ 6 e−t for any Archimedean place σ, then one
has

d̂egE(s) > −
∑

σ∈MK,∞

[Kσ : Qσ]

[K : Q]
ln‖s‖σ > t,

where MK,∞ denotes the set of Archimedean places of K. Therefore, for any
i ∈ {1, . . . , n}, the following inequalities hold

ν̂BV
i (E) 6 ν̂RTi (E) 6 ν̂absi (E).

Moreover, ifK ′ is a finite extension ofK, and {s1, . . . , sn} is a basis of E⊗KK ′,
then Hadamard’s inequality (see for example [11, Proposition 1.1.66] for a
proof) shows that

d̂eg(E) = d̂eg(E ⊗K K ′) = −
∑

v∈MK′

[K ′v : Qv]

[K ′ : Q]
ln‖s1 ∧ · · · ∧ sn‖v

> −
n∑
i=1

∑
v∈MK′

[K ′v : Qv]

[K ′ : Q]
ln‖si‖v =

n∑
i=1

d̂egE(si),

which shows that µ̂(E) > ν̂absmin(E). Applying this inequality to quotient adelic
vector bundles of E leads to

µ̂min(E) > ν̂absmin(E).
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Note that the analogue of Propositions 2.4 and 2.6 (for any of the above
minima and for the Harder-Narasimhan filtration respectively) in the setting
of Hermitian adelic vector bundle is still true. We obtain that, for any non-zero
pure Hermitian adelic vector bundle E and any i ∈ {1, . . . , rkZ(n)}, one has

0 6 µ̂i(E)− ν̂BV
i (E) 6 δBV(n),

0 6 µ̂i(E)− ν̂RTi (E) 6 δRT(n),

where

δBV(n) := sup
F

(µ̂min(F )− ν̂BV
min(F )),

δRT(n) := sup
F

(µ̂min(F )− ν̂RTmin(F )),

with F running over the set of pure Hermitian adelic vector bundles of rank
n over SpecK. Similarly, for any (non-necessarily pure) non-zero Hermitian
adelic vector bundle E and any i ∈ {1, . . . , rkZ(E)}, one has

0 6 µ̂i(E)− ν̂absi (E) 6 δabs(n),

where
δabs(n) := sup

F

(µ̂min(F )− ν̂absmin(F )),

with F running over the set of Hermitian adelic vector bundles of rank n over
the spectrum of a number field.

Given a Hermitian adelic vector bundle E over SpecK, we construct a
Euclidean lattice as follows. We consider the real vector space⊕

σ∈MK,∞

E ⊗K Kσ,

which is of dimension dimK(E)[K : Q]. We equip this vector space with the
orthogonal direct sum of the norms ‖.‖σ. Then

E := {s ∈ E : ∀ v ∈MK \MK,∞, ‖s‖v 6 1}
forms an Euclidean lattice inside

⊕
σ∈MK,∞

E ⊗K Kσ. It can be shown that
one has (see for example [10] Proposition 4.6)

(4.2) νBV
min(E) > νmin(E).

Moreover, the inequality

(4.3) µ̂min(E) 6 µ̂min(E) +
ln |∆K |
[K : Q]

holds, provided that E is pure. This can for example be deduced from [3,
(2.1.13)]. Therefore Banaszczyk’s transference theorem applied to E leads to
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(see [10] Corollary 4.8) the following inequality for any pure Hermitian adelic
vector bundle

µ̂min(E)− ν̂BV
min(E) 6 ln([K : Q] rkK(E)) +

ln |∆K |
[K : Q]

.

In the case where the Hermitian adelic vector bundle E is not pure, the
inequality (4.2) remains true. However, the inequality (4.3) should be corrected
by the “default of purity” introduced in [15, §2.1.1].

4.2. Arakelov geometry method. — Let E be a Hermitian adelic vector
bundle on SpecK. The Arakelov theory permits to consider the function
−d̂egE(.) on (E ⊗K Ka) \ {0} as an Arakelov height function on the set of
algebraic points of P(E∨). Denote by OE∨(1) be the tautological line bundle
on P(E∨).

For any place v ∈ MK , let P(E∨)anv be the analytic space (in the sense of
Berkovich if v is non-Archimedean) associated with

P(E∨)×SpecK SpecKv
∼= P(E∨Kv).

Recall that each point x of P(E∨)anv corresponds to a pair (P (x), |.|x), where
P (x) is a scheme point of P(E∨Kv), and |.|x is an absolute value on the residue
field of P (x) which extends the absolute value |.|v on Kv. We denote by κ̂(x)
the completion of the residue field of P (x) with respect to the absolute value
|.|x. By abuse of notation, the continuous extension of |.|x on κ̂(x) is still
denoted by |.|x. By the functorial interpretation of the scheme P(E∨Kv), the
scheme point P (x) corresponds to a surjective κ̂(x)-linear map

E∨Kv ⊗Kv κ̂(x) −→ P (x)∗(OE∨(1)Kv)⊗Kv κ̂(x).

The extension of the dual norm ‖.‖v,∗ induces by quotient a norm on the one-
dimensional vector space

OE∨(1)(x) := P (x)∗(OE∨(1)Kv)⊗Kv κ̂(x),

denoted by |.|FSv(x) and called the Fubini-Study norm onOE∨(1)(x) associated
with ‖.‖v. The Fubini-Study norms

(
|.|FSv(x)

)
x∈P(E∨)anv

form a continuous
metric on OE∨(1)Kv , called the Fubini-Study metric associated with ‖.‖v. The
line bundle OE∨(1) equipped with the family of Fubini-Study metrics indexed
by v ∈MK forms an adelic line bundle on P(E∨) in the sense of Zhang [26].

Let X be an integral projective scheme over SpecK and L = (L, (ϕv)v∈MK
)

be an adelic line bundle on X. Recall that L is an invertible OX -module,
and each ϕv is a continuous metric on Lv, the pull-back of L on Xv =
X×SpecKSpecKv by the projection morphism. For any closed point y ofX, the
metric structure of L induces a structure of adelic line bundle on y∗(L) (viewed
as a one-dimensional vector space over the residue field of y). The Arakelov
height of y with respect to L is defined as the Arakelov degree of y∗(L) and is
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denoted by hL(y). Moreover, the linear series H0(X,L) is naturally equipped
with supremum norms ‖.‖ϕv , where

s ∈ H0(X,L)⊗K Kv = H0(Xv, Lv), ‖s‖ϕv := sup
x∈Xan

v

|s|ϕv(x).

The datum
H0(X,L) = (H0(X,L), (‖.‖ϕv)v∈MK

)

forms actually an adelic vector bundle on SpecK.
The following conjecture relates the essential minimum of the height function

to an invariant of the metrised graded linear series of L.

Conjecture 4.1. — Let X be an integral projective scheme over SpecK and
L = (L, (ϕv)v∈MK

) be an adelic line bundle on X. Assume that L is big and
the metrics ϕv are semi-positive, then the following equality holds:

(4.4) sup
Y (X

inf
y∈(X\Y )(Ka)

hL(y) = lim
N→+∞

µ̂max(H0(X,L⊗N ), (‖.‖ϕ⊗Nv )v∈MK
)

N
,

where Y runs over the set of all strict closed subscheme of X, and for any
non-zero adelic vector bundle E on SpecK, µ̂max(E) denotes the supremum of
slopes of non-zero adelic vector subbundles of E.

Remark 4.2. — The left-hand side of the formula (4.4) is a classic invariant
of height function, called the essential minimum of L, which is denoted by
ess.min.(L). The limit on the right-hand side of the formula (4.4) is called the
asymptotic maximal slope of L (see [7, §4.2] for the proof of its existence). It
can be shown that the essential minimum is always bounded from below by
the asymptotic maximal slope. The equality between these invariants is closely
related to the equidistribution problem of algebraic points of small height in an
arithmetic projective variety. We refer the readers to [8, §5.2] for more details.

Let y be a closed point of P(E∨), which corresponds to a one-dimensional
quotient space of E∨ ⊗K Ka, or, by duality, to a one-dimensional vector
subspace of E⊗KKa. Note that the height of y with respect to the adelic line
bundle OE∨(1) is equal to −d̂eg(sy), where sy is an arbitrary non-zero element
of E⊗KKa which spans the one-dimensional vector subspace corresponding to
y. Therefore −νabsmin(E) identifies with the essential infimum of heights of closed
points of P(E∨) avoiding linear closed subschemes of codimension 1 spanned by
non-zero vectors of E ⊗K Ka of height > −νabsn−1(E), where n is the dimension
of E over K. Therefore, one has

(4.5) ess.min.(OE∨(1)) > −νabsmin(E).

In [3], the supremum norm of the Fubini-Study metric has been compared
with the symmetric product norm. For any v ∈MK and any N ∈ N, we denote
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by ‖.‖FS⊗Nv the supremum norm on

H0(P(E∨),OE∨(N))⊗K Kv
∼= SymN (E∨Kv)

associated with the N -th tensor power of the Fubini-Study metric, and by
‖.‖SymNv the N -th symmetric power of the norm ‖.‖v,∗. By [3] Lemma 4.3.6
and Corollary 1.4.3, the following inequality holds for any Archimedean places
σ:

‖.‖SymNσ 6

(
N + n− 1

n− 1

) 1
2

‖.‖FS⊗Nσ ,

which leads to
µ̂max(SymN (E∨),(‖.‖FS⊗Nv )v∈MK

) 6 µ̂max(SymN (E∨), (‖.‖SymNv )v∈MK
)

+
1

2
ln

(
N + n− 1

n− 1

)
.

Moreover, by [17, Theorem 6.1] (see also §8.2 loc. cit.), one has

µ̂max(SymN (E∨), (‖.‖SymNv )v∈MK
) 6 N

(
µ̂max(E∨) +

n−1∑
i=1

1

i

)
+ o(N).

Therefore, we obtain

(4.6) lim
N→+∞

µ̂max(SymN (E∨), (‖.‖FS⊗Nv )v∈MK
)

N
6 −µ̂min(E) +

n−1∑
i=1

1

i
.

Combining (4.5) and (4.6), we obtain the following result.

Theorem 4.3. — Assume that Conjecture 4.1 is true. For any Hermitian
adelic vector bundle E over SpecK, the following inequality holds

(4.7) µ̂min(E) 6 ν̂absmin(E) +
n−1∑
i=1

1

i
,

where n = rkZ(E).

Remark 4.4. — It is plausible that the method of [11, §4] leads to a finer
inequality (4.6) in replacing

∑n−1
i=1

1
i by 1

2 ln(n).

4.3. Application to the transference problem. — We have observed
that a transference inequality for the sum of the last minimum of a Hermitian
adelic vector bundle and the first minimum of its dual leads to a comparison
result between successive minima and successive slope. In this subsection, we
explain how to deduce a general transference inequality from the comparison
between minima and slopes.
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Proposition 4.5. — Let n be an integer such that n > 1. Let \ ∈
{BV,RT, abs}. For any Hermitian adelic vector bundle E of rank n on
SpecK, one has

(4.8) ν̂\i (E) + ν̂\n+1−i(E
∨) > −2δ\(n).

Proof. — By definition one has

ν̂\i (E) > µ̂i(E)− δ\(n) and ν̂\n+1−i(E) > µ̂n+1−i(E)− δ\(n).

Taking the sum of the two inequality we obtain

ν̂\i (E) + ν̂\n+1−i(E
∨) > µ̂i(E) + µ̂n+1−i(E

∨)− 2δ\(n) = −2δ\(n).

The interest of the above proposition is to deduce, from an upper bound of
δ\(n), a lower bound for ν̂\i (E) + ν̂\n+1−i(E

∨). In particular, we propose the
following conjecture.

Conjecture 4.6. — Let n be an integer such that n > 1 and E be a Hermitian
adelic vector bundle on SpecK. For any i ∈ {1, . . . , n} one has

ν̂absi (E) + ν̂absn+1−i(E
∨) > − ln(n).

This conjecture is an analogue over Qa of Banaszczyk’s transference theo-
rem. It can for example be deduced from Conjecture 4.1 and the following
conjectural inequality

lim sup
N→+∞

µ̂max(SymN (E∨))

N
6 µ̂max(E) +

1

2
ln(n).

Such observation opens a new way to study the transference problem by
Arakelov geometry instead of classic geometry of numbers.
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