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Since the seminal works of Okounkov [10], Kaveh and Khovanskii [6],
Lazarsfeld and Muastaţǎ [7], the theory of Okounkov bodies has been shown
to be an efficient tool to describe geometric invariants in birational alge-
braic geometry. The typical example is the volume function on the group
of Cartier divisors on an integral projective variety. Recently, the arith-
metic analogue of Okounkov bodies has been discovered in the framework
of Arakelov geometry, and has led to interesting applications. In some sit-
uations, the application of Okounkov bodies in the arithmetic problem is
crucial because the arithmetic analogue of classical methods is still missing
or is very sophisticated.

From the point of view of Arakelov geometry, the arithmetic varieties
should be considered as the analogue of algebraic varieties fibered over a
smooth projective curve (the function field setting). In the number theory
case, it is SpecZ that plays the role of the base curve. By definition, an
arithmetic projective variety refers to a projective and flat morphism π :
X → SpecZ from an integral scheme X to SpecZ. A major obstruction to
study such objects is that the base scheme is not “compact”. For example, the
principal divisor on SpecZ need not have degree zero. It is a natural idea to
compactify SpecZ by the usual absolute value of Q (called the infinite place).
Then the situation becomes analogous to the function field case since the
closed points of a regular projective curve correspond to the valuations of the
function field of the curve whose restriction on the base field is trivial. The
compactness of the augmented object is justified by the following product
formula

∀ a ∈ Q \ {0}, |a| ·
∏
p

|a|p = 1,

where p runs over the set of all prime numbers, and |.|p is the p-adic absolute
value on Q. However, it turns out that no scheme structure can be defined for
this augmented object and one cannot find the direct analogue of projective
varieties in the arithmetic setting.

The genuine idea of Arakelov is to introduce analytic object to “compact-
ify” an arithmetic variety. Let π : X → SpecZ be an arithmetic projective
variety. One can imagine that we attach to the arithmetic projective vari-
ety the complex analytic space associated to the C-scheme XC as the “fiber
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over the infinite place”. The algebraic objects in the algebraic geometry set-
ting correspond to the similar algebraic objects on the arithmetic variety X
equipped with additional structures (often metrics) on the induced object on
the analytic space. For example, the notion of line bundles in the geometric
setting corresponds to the notion of hermitian line bundles in the arithmetic
framework as follows. Let π : X → SpecZ be an arithmetic projective va-
riety, a hermitian line bundle is defined as any couple L = (L , ‖.‖), where
L is a line bundle on the scheme X , and ‖.‖ is a continuous metric on the
pull-back of L on the analytic space associated to LC, invariant under the
action of the complex conjugation.

Given a hermitian line bundle L on an arithmetic projective variety π :
X → SpecZ, one can construct a lattice in a normed vector space as follows.
We denote by π∗(L ) the Z-module H0(X ,L ), whose rank identifies with
the dimension of the vector space H0(XQ,LQ) over Q. The vector space
π∗(L )⊗Z R, which can be considered as a vector subspace of H0(XC,LC),
is naturally equipped with sup norm

∀ s ∈ π∗(L )⊗Z R, ‖s‖sup := sup
x∈X(C)

‖s‖(x).

We shall use the expression π∗(L ) to denote the lattice (π∗(L ), ‖.‖sup). We
say that a section s ∈ π∗(L ) is small if ‖s‖sup 6 1. We denote by Ĥ0(L )

the set of all small sections of L . The set Ĥ0(L ) is necessarily finite. This
notion is analogous to the space of global sections of a line bundle in the
algebraic geometry setting. Motivated by this observation, Moriwaki [8, 9]
has introduced the notion of arithmetic volume function for hermitian line
bundles (or more generally, for arithmetic R-Cartier divisors) as follows

v̂ol(L ) := lim sup
n→+∞

ln #Ĥ0(L ⊗n)

ndim(X )/dim(X )!
.

This function has soon been proved to be quite useful in the arithmetic
geometry. Moreover, it shares many good properties as its avatar in algebraic
geometry, as shown by the works of Moriwaki mentioned above, and also by
the work [11] of Yuan.

Despite the similitude of definitions, the study of the arithmetic volume
function is by no means identical to that of the classical volume function and
often much more difficult. In fact the small section set Ĥ0(L ) is not stable
by the addition in general. The classical method in the study of graded
linear series do not work in the arithmetic setting. Although tools from the
complex analytic geometry can be used to remedy the defeat due to the lack
of the algebraic structure, the implementation of these tools is often very
sophisticated and demand extra hypotheses (smoothness, positivity, etc.)
on the metric of the hermitian line bundle.

Under this circumstance, the theory of Okounkov bodies has been applied
to the study of the arithmetic volume function and has let to interesting
results such as the arithmetic version of Fujita’s approximation theorem.
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There are essentially two approaches on the arithmetic analogue of Okoun-
knov bodies in the literature : the one developed in [12] constructs a convex
body attached to the sets (Ĥ0(L ⊗n))n∈N in a way similar to the classical
approach of Okounkov bodies and requires a fine study on this family of sets;
the one developed in [2, 3, 1] uses R-filtrations to interpret the arithmetic
volume function as the integral of certain level function on the geometric
Okounkov body of the generic fiber L and relies on the theory of Okounkov
bodies of graded linear series.

In the following, we will give a brief introduction to the R-filtration ap-
proach mentioned above. Consider a lattice E = (E, ‖.‖) in a normed finite
dimensional real vector space. Here E denotes a free Z-module of finite rank
and ‖.‖ is a norm on the real vector space ER = E ⊗ R. We can then
introduce a decreasing R-filtration F on EQ as follows :

∀ t ∈ R, Ft(EQ) = VectQ({s ∈ E : ‖s‖ 6 e−t}).

The jump points of the filtration are nothing but the logarithmic version of
the successive minima of the lattice. The Minkowski’s second theorem leads
to the following estimation

ln #Ĥ0(E) =

∫ +∞

0
rk(Ft(EQ)) dt+O(r ln(r)),

where Ĥ0(E) = {s ∈ E : ‖s‖ 6 1}, r = rkZ(E), and the implicit constant
is absolute.

We now consider an arithmetic projective variety π : X → SpecZ and a
hermitian line bundle L on X . We denote by X = XQ the generic fiber of
π and by L the restriction of L on X. We assume that L is big. It turns out
that the lattice structure of π∗(L ⊗n) induces as above an R-filtration F on
the vector space Vn = H0(X,L⊗n). The fundamental idea of the R-filtration
approach is that the direct sum

V t
• =

⊕
n>0

Fnt(Vn)

is actually a graded linear series of L. The theory of Okounkov bodies then
allows to attach to this graded linear series a convex body ∆(V t

• ) in Rd (with
d = dim(X)) such that

vol(∆(V t
• )) = lim

n→+∞

rk(Vn)

nd
.

A direct computation shows that∫ +∞

0
rk(Ft(Vn)) dt = n

∫ +∞

0
rk(V t

n) =

(∫ +∞

0
vol(∆(V t

• )) dt

)
nd+1+o(nd+1).

Therefore Minkowski’s second theorem stated as above leads to

lim
n→+∞

ln #Ĥ0(L ⊗n)

nd+1
=

∫ +∞

0
vol(∆(V t

• )) dt.
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In particular, if one denotes by ∆̂(L ) the convex body

{(x, t) : t > 0, x ∈ ∆(V t
• )} ⊂ Rd+1,

then one can interpret the arithmetic volume v̂ol(L ) as (d+ 1)!vol(∆̂(L )).
One can also introduce a level function ϕL on the Okounkov body ∆(L) of
the total graded linear series of L with

ϕL (x) = sup{t ∈ R : x ∈ ∆(V t
• )}.

Then vol(∆̂(L )) identifies with the the integral of the function max(ϕL , 0)
on the Okounkov body ∆(L) with respect to the Lebesgue measure.

The R-filtration approach is very flexible. It allows to separate difficulties
arising from different structure of the problems and reduce the problems of
divers natures to the study of graded linear series in the classical algebraic
geometry setting. We refer the readers to [4, 5] for further applications of
this approach in different settings.
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