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ON ISOPERIMETRIC INEQUALITY IN ARAKELOV GEOMETRY

by Huayi Chen

Abstract. — We establish an isoperimetric inequality in an integral form and deduce
a relative version of Brunn-Minkowski inequality in the Arakelov geometry setting.

Résumé (Sur l’inégalité isopérimétrique en géométrie d’Arakelov). — On établit une
inégalité isopérimétrique sous une forme d’intégration dans le cadre de géométrie
d’Arakelov et en déduit une version relative de l’inégalité de Brunn-Minkowski dans
le même cadre.

1. Introduction

The isoperimetric inequality in Euclidean geometry asserts that, for any
convex body ∆ in Rd, one has
(1) vol(∂∆)d ≥ dd vol(B) vol(∆)d−1,
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650 H. CHEN

where B denotes the closed unit ball in Rd. From the point of view of convex ge-
ometry, the isoperimetric inequality can be deduced from the Brunn-Minkowski
inequality: for two Borel subsets A1 and A2 in Rd, one has

(2) vol(A0 +A1)1/d ≥ vol(A0)1/d + vol(A1)1/d,

where
A0 +A1 := {x+ y|x ∈ A0, y ∈ A1}

is the Minkowski sum of A0 and A1. The proof consists of taking A0 = ∆ and
A1 = εB in (2) with ε > 0 and letting ε tend to 0. We refer readers to [35] for
a presentation on the history of the isoperimetric inequality and to page 1190
of loc. cit. for more details on how to deduce (1) from (2). The same method
actually leads to a lower bound for the mixed volume of convex bodies:

(3) vold−1,1(∆0,∆1)d ≥ vol(∆0)d−1 · vol(∆1),

where ∆0 and ∆1 are two convex bodies in Rd and vold−1,1(∆0,∆1) is the
mixed volume of index (d− 1, 1), which is equal to

lim
ε→0+

vol(∆0 + ε∆1)− vol(∆0)
εd

.

We refer readers to the work of Minkowski [31] for the notion of mixed volumes
in convex geometry. See [8, § 7.29] for more details.

Note that (3) is one of the inequalities of Alexandrov-Fenchel type for mixed
volumes, which is actually equivalent to Brunn-Minkowski inequality (see for
example [37, § 7.2] for a proof). Note that the above inequalities in convex
geometry are similar to some inequalities of intersection numbers in algebraic
geometry. By using toric varieties, Teissier [38] and Khovanskii [13, § 4.27]
have given proofs of the Alexandrov-Fenchel inequality by using the Hodge
index theorem.

In the arithmetic geometry setting, Bertrand [6, § 1.2] has established a
lower bound for the height function on an arithmetic variety, and interpreted
it as an arithmetic analogue of the isoperimetric inequality. In [15], the author
has proposed the notion of positive intersection product in Arakelov geometry
and proved an analogue of the isoperimetric inequality in the form of (3), by
using the arithmetic Brunn-Minkowski inequality established by Yuan [40].

The purpose of this article is to propose a relative version of the arithmetic
isoperimetric inequality and Brunn-Minkowski inequality as follows by taking
into account the relative structure of arithmetic varieties with respect to an
arithmetic curve. We refer to Theorems 3.5, 3.3, 4.1 and 4.5 for the proof and
for various refined forms of the statement.

Theorem 1.1. — Let K be a number field and X be a geometrically integral
projective scheme of dimension d ≥ 1 over SpecK. Let D0 and D1 be nef
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adelic R-Cartier divisors on X such that D0 and D1 are big. Then one has

(4) (d+ 1)d̂eg(Dd

0 ·D1) ≥ d
(

deg(Dd
1)

deg(Dd
0)

)1/d

d̂eg(Dd+1
0 ) + deg(Dd

0)
deg(Dd

1)
d̂eg(Dd+1

1 ).

If (Di)ni=1 is a family of nef adelic R-Cartier divisors such that D1, . . . , Dn are
big, then one has

(5) d̂eg((D1 + · · ·+Dn)d+1)
deg((D1 + · · ·+Dn)d) ≥ ϕ(D1, . . . , Dn)−1

n∑
i=1

d̂eg(Dd+1
i )

deg(Dd
i )

,

where

(6) ϕ(D1, . . . , Dn) := d+ 1− ddeg(Dd
1)1/d + · · ·+ deg(Dd

n)1/d

deg((D1 + · · ·+Dn)d)1/d .

Compared to the direct arithmetic analogue of the Brunn-Minkowski in-
equality (see [40, Theorem B]), the inequality (5) distinguishes the contribution
of the geometric structure of the R-Cartier divisors D1, . . . , Dn.

In the particular case where d = 2 (that is, whereX is an arithmetic surface),
the inequality (4) becomes a form of the arithmetic Hodge index inequality

2d̂eg(D0 ·D1) ≥ deg(D1)
deg(D0) d̂eg(D2

0) + deg(D0)
deg(D1) d̂eg(D2

1),

established in [17, Theorem 4.12], which is equivalent to the arithmetic Hodge
index theorem of Faltings [19] and Hriljac [24], since the above inequality is
equivalent to (

D0

deg(D0) −
D1

deg(D1)

)2

≤ 0.

We refer readers to [17, Corollary 4.14 and Remark 4.15] for a comparison of
different forms of the statement. Similarly to [17], we also use the interpretation
of the arithmetic self-intersection number of a nef and big adelic R-Cartier
divisor D as the integral of a concave function on the Okounkov body ∆(D)
of the R-Cartier divisor D, which is a convex body in Rd. However the proof
of Theorem 1.1 follows a strategy which is different from the way indicated
in [17]. In fact, in [17] the author has introduced for any couple (∆1,∆2) of
convex bodies in Rd, a number ρ(∆1,∆2) (called the correlation index of ∆1
and ∆2) which measures the degree of uniformity in the Minkowski sum ∆1+∆2
of the sum of two uniform random variables1 valued in ∆1 and ∆2, respectively.

1. For any convex body ∆ ⊂ Rd, a Borel probability measure on Rd is called the uniform
distribution on ∆ if it is absolutely continuous with respect to the Lebesgue measure, and the
corresponding Radon-Nikodym density is 1/ vol(∆), where vol(∆) is the Lebesgue measure
of ∆; a random variable valued in Rd is said to be uniformly distributed in ∆ if it follows
this measure as its probability law.
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The inequality

d̂eg((D1 +D2)d+1)
vol(∆(D1) + ∆(D2)) ≥ ρ(∆(D1),∆(D2))−1

(
d̂eg(Dd+1

1 )
vol(∆(D1)) + d̂eg(Dd+1

2 )
vol(∆(D2))

)
has been established for any couple (D1, D2) of nef and big adelic R-Cartier
divisors on X, and it has been suggested that the estimation of the correlation
index ρ(∆(D1),∆(D2)) should lead to more concrete inequalities which are
similar to (5). However, the main point in this approach is to construct a suit-
able correlation structure between two random variables which are uniformly
distributed in ∆(D1) and ∆(D2) such that the sum of the random variables is
as uniform as possible in the Minkowski sum ∆(D1) + ∆(D2). For example,
we can deduce from a work of Bobkov and Madiman [7] the following uni-
form upper bound (where we choose independent random variables) (see [17,
Proposition 2.9])

ρ(∆(D1),∆(D2)) ≤
(

2d
d

)
.

This upper bound is larger than ϕ(D1, D2), the latter being clearly bounded
from above by d+ 1.

The strategy of this article is inspired by the works of Knothe [28] and
Brenier [11, 12] on measure preserving diffeomorphisms between two convex
bodies (see also the works of Gromov [22], Alesker, Dar and Milman [2] for
more developments of this method and for applications in Alexandrov-Fenchel
type inequalities in the convex geometry setting, and the memoir of Barthe [3]
for diverse applications of this method in functional inequalities). Given a
couple (∆0,∆1) of convex bodies in Rd, one can construct a C1 diffeomorphism
f : ∆0 → ∆1 which transports the uniform probability measure of ∆0 to that
of ∆1; that is, the determinant of the Jacobian Jf is constant on the interior
of ∆0. This diffeomorphism is not unique: in the construction of Knothe, the
Jacobian Jf is upper triangular, while in the construction of Brenier, Jf is
symmetric and positive definite.

If Z0 is a random variable which is uniformly distributed in ∆0, then Z1 :=
f(Z0) is uniformly distributed in ∆1. One may expect that the random variable
Z0 + Z1 follows a probability law which is close to the uniform probability
measure on ∆0+∆1. In fact, the random variable Z0+Z1 can also be expressed
as Z0+f(Z0). Its probability law identifies with the direct image of the uniform
probability measure on ∆0 by the map Id +f , admitting Id +Jf as its Jacobian,
the determinant of which can be estimated in terms of the determinant of Jf .
In the case where Id +f is injective (for example the Knothe map), this lower
bound leads to the following upper bound for the correlation index

(7) ρ(∆0,∆1) ≤ vol(∆0 + ∆1)
(vol(∆0)1/d + vol(∆1)1/d)d

.
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By this method we obtain a weaker version of inequality (5) in the case where
n = 2 by replacing ϕ(D1, D2) with

vol(D1 +D2)
(vol(D1)1/d + vol(D2)1/d)d

.

This function is, in general, not bounded when D1 and D2 vary.
The main idea of the article is to use an infinitesimal variant of the above

argument. Instead of considering the map Id +f : ∆0 → ∆0 + ∆1, we consider
Id +εf : ∆0 → ∆0 + ε∆1 for ε > 0 sufficiently small, and use it to establish an
isoperimetric inequality in an integral form as follows (see Theorem 3.1 infra).

Theorem 1.2. — Let G0 and G1 be two Borel functions on ∆0 and ∆1, re-
spectively. We assume that they are integrable with respect to the Lebesgue
measure. Suppose given, for any ε ∈ [0, 1], an almost everywhere non-negative
Borel function Hε on ∆0 + ε∆1 such that

∀ (x, y) ∈ ∆0 ×∆1, Hε(x+ εy) ≥ G0(x) + εG1(y).

Then the following inequality holds

lim inf
ε→0+

∫
∆0+ε∆1

Hε(z)dz −
∫

∆0
G0(x)dx

ε

≥ d
(

vol(∆1)
vol(∆0)

)1/d ∫
∆0

G0(x)dx+ vol(∆0)
vol(∆1)

∫
∆1

G1(y)dy.

By this method we obtain a relative form of the arithmetic isoperimetric
inequality as in (4) and then deduce the arithmetic relative Brunn-Minkowski
inequality (5) following the classic procedure of deducing the Brunn-Minkowski
inequality from the isoperimetric inequality. Note that this does not signify that
we improve inequality (7) by replacing the right-hand side of the inequality with

d+ 1− dvol(∆0)d/1 + vol(∆1)1/d

vol(∆0 + ∆1)1/d .

For example, it remains an open question to determine whether the correlation
index ρ(∆0,∆1) is always bounded from above by d+ 1.

Finally, I would like to cite several refinements of the Brunn-Minkowski
inequality in convex geometry, where the results are also expressed in a relative
form similarly to (5), either with respect to an orthogonal projection on a
hyperplane [23] or in terms of a comparison between the volume and the mixed
volume [20] in the style of Bergstrom’s inequality [4]. It is not excluded that
the method presented in this article will bring new ideas to the research efforts
in these directions.

The article is organized as follows. In the second section, we recall the no-
tation and basic facts about adelic R-Cartier divisors. In the third section, we
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prove a relative version of isoperimetric inequality in convex geometry and de-
duce the arithmetic isoperimetric inequality (4). In the fourth and last section,
we prove the relative arithmetic Brunn-Minkowski inequality (5).
Acknowledgements. — The author would like to thank Omid Amini, Daniel
Bertrand, June Huh, Raphaël Rossignol and Xinyi Yuan for discussions and
comments. He also thanks the referee for the careful reading and for sugges-
tions. This work is partially supported by the funding ANR-14-CE25-0015.
The author has also benefited from the visiting support of Beijing Interna-
tional Center for Mathematical Research and he is grateful to the center for
hospitalities.

2. Reminder on adelic divisors

Throughout this article, K denotes a field. Let X be an integral projective
scheme over K and d be its Krull dimension.

2.1. R-Cartier divisors. — In this subsection, we recall some notions and facts
about R-Cartier divisors on a projective variety.
2.1.1. Denote by Div(X) the group of Cartier divisors on X and by Div+(X)
the sub-semigroup of Div(X) of effective divisors. Let Div(X)R be the real
vector space Div(X)⊗Z R, the elements of which are called R-Cartier divisors.
An R-Cartier divisor D is said to be effective if it belongs to the positive cone
generated by effective Cartier divisors on X. We use the expression D ≥ 0 to
denote the effectivity of an R-Cartier divisor D.
2.1.2. Let D be an R-Cartier divisor on X. We denote by H0(D) the set

{f ∈ K(X)×|div(f) +D ≥ 0} ∪ {0},
where K(X) is the field of all rational functions on X, and div(f) denotes the
principal divisor associated with the rational function f . This is a K-vector
subspace of finite rank of K(X). We denote by h0(D) its rank over K. Recall
that the volume of D is defined as

vol(D) := lim sup
n→+∞

h0(nD)
nd/d! .

If vol(D) > 0, then the R-Cartier divisor D is said to be big. The big R-Cartier
divisors form an open cone in Div(X)R, denoted by BigR(X).
2.1.3. A Cartier divisor D is said to be ample if the associated invertible
sheaf O(D) is ample. An R-Cartier divisor is said to be ample if it can be
written as a linear combination of ample Cartier divisors with positive coeffi-
cients. An R-Cartier divisor D on X is said to be numerically effective (nef )
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if, for any ample R-Cartier divisor D′, the sum D + D′ is ample. Denote by
NefR(X) the cone of nef R-Cartier divisors on X.
2.1.4. Recall that the function of self-intersection number D 7→ deg(Dd) is a
homogeneous polynomial of degree d on the vector space Div(X)R. Its polar
form

(D1, . . . , Dd) ∈ Div(X)dR 7−→ deg(D1 · · ·Dd)
is the function of the intersection number. Note that the volume of a nef
R-Cartier divisor D coincides with the self-intersection number of D. In par-
ticular, the volume function is a homogeneous polynomial of degree d on the
nef cone NefR(X).
2.1.5. Let D be an R-Cartier divisor on X. We call a linear system of D any
K-vector subspace of H0(D). We call a graded linear series of D any N-graded
sub-K-algebra of V•(D) :=

⊕
n∈NH

0(nD). If V• =
⊕

n∈N Vn is a graded linear
series of D, its volume is defined as

vol(V•) := lim sup
n→∞

dimK(Vn)
nd/d! .

Therefore the volume of the total graded linear series V•(D) is equal to the
volume of the R-Cartier divisor D.

Following [30, Definition 2.9], we say that a graded linear series V• of an R-
Cartier divisor D contains an ample R-Cartier divisor if there exists an ample
R-Cartier divisor A such that V•(A) ⊂ V• (see also [17, Remark 3.2] for some
equivalent forms). This condition implies that the volume of V• is > 0.

By the works of Lazarsfeld and Mustaţǎ [30] and Kaveh and Khovanskii [27,
26] (see also the work of Cutkosky [18] which allows relaxing the assumption
on the existence of a regular rational point), to each graded linear series V•
of some R-Cartier divisor, which contains an ample R-Cartier divisor, we can
attach a convex body ∆(V•) (called the Newton-Okounkov body of V•), such
that

vol(V•) = d! vol(∆(V•)),
where vol(∆(V•)) denotes the Lebesgue measure of the convex body ∆(V•).
We refer readers to [30, Theorem 2.13] for more details.
2.1.6. Let V• and V ′• be graded linear series of two R-Cartier divisors D and D′
respectively. Let W• be a graded linear series of D +D′ such that

∀n ∈ N, {fg | f ∈ Vn, g ∈ V ′n} ⊂Wn.

Assume that the graded linear series V• and V ′• contain ample R-Cartier di-
visors. Then the graded linear series W• also contains an ample R-Cartier
divisor. Moreover, one has

∆(V•) + ∆(V ′•) ⊂ ∆(W•).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



656 H. CHEN

Therefore the Brunn-Minkowski theorem (in the classic convex geometry set-
ting) leads to

(8) vol(W•)1/d ≥ vol(V•)1/d + vol(V ′•)1/d.

2.2. Adelic R-Cartier divisors. — In this subsection, we recall some notions
and facts about adelic R-Cartier divisors. The references are [21, 34]. We
assume that K is a number field. LetMK be the set of all places of K. For any
place v ∈ MK , let | · |v be the absolute value on K in the equivalence class v
which extends either the usual absolute value on Q or certain p-adic absolute
value (such that |p|v = p−1), where p is a prime number. Denote by Kv the
completion of the field K with respect to the topology corresponding to the
place v, on which the absolute value | · |v extends in a unique way.
2.2.1. Let π : X → SpecK be a geometrically integral K-scheme. For any
v ∈ MK , let Xan

v be the Berkovich analytic space associated with the Kv-
scheme Xv := X ⊗K Kv. We denote by jv : Xan

v → Xv the map which
sends any element x ∈ Xan

v to its underlying point in Xv. The most coarse
topology on Xan

v which makes the map jv continuous is called the Zariski
topology on Xan

v .
Berkovich [5] defines another topology on Xan

v which is finer than the Zariski
topology. If U is a Zariski open subset of Xv and f is a regular function on U ,
then for each point x ∈ Uan := j−1

v (U), the regular function f defines by
reduction an element f(x) in the residue field of jv(x). Note that, by the con-
struction of the Berkovich analytic spaceXan

v , this residue field is equipped with
an absolute value (depending on x) which extends | · |v. We denote by |f |v(x)
the absolute value of f(x). Thus we obtain a real-valued function |f |v on
j−1
v (U). The Berkovich topology is then defined as the most coarse topology
on Xan

v which makes continuous the map jv and all functions of the form |f |v,
where f is a regular function on some Zariski open subset of Xv. The set Xan

v

equipped with the Berkovich topology is a compact Hausdoff space (see [5,
Theorem 3.4.8]).
2.2.2. Let v be a place of K. We denote by C0

Xan
v

the sheaf of continuous real-
valued functions on the topological space Xan

v (with the Berkovich topology).
For any Berkovich open subset V ofXan

v , denote by C0(V ) the set of all sections
of C0

Xan
v

over V . It is a vector space over R. Let Ĉ0(Xan
v ) be the colimit of the

vector spaces C0(Uan), where U runs over the (filtered) ordered set of all non-
empty Zariski open subsets ofXv. Note that any non-empty Zariski open subset
of Xan

v is dense in Xan
v for the Berkovich topology (see [5, Proposition 3.4.5]).

Therefore, for any non-empty Zariski open subset U of Xv, the natural map
C0(Uan) → Ĉ0(Xan

v ) is injective. If an element in Ĉ0(Xan
v ) belongs to the

image of this map, we say that it extends to a continuous function on Uan.
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If f is a rational function on Xan
v , then it identifies with a regular func-

tion on some non-empty Zariski open subset U of Xv. Therefore the func-
tion |f |v determines an element in Ĉ0(Xan

v ). If f is non-zero, by shrinking the
Zariski open set U , we may assume that f(x) 6= 0 for any x ∈ U . Therefore
the continuous function log |f |v on Uan also determines an element Ĉ0(Xan

v ),
which we still denote by log |f |v by abuse of notation. Thus we obtain a group
homomorphism from K(Xv)× (where K(Xv) denotes the field of all rational
functions on Xv) to Ĉ0(Xv), which induces an R-linear homomorphism from
K(Xv)×R := K(Xv)× ⊗Z R to Ĉ0(Xan

v ).
2.2.3. Let D be an R-Cartier divisor on X. For any v ∈ MK , it induces by
extension of scalars an R-Cartier divisor Dv on Xv. We say that an element f ∈
K(Xv)×R defines Dv locally on a Zariski open subset U of Xv if one can write Dv

as λ1D1 + · · ·+ λnDn and f as f = fλ1
1 · · · fλn

n , where D1, . . . , Dn are Cartier
divisors on Xv and f1, . . . , fn are elements of K(Xv)× and λ1, . . . , λn are real
numbers, such that fi defines Di on U for each i. We call a v-Green function
of D any element gv ∈ Ĉ0(Xan

v ) such that, for any element f ∈ K(Xv)×R which
defines Dv locally on a Zariski open subset U , the element gv +log |f |v extends
to a continuous function on Uan. Note that for each element s ∈ H0(D),
the element |s|ve−gv ∈ Ĉ0(Xv) extends to a continuous function on Xan

v (see
[34, Proposition 2.1.3], see also [17, Remark 4.2]). Note that our choice of
normalization for the Green function is different from that in [34]. Moreover,
the map

s 7−→ ‖s‖gv
:= sup

x∈Xan
v

|s|v(x)e−gv(x)

is a norm on H0(D), which extends by continuity to a norm on H0(D)⊗KKv.
2.2.4. In the case where v is a non-Archimedean place of K, a typical example
of v-Green function is that arising from an integral model. Let D be an R-
Cartier divisor on X. An integral model of (X,D) consists of a projective and
flat OK-scheme X such that XK = X, and an R-Cartier divisor D on X such
that D |X = D, where OK denotes the ring of algebraic integers in K.

Let x be a point in Xan
v and κ(x) be the residue field of jv(x). Then κ(x) is

naturally equipped with an absolute value which extends the absolute value |·|v
on Kv. Let κ(x)◦ be the valuation ring of κ(x). Then the valuative criterion
of properness leads to a unique morphism Px : Specκ(x)◦ → X which ex-
tends the K-morphism Specκ(x) → X determined by the point x. In the
case where jv(x) is outside of Supp(Dv), the pull-back of D by the morphism
Px : Specκ(x)◦ → X is well defined, and is proportional to the divisor on
Specκ(x)◦ corresponding to the maximal ideal of κ(x)◦. In other words, there
exists a unique real number, which we denote by g(X ,D),v(x), such that

P∗
x(D) = g(X ,D),v(x)[κ(x)◦◦],

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



658 H. CHEN

where [κ(x)◦◦] is the Cartier divisor of Specκ(x)◦ defined by the maximal ideal
κ(x)◦◦ of κ(x)◦. Note that the element in Ĉ0(Xan

v ) determined by the map
g(X ,D),v is a v-Green function of D (see [34, Proposition 2.1.4]), called the
v-Green function associated with the integral model (X ,D).
2.2.5. By adelic R-Cartier divisor on X, we refer to any data D of the form
(D, (gv)v∈MK

), where D is an R-Cartier divisor on X and each gv is a v-
Green function of D. We also require that there exists an integral model
(X ,D) of (X,D) such that gv = g(X ,D),v for all but a finite number of non-
Archimedean places v ∈MK . If D is effective and if each v-Green function gv
is non-negative (in the sense that e−gv extends to a continuous function on Xan

v

which is bounded from above by 1), we say that the adelic R-Cartier divisor D
is effective, denoted by D ≥ 0.

If f is an element in K(X)×R , we denote by div(f) the R-Cartier divisor
associated with f . For each place v ∈ MK , let fv be the element of K(Xv)×R
determined by f . Then the couple (div(f), (− log |fv|v)v∈MK

) defines an adelic
R-Cartier divisor on X, denoted by d̂iv(f).

Note that adelic R-Cartier divisors on SpecK are of the form
ζ = (0, (ζv)v∈MK

),
where 0 denotes the zero R-Cartier divisor on SpecK, ζv are real numbers
such that ζv = 0 for all but a finite number of v ∈ MK . We denote by π∗(ζ)
the adelic R-Cartier divisor on X consisting of the zero R-Cartier divisor and
constant functions of value ζv, v ∈MK .

If D1 = (D1, (g1,v)v∈MK
) and D2 = (D2, (g2,v)v∈MK

) are two adelic R-
Cartier divisors, λ and µ are two real numbers, then

λD1 + µD2 := (λD1 + µD2, (λg1,v + µg2,v)v∈MK
)

is an adelic R-Cartier divisor. Therefore the set D̂ivR(X) of all adelic R-Cartier
divisors forms a vector space over R.

If D is an adelic R-Cartier divisor on X, the set

Ĥ0(D) := {s ∈ H0(D) : ∀ v ∈MK , ‖s‖gv ≤ 1}
is finite (see Section 2.2.3 for the definition of ‖ · ‖gv

). The arithmetic volume
of D is defined as (see [33] and [34, § 4.3])

(9) v̂ol(D) := lim sup
n→+∞

log #Ĥ0(nD)
nd+1/(d+ 1)! .

The adelic R-Cartier divisor D is said to be big if v̂ol(D) > 0. We denote by
B̂igR(X) the cone of all big adelic R-Cartier divisors. It is an open cone in
D̂ivR(X) in the sense that, if D is a big adelic R-Cartier divisor and D′ is an
adelic R-Cartier divisor, then there exists ε > 0 such that D + tD′ is big for
any t such that |t| < ε.
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2.2.6. Recall that an adelic vector bundle on SpecK is defined as any data
of the form E = (E, (‖ · ‖v)v∈MK

), where E is a vector space of finite rank
over K, and for any v ∈MK , ‖ · ‖v is a norm on E⊗KKv, which is ultrametric
if v is non-Archimedean. We also require that, for all but a finite number of
places v ∈ MK , the norm ‖ · ‖v arises from a common integral model of E, or
equivalently, there exists a basis (ei)ri=1 of E over K such that, for all but a
finite number of v ∈MK , one has

∀ (λ1, . . . , λr) ∈ Kr
v , ‖λ1e1 + · · ·+ λrer‖v = max(|λ1|v, . . . , |λr|v).

We refer readers to [21, § 3] for more details. If D = (D, (gv)v∈MK
) is an adelic

R-Cartier divisor on X, then

H0(D) := (H0(D), (‖ · ‖gv )v∈MK
)

is an adelic vector bundle on SpecK.
A variant of the arithmetic volume function has been introduced by Yuan [39]

(see also [34, § 4.3]), where he replaces log #Ĥ0(nD) in the formula (9) by the
Euler-Poincaré characteristic of H0(nD):

(10) v̂olχ(D) := lim sup
n→+∞

χ(H0(nD))
nd+1/(d+ 1)! .

This function is called the χ-volume function.
2.2.7. Let D be an adelic R-Cartier divisor on X such that D is big. Then the
family

V•(D) := (H0(nD))n∈N
forms an adelically normed graded linear series in the sense of [9]. By using the
filtration by height (see [9, § 3.2]), we have constructed a concave and upper
semicontinuous function GD on ∆(D), called the concave transform of D, such
that

(11) v̂ol(D) = (d+ 1)!
∫

∆(D)
max(GD(x), 0)dx,

and

(12) v̂olχ(D) = (d+ 1)!
∫

∆(D)
GD(x)dx.

This function is positively homogeneous in the following sense: for any D ∈
B̂igR(X) and any λ > 0, one has

∀x ∈ ∆(D), GλD(λx) = λGD(x).

If ζ is an arithmetic R-Cartier divisor on SpecK, then one has

GD+π∗(ζ)(·) = GD(·) + d̂eg(ζ)
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on ∆(D), which implies the following equality

(13) v̂olχ(D + π∗(ζ))
vol(D) = v̂olχ(D)

vol(D) + (d+ 1)d̂eg(ζ).

Moreover, if D1 and D2 are two adelic R-Cartier divisors on X, then for any
(x, y) ∈ ∆(D1)×∆(D2) one has

GD1+D2
(x+ y) ≥ GD1

(x) +GD2
(y).

We refer readers to [9, § 2.4] for more details, see also [17, § 3.2 and § 4.2] for
the super-additivity of the concave transform.
2.2.8. Let D = (D, (gv)v∈MK

) be an adelic R-Cartier divisor on X. We say
that D is relatively nef if the R-Cartier divisor D is nef and if all v-Green
functions gv are plurisubharmonic. In the case where v is non-Archimedean,
the plurisubharmonicity of gv signifies that the Green function gv is a uniform
limit of v-Green functions of D arising from relatively nef integral models. We
refer readers to [34, §§ 2.1–2.2, § 4.4] for more details.

The arithmetic intersection number has been defined in [34, § 4.5] for rela-
tively nef adelic R-Cartier divisors. It is a (d + 1)-linear form on the cone of
relatively nef adelic R-Cartier divisors. If {D0, . . . , Dd} is a family of relatively
nef adelic R-Cartier divisors, we use the expression d̂eg(D0 · · ·Dd) to denote
the arithmetic intersection number of the adelic R-Cartier divisors D0, . . . , Dd.

If D is a relatively nef adelic R-Cartier divisor, one can identify the arith-
metic self-intersection number d̂eg(Dd+1) with the χ-volume function. One
has

(14) v̂olχ(D) = d̂eg(Dd+1).

This follows from the arithmetic Hilbert-Samuel theorem [1, 36] and the con-
tinuity of the arithmetic intersection number on the relatively nef cone. In
particular, we deduce from (12) that, if D is an adelic R-Cartier divisor which
is relatively nef, then one has

(15) d̂eg(Dd+1) = (d+ 1)!
∫

∆(D)
GD(x)dx.

2.2.9. Given an adelic R-Cartier divisor D on X, one can define a height
function hD on the set of all closed points of X. In particular, when x is a
closed point of X which does not lie in the support of D, the height hD(x) is the
Arakelov degree of the restriction of D on x. The adelic R-Cartier divisor D is
said to be nef if it is relatively nef and if the height function hD is non-negative
(see [34, § 4.4]). If D is nef, one has (see [25, Proposition 3.11])

(16) d̂eg(D(d+1)) = v̂ol(D).
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The comparison between (11) and (15) shows that, if D is nef, then the function
GD is non-negative almost everywhere on ∆(D), and hence is non-negative on
∆(D)◦, since it is concave.
2.2.10. The arithmetic volume function is differentiable on the cone of big
adelic R-Cartier divisors. More precisely, if D and E are adelic R-Cartier
divisors on X, where D is big, then the limit

(17) 〈Dd〉 · E := lim
t→0

v̂ol(D + tE)− v̂ol(D)
(d+ 1)t

exists in R, and defines a linear form on E ∈ D̂ivR(X). This result was first
proved in the case where D and E are Cartier divisors in [15], and then was
extended to the general case of adelic R-Cartier divisors in [25] (the normality
hypothesis on the arithmetic variety in the differentiability theorem in loc. cit.
is not necessary, since the arithmetic volume function is invariant by pull-back
to a birational modification). We observe from the definition that if E1 and E2
are adelic R-Cartier divisors such that E2 − E1 is effective, then one has

(18) 〈Dd〉 · E1 ≤ 〈D
d〉 · E2.

Moreover, if ν : X ′ → X is a birational projective morphisme, then one has

(19) 〈ν∗(D)d〉 · ν∗(E) = 〈Dd〉 · E.

This follows from the birational invariance of the arithmetic volume function.
Note that 〈Dd〉·E identifies with the arithmetic positive intersection number

introduced in [15]. Recall that, if the adelic R-Cartier divisor E is nef, then
one has (see [15, § 3.3], see also [25, § 3])

(20) 〈Dd〉 · E = sup
ν:X′→X, D′≤ν∗(D)

d̂eg(D′d · ν∗(E)),

where (ν,D′) runs over the set of all couples with ν : X ′ → X being a birational
modification of X and D′ is a nef arithmetic R-Cartier divisor on X ′ such that
ν∗(D)−D′ is effective.

Let D be a big R-Cartier divisor on X. We denote by vol+(D) the volume
of the graded linear series

V 0(D) :=
⊕
n≥0

VectK(Ĥ0(nD)).

This invariant is a birational invariant (its birationality follows from that of
the arithmetic volume function and [14, Corollary 4.6]). Moreover, one has

(21) vol+(D) = sup
ν:X′→X,D′≤ν∗(D)

vol(D′),
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where (ν,D′) runs over the set of all couples with ν : X ′ → X being a birational
modification of X and D′ a nef arithmetic R-Cartier divisor on X ′ such that
ν∗(D) − D′ is effective. Note that this invariant has also been introduced in
[42, § 3.2] as “volume derivative”.

3. Relative isoperimetric inequality

The purpose of this section is to establish an integral form of isoperimet-
ric inequality and apply it to the study of the arithmetic volume function.
Throughout the section, we fix an integer d ≥ 1.

3.1. Isoperimetric inequality for integrals. — Let ∆0 and ∆1 be two convex
bodies in Rd. For any ε ∈ [0, 1], let Sε be the Minkowski sum

∆0 + ε∆1 := {x+ εy : x ∈ ∆0, y ∈ ∆1}.
It is also a convex body in Rd.

Theorem 3.1. — Let G0 and G1 be two Borel functions on ∆0 and ∆1, re-
spectively. We assume that they are integrable with respect to the Lebesgue
measure. Suppose given, for any ε ∈ [0, 1], an almost everywhere non-negative
Borel function Hε on Sε such that
(22) ∀ (x, y) ∈ ∆0 ×∆1, Hε(x+ εy) ≥ G0(x) + εG1(y).
Then the following inequality holds

lim inf
ε→0+

∫
Sε
Hε(z)dz −

∫
∆0
G0(x)dx

ε

≥ d
(

vol(∆1)
vol(∆0)

)1/d ∫
∆0

G0(x)dx+ vol(∆0)
vol(∆1)

∫
∆1

G1(y)dy.
(23)

Proof. — The key point of the proof is to choose a suitable map f : ∆0 →
∆1 as an auxiliary tool to relate ∆0, ∆1 and Sε. We consider the Knothe
map f : ∆0 → ∆1 which is a homeomorphism and of class C1 on ∆◦0, whose
JacobianDf is upper triangular with a positive diagonal everywhere on ∆◦0, and
such that det(Df) is constant (which is necessarily equal to vol(∆1)/ vol(∆0)).
We refer readers to [28] and [3, § 2.2.1] for details on the construction of this
map. We just point out that we can write the map f in the form

f(x1, . . . , xd) = (f1(x1), f2(x1, x2), . . . , fd(x1, . . . , xd)),
where for each k ∈ {1, . . . , d}, fk is a function from Rk to R which is in-
creasing in the variable xk when other coordinates (x1, . . . , xk−1) are fixed.
Moreover, this monotonicity is strict on the interval of points xk ∈ R such that
(x1, . . . , xk) lies in the projection of ∆0 by taking the first k coordinates (with
fixed (x1, . . . , xk−1) again).
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For any ε ∈ [0, 1], let Fε := Id +εf : ∆0 → Sε which sends x ∈ ∆0 to
x+ εf(x). Note that the map Fε has the same monotonicity property as f . In
particular, the map Fε is injective on ∆◦0. Therefore by the positivity of the
function Hε one has∫

Sε

Hε(z)dz ≥
∫
Fε(∆0)

Hε(z)dz =
∫

∆◦0
Hε(Fε(x))|det(DFε)(x)|dx.

Note that one has DFε = Id +εDf on ∆◦0. Since Df is upper triangular and
the coefficients of its diagonal are positive, one has

|det(DFε)| = det(Id +εDf) ≥ (1 + εdet(Df)1/d)d =
(

1 + ε

(
vol(∆1)
vol(∆0)

) 1
d

)d
.

Hence we obtain∫
Sε

Hε(z)dz ≥
(

1 + ε

(
vol(∆1)
vol(∆0)

) 1
d

)d ∫
∆0

Hε(Fε(x))dx.

By the super-additivity assumption (22), one has
Hε(Fε(x)) = Hε(x+ εf(x)) ≥ G0(x) + εG1(f(x)).

Therefore∫
Sε

Hε(z)dz ≥
(

1 + ε

(
vol(∆1)
vol(∆0)

) 1
d

)d(∫
∆0

G0(x)dx+ ε

∫
∆0

G1(f(x))dx
)
.

Since f is a homeomorphism between ∆0 and ∆1, and
det(Df) = vol(∆1)/ vol(∆0)

is constant on ∆◦0, one has∫
∆0

G1(f(x))dx = vol(∆0)
vol(∆1)

∫
∆1

G1(y)dy.

Combining with the above inequality, we obtain that
1
ε

(∫
Sε

Hε(z)dz −
∫

∆0

G0(x)dx
)

is bounded from below by

1
ε

[(
vol(∆0) 1

d + ε vol(∆1) 1
d

)d(∫∆0
G0(x)dx

vol(∆0) + ε

∫
∆1
G1(y)dy

vol(∆1)

)

−
∫

∆0

G0(x)dx
]
.

By taking the inf limit when ε tends to 0+, we obtain the lower bound as stated
in the theorem. �
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Remark 3.2. — The inequality (23) can be considered as a natural general-
ization of the classic isoperimetric inequality. In fact, if we take G0 and G1
to be the constant function of value 1 on ∆0 and ∆1 respectively, and let
Hε(z) = 1 + ε for any ε ∈ [0, 1] and any z ∈ Sε, then these functions verify the
conditions of Theorem 3.1. Moreover, one has∫

Sε

Hε(z)dz = (1 + ε) vol(Sε).

Hence

lim
ε→0+

∫
Sε
Hε(z)dz −

∫
∆0
G0(x)dx

ε
= dvold−1,1(∆0,∆1) + vol(∆0),

where vold−1,1(∆0,∆1) is the mixed volume of index (d− 1, 1) of ∆0 and ∆1.
Therefore the inequality (23) leads to

vold−1,1(∆0,∆1) ≥ vol(∆0)(d−1)/d · vol(∆1)1/d,

which is the isoperimetric inequality in convex geometry.

3.2. Relative arithmetic isoperimetric inequality. — Let K be a number field
and X be a geometrically integral projective scheme of Krull dimension d ≥ 1
over SpecK. The purpose of this subsection is to establish the following theo-
rem.

Theorem 3.3. — Let D0 and D1 be two adelic R-Cartier divisors on X such
that D0 and D1 are big. Assume that v̂ol(D0) = v̂olχ(D0) > 0. Then one has

(24) (d+ 1)〈Dd

0〉 ·D1 ≥ d
(

vol(D1)
vol(D0)

) 1
d

v̂olχ(D0) +
(

vol(D0)
vol(D1)

)
v̂olχ(D1).

Proof. — For each ε ∈ [0, 1], let Eε be the adelic R-Cartier divisor D0 + εD1
and ∆(Eε) be the Newton-Okounkov body of Eε (see Section 2.1.5). Note that
one has

∆(Eε) ⊃ Sε := ∆(D0) + ε∆(D1)
where ∆(D0) and ∆(D1) are, respectively, the Newton-Okounkov bodies of D0
and D1. For any ε ∈ [0, 1], let GEε

be the concave transform of Eε, which
verifies (see Sections 2.2.7–2.2.9)

v̂ol(Eε) = (d+ 1)!
∫

∆(Eε)
max(GEε

(z), 0)dz ≥ (d+ 1)!
∫
Sε

max(GEε
(z), 0)dz.

Moreover, for any x ∈ ∆(D0) and any y ∈ ∆(D1) one has

max(GEε
(x+ εy), 0) ≥ GEε

(x+ εy) ≥ GD0
(x) + εGD1

(y),
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where GD0
and GD1

are, respectively, the concave transforms of D0 and D1.
By the assumption v̂ol(D0) = v̂olχ(D0) we obtain that (see also (11) and (12))

v̂ol(D0) = (d+ 1)!
∫

∆(D0)
GD0

(x)dx = v̂olχ(D0)

Therefore, Theorem 3.1 leads to

(d+ 1)〈Dd

0〉 ·D1 = lim
ε→0+

v̂ol(Eε)− v̂ol(D0)
ε

≥ d
(

vol(D1)
vol(D0)

)1/d
v̂olχ(D0) + vol(D0)

vol(D1) v̂olχ(D1),

as claimed in the theorem. �

Remark 3.4. — The condition v̂ol(D0) = v̂olχ(D0) in Theorem 3.3 is fulfilled
notably when D0 is nef. If in addition D1 is relatively nef, then the positive
intersection product 〈Dd

0〉·D1 coincides with the arithmetic intersection number
d̂eg(Dd

0 ·D1). Therefore, in the case whereD0 is nef and big, andD1 is relatively
nef, the inequality (24) can be rewritten in the form

(d+ 1)d̂eg(Dd

0 ·D1) ≥ d
(

vol(D1)
vol(D0)

) 1
d

d̂eg(Dd+1
0 ) +

(
vol(D0)
vol(D1)

)
d̂eg(Dd+1

1 ).

In the particular case where d = 1, we obtain

2d̂eg(D0 ·D1) ≥ deg(D1)
deg(D0) d̂eg(D2

0) + vol(D0)
vol(D1) d̂eg(D2

1),

which is an equivalent form of the arithmetic Hodge index theorem of Falt-
ings [19] and Hriljac [24]; see [17, Remark 4.15] for the comparison of the above
inequality with the original statement. In this sense, Theorem 3.3 can be con-
sidered as a higher dimensional generalization of the arithmetic Hodge index
theorem. Note that in the literature there exist generalizations of the result
of Faltings and Hriljac such as [29, 32, 41]. However, these results are, rather,
extensions of the arithmetic Hodge index theorem to the setting of intersection
along a two-dimensional arithmetic cycle (in a higher-dimensional arithmetic
variety), and hence have a very different nature from that of Theorem 3.3.

Theorem 3.5. — Let D0 and D1 be big adelic R-Cartier divisors on X. Then
the following inequality holds.

(25) (d+ 1) 〈Dd

0〉 ·D1 ≥ d
(

vol+(D1)
vol+(D0)

) 1
d

v̂ol(D0) +
(

vol+(D0)
vol+(D1)

)
v̂ol(D1).

Proof. — Let ν : X ′ → X be a birational projective morphism and and D′1 be
a nef and big adelic R-Cartier divisor on X ′ such that ν∗(D1)−D′1 is effective.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



666 H. CHEN

By Remark 3.4, we obtain that, for any birational projective morphism π :
X ′′ → X ′ and any nef and big adelic R-Cartier divisor D′′0 on X ′′ such that
(νπ)∗(D0)−D′′0 is effective, one has

(d+ 1)d̂eg(D′′0d · π∗(D
′
1)) ≥ d

(
vol(D′1)
vol(D′′0 )

) 1
d

d̂eg(D′′(d+1)
0 )

+
(

vol(D′′0 )
vol(D′1)

)
d̂eg(D′1(d+1)).

By the relations (20) and (21), and the arithmetic Fujita approximation prop-
erty of the arithmetic volume function, we deduce that

(d+ 1) 〈ν∗(D0)d〉 ·D′1 ≥ d
(

vol(D′1)
vol+(D0)

) 1
d

v̂ol(D0) +
(

vol+(D0)
vol(D′1)

)
d̂eg(D′1d+1).

Moreover, by (18) and (19) one has

〈Dd

0〉 ·D1 = 〈ν∗(D0)d〉 · ν∗(D1) ≥ 〈ν∗(D0)〉 ·D′1.
Therefore, still by the relations (20) and (21), and the arithmetic Fujita ap-
proximation property of the arithmetic volume function (applied to D1), we
obtain the inequality (25). �

Remark 3.6. — The inequality between arithmetic and geometric means
shows that (25) is a refinement of the arithmetic isoperimetric inequality proved
in [15, Proposition 4.5], which asserts that

(26) 〈Dd

0〉 ·D1 ≥ v̂ol(D0)d/(d+1) · v̂ol(D1)1/(d+1)

under the same notation and hypothesis of Theorem 3.5.

3.3. Equality condition. — It is an interesting problem to determine the con-
ditions under which the equality in (24) holds. We assume that D1 is relatively
nef and that there exists an arithmetic R-Cartier divisor ζ on SpecK with
d̂eg(ζ) > 0 such that D0 − π∗(ζ) is nef (this condition is satisfied notably
when D0 is arithmetically ample). If the equality in (24) holds for D0 and D1,
by applying the inequality (24) to D0 − π∗(ζ) and D1, we obtain

(d+ 1) d̂eg(Dd

0 ·D1)− d(d+ 1) deg(Dd−1
0 ·D1)d̂eg(ζ)

≥ d
(

vol(D1)
vol(D0)

) 1
d

d̂eg(Dd+1
0 ) + vol(D0)

vol(D1) d̂eg(Dd+1
1 )

− d(d+ 1)
(

vol(D1)
vol(D0)

) 1
d

d̂eg(ζ),

which leads to
(27) deg(Dd−1

0 ·D1) ≤ vol(D1)1/d vol(D0)(d−1)/d.
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By the isoperimetric inequality in algebraic geometry (which is a direct con-
sequence of the Brunn-Minkowski inequality), the reverse inequality of (27)
holds, which leads to

deg(Dd−1
0 ·D1) = vol(D1)1/d vol(D0)(d−1)/d.

By [10, Theorem D], we obtain that the classes of D0 and D1 in the Néron-
Severi space of X are collinear. Note that the equality in (24) is stable by
dilations of D0 and D1 by positive numbers. Hence we may assume without
loss of generality that vol(D0) = vol(D1). In this case the equality in (24)
becomes
(28) (d+ 1)d̂eg(Dd

0 ·D1) = dd̂eg(Dd+1
0 ) + d̂eg(Dd+1

1 ).
This equality remains true if we replace D0 (resp. D1) by D0 + π∗(ζ0) and
D0 + π∗(ζ1), where ζ0 and ζ1 are adelic R-Cartier divisors on SpecK. Hence
we may assume without loss of generality that D0 and D1 are nef and big and
one has d̂eg(Dd+1

0 ) = d̂eg(Dd+1
1 ). Then by [25, Theorem 7.4], we obtain that

D1 −D0 is a principal adelic R-Cartier divisor.
We re-cast the above observation into a proposition as follows.

Proposition 3.7. — Assume that D1 is relatively nef and that there exists an
arithmetic R-Cartier divisor ζ on SpecK with d̂eg(ζ) > 0 such that D0−π∗(ζ)
is nef, the equality in (24) holds if and only if there exists an element φ ∈
K(X)×R and an adelic R-Cartier divisor ξ on SpecK such that

D1

vol(D1)1/d = D0

vol(D0)1/d + d̂iv(φ) + π∗(ξ).

Remark 3.8. — The inequality (25) was deduced from (24) (for a family of
adelic R-Cartier divisor pairs), however the comparison of the terms on the
right-hand sides of these inequalities remains obscure, even in the case where
D0 is nef (and hence v̂olχ(D0) = v̂ol(D0) and vol+(D0) = vol(D0)). Certainly
v̂olχ(D1)/ vol(D1) is bounded from above by v̂ol(D1)/ vol+(D1) because the
former is the average of the function GD1

, while the latter is the average of the
positive part of the same function. However, vol+(D1) is bounded from above
by vol(D1). It seems to me a more subtle problem to determine the equality
condition of the inequality (25).

3.4. Function field case. — The comparison between the inequalities (24) and
(26) shows that Theorem 3.3 can be considered as a refinement of the isoperi-
metric inequality where we take into account the information of X relatively
to the arithmetic curve SpecK. The same method can also be applied to the
function field setting, which leads to the following relative form of the isoperi-
metric inequality in algebraic geometry. We refer readers to [16, § 8] for the
construction of the concave transform in the function field setting. In order to
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be more explicative, we avoid introducing adelic divisors on the function field
setting by only asserting the statement for nef and big line bundles. Readers
may keep in mind that the result still holds for general adelic R-Cartier divisors
with the same proof as in the arithmetic case.

Theorem 3.9. — Let k be a field, C be a regular projective curve over Spec k,
and π : X → C be a flat and projective k-morphism of relative dimension d ≥ 1.
If L and M are two nef and big line bundles on X, then one has

(d+ 1)(c1(L)d · c1(M)) ≥ d
(
c1(Mη)d

c1(Lη)d

)1/d

c1(L)d+1 +
(
c1(Lη)d

c1(Mη)d

)
c1(M)d+1,

where η is the generic point of C, and Lη and Mη are, respectively, the restric-
tions of L and M on the generic fiber of π.

4. Relative Brunn-Minkowski inequality

The purpose of this section is to establish the following relative form of the
Brunn-Minkowski inequality in the arithmetic geometry setting.

Theorem 4.1. — Let K be a number field and X be a geometrically integral
projective scheme over SpecK. If D1, . . . , Dn are adelic R-Cartier divisors
on X such that D1, . . . , Dn are big and that

v̂ol(D1 + · · ·+Dn) = v̂olχ(D1 + · · ·+Dn) > 0,

then one has

(29) v̂ol(D1 + · · ·+Dn)
vol(D1 + · · ·+Dn) ≥ ϕ(D1, . . . , Dn)−1

n∑
i=1

v̂olχ(Di)
vol(Di)

,

where

(30) ϕ(D1, . . . , Dn) := d+ 1− dvol(D1)1/d + · · ·+ vol(Dn)1/d

vol(D1 + · · ·+Dn)1/d .

Proof. — Let D = D1 + · · ·+Dn. This is a big adelic R-Cartier divisor. By
definition, one has

v̂ol(D) = 〈Dd〉 ·D =
n∑
i=1
〈Dd〉 ·Di.

By Theorem 3.3, one has

(31) (d+ 1)〈Dd〉 ·Di ≥ d
(

vol(Di)
vol(D)

)1/d
v̂ol(D) +

(
vol(D)
vol(Di)

)
v̂olχ(Di).
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Therefore we obtain
(d+ 1)v̂ol(D1 + · · ·+Dn)

≥ dvol(D1)1/d + · · ·+ vol(Dn)1/d

vol(D1 + · · ·+Dn)1/d v̂ol(D1 + · · ·+Dn)

+ vol(D1 + · · ·+Dn)
n∑
i=1

v̂olχ(Di)
vol(Di)

,

which leads to (29). �

Remark 4.2. — Assume that the adelic R-Cartier divisors D1, . . . , Dn are
nef and big, and there exists an adelic R-Cartier divisor ζ on SpecK with
d̂eg(ζ) > 0 such that D1 + · · · + Dn − π∗(ζ) is nef, where π : X → SpecK
denotes the structural morphism. If the equality in (29) holds, then for any
i ∈ {1, . . . , n}, the equality in (31) also holds. By Proposition 3.7 we obtain
that there exists adelic R-Cartier divisors ξ1, . . . , ξn on SpecK and φ1, . . . , φn
in K(X)×R such that

D1

vol(D1)1/d − d̂iv(φ1)− π∗(ξ1) = · · · = Dn

vol(Dn)1/d − d̂iv(φn)− π∗(ξn).

It is not hard to see that the converse is also true: if the above equalities hold,
then so, also does the equality in (29).

By using the same argument, we deduce from Theorem 3.9 the following
relative Brunn-Minkowski inequality in the algebraic geometry setting.

Theorem 4.3. — Let k be a field, C be a regular projective curve over Spec k,
and π : X → C be a flat and projective k-morphism of relative dimension d ≥ 1.
If L1, . . . , Ln is a family of nef and big line bundles on X, then one has

vol(L1 ⊗ · · · ⊗ Ln)
vol(L1,η ⊗ · · · ⊗ Ln,η) ≥ ϕ(L1,η, . . . , Ln,η)−1

n∑
i=1

vol(Li)
vol(Li,η) ,

where η is the generic point of C, Li,η is the restrictions of Li on the generic
fiber of π, and

ϕ(L1,η, . . . , Ln,η) := d+ 1− dvol(L1,η)1/d + · · ·+ vol(Ln,η)1/d

vol(L1,η ⊗ · · · ⊗ Ln,η)1/d .

Remark 4.4. — The infinitesimal argument in Theorem 3.3 is a key step for
the inequality (29). In fact, if we apply directly the map of Knothe, as in
the proof of Theorem 3.1 with ε = 1, we obtain that, for nef adelic R-Cartier
divisors D1 and D2 such that D1 and D2 are big, one has

v̂ol(D1 +D2) ≥
(

1 +
(

vol(D2)
vol(D1)

)1/d
)d(

v̂ol(D1) + vol(D1)
vol(D2) v̂ol(D2)

)
,
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which leads to

v̂ol(D1 +D2)
vol(D1 +D2) ≥

(vol(D1)1/d + vol(D2)1/d)d

vol(D1 +D2)

(
v̂ol(D1)
vol(D1) + v̂ol(D2)

vol(D2)

)
.

However, one has

ϕ(D1, D2) ≤ vol(D1 +D2)
(vol(D1)1/d + vol(D2)1/d)d

,

and the inequality is, in general, strict.

Similarly to Theorem 4.1, we deduce from Theorem 3.5 the following result,
which is a refinement of the arithmetic Brunn-Minkowski inequality.

Theorem 4.5. — Let K be a number field and X be a geometrically integral
scheme over SpecK. If D1, . . . , Dn are big adelic R-Cartier divisors on X,
then the following inequality holds:

(32) v̂ol(D1 + · · ·+Dn)
vol+(D1 + · · ·+Dn)

≥ ϕ̂(D1 + · · ·+Dn)−1
n∑
i=1

v̂ol(Di)
vol+(Di)

,

where

ϕ̂(D1, . . . , Dn) = d+ 1− dvol+(D1)1/d + · · ·+ vol+(Dn)1/d

vol+(D1 + · · ·+Dn)1/d
.
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