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MAXIMAL SLOPE OF TENSOR PRODUCT
OF HERMITIAN VECTOR BUNDLES

HUAYI CHEN

Abstract

We give an upper bound for the maximal slope of the tensor product of
several non-zero Hermitian vector bundles on the spectrum of an alge-
braic integer ring. By Minkowski’s First Theorem, we need to estimate
the Arakelov degree of an arbitrary Hermitian line subbundle M of the
tensor product. In the case where the generic fiber of M is semistable
in the sense of geometric invariant theory, the estimation is established
by constructing, through the classical invariant theory, a special polyno-
mial which does not vanish on the generic fibre of M . Otherwise we use
an explicit version of a result of Ramanan and Ramanathan to reduce
the general case to the former one.

1. Introduction

It is well known that on a projective and smooth curve defined over a field
of characteristic 0, the tensor product of two semistable vector bundles is still
semistable. This result was first proved by Narasimhan and Seshadri [22] by
using analytic method in the complex algebraic geometry framework. Then it
has been reestablished by Ramanan and Ramanathan [23] in purely algebraic
context, through the geometric invariant theory. Their method is based on a
result of Kempf [20], which has also been independently obtained by Rousseau
[25], generalizing the Hilbert–Mumford criterion [21] of semistability in the
sense of geometric invariant theory. By reformulating the results of Kempf
and Ramanan–Ramanathan, Totaro [27] (see also [10] for a review) has given
a new proof of a conjecture due to Fontaine [13], which was first proved by
Faltings [12], asserting that the tensor product of two semistable admissible
filtered isocristals is still semistable.

Let us go back to the case of vector bundles. Consider a smooth projective
curve C defined over a field k. For any non-zero vector bundle E on C, the
slope of E is defined as the quotient of its degree by its rank and is denoted
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576 HUAYI CHEN

by µ(E). The maximal slope µmax(E) of E is the maximal value of slopes of
all non-zero subbundles of E. By definition, µ(E) ≤ µmax(E). We say that
E is semistable if the equality µ(E) = µmax(E) holds. If E and F are two
non-zero vector bundles on C, then µ(E ⊗ F ) = µ(E) + µ(F ). The result of
Ramanan–Ramanathan [23] implies that, if k is of characteristic 0, then the
equality holds for maximal slopes, i.e., µmax(E ⊗ F ) = µmax(E) + µmax(F ).
When the characteristic of k is positive, this equality is not true in general
(see [16] for a counter-example). Nevertheless, there always exists a constant
a which only depends on C such that

(1) µmax(E) + µmax(F ) ≤ µmax(E ⊗ F ) ≤ µmax(E) + µmax(F ) + a.

Hermitian vector bundles play in Arakelov geometry the role of vector
bundles in algebraic geometry. Let K be a number field and OK be its integer
ring. We denote by Σ∞ the set of all embeddings of K into C. A Hermitian
vector bundle E = (E, h) on SpecOK is by definition a projective OK -module
of finite type E together with a family of Hermitian metrics h = (∥ ·∥σ)σ∈Σ∞ ,
where for any σ ∈ Σ∞, ∥ ·∥σ is a Hermitian norm on E⊗OK ,σ C, subject to the
condition that the data (∥ · ∥σ)σ∈Σ∞ is invariant by the complex conjugation.
That is, for any e ∈ E, z ∈ C and σ ∈ Σ∞, we have ∥e ⊗ z∥σ = ∥e ⊗ z∥σ.

The (normalized) Arakelov degree of a Hermitian vector bundle E of rank
r on SpecOK is defined as

d̂egnE =
1

[K : Q]

(
log #(E/OKs1 + · · ·+OKsr)−

1
2

∑

σ∈Σ∞

log det(⟨si, sj⟩σ)
)
,

where (s1, · · · , sr) is an arbitrary element in Er which defines a basis of EK

over K. This definition does not depend on the choice of (s1, · · · , sr). The
slope of a non-zero Hermitian vector bundle E on SpecOK is defined as the
quotient µ̂(E) := d̂egn(E)/ rk(E) (for more details, see [3], [5], and [7]).

We say that a non-zero Hermitian vector bundle E is Arakelov semistable
if the maximal slope µ̂max(E) of E, defined as the maximal value of slopes
of its non-zero Hermitian subbundles, equals its slope. If E is a non-zero
Hermitian vector bundle on SpecOK , Stuhler [26] and Grayson [19] have
proved that there exists a unique Hermitian subbundle Edes of E having
µ̂max(E) as its slope and containing all Hermitian subbundle F of E such that
µ̂(F ) = µ̂max(E). Clearly E is Arakelov semistable if and only if E = Edes.
If it is not the case, then Edes is said to be the Hermitian subbundle which
destabilizes E.

In a lecture at Oberwolfach, J.-B. Bost [4] has conjectured that the tensor
product of two Arakelov semistable Hermitian vector bundles on SpecOK is
Arakelov semistable. This conjecture is equivalent to the assertion that for
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TENSOR PRODUCT OF HERMITIAN VECTOR BUNDLES 577

any non-zero Hermitian vector bundles E and F on SpecOK ,

µ̂max(E ⊗ F ) = µ̂max(E) + µ̂max(F ).

We always have the inequality µ̂max(E ⊗ F ) ≥ µ̂max(E) + µ̂max(F ). But the
inverse inequality remains open. Several special cases of this conjecture have
been proved. Some estimations of type (1) have been established with error
terms depending on the ranks of the vector bundles and on the number field
K. We resume some known results on this conjecture.

(1) By definition of maximal slope, if E is a non-zero Hermitian vector
bundle and if L is a Hermitian line bundle, that is, a Hermitian vector
bundle of rank one, then

µ̂max(E ⊗ L) = µ̂max(E) + d̂egn(L) = µ̂max(E) + µ̂max(L).

The geometric counterpart of this equality is also true for the positive
characteristic case.

(2) De Shalit and Parzanovski [11] have proved that, if E and F are two
Arakelov semistable Hermitian vector bundles on Spec Z such that
rkE + rkF ≤ 5, then E ⊗ F is Arakelov semistable.

(3) In [3] (see also [18]), using the comparison of a Hermitian vector bun-
dle to a direct sum of Hermitian line bundles, Bost has proved that

µ̂max(E1 ⊗ · · ·⊗ En) ≤
n∑

i=1

(
µ̂max(Ei) + 3 rkEi log(rkEi)

)

for any family of non-zero Hermitian vector bundles (Ei)n
i=1 on

SpecOK .
(4) Recently, Bost and Künnemann [6] have proved that, if K is a number

field and if E and F are two non-zero Hermitian vector bundles on
SpecOK , then

µ̂max(E ⊗ F ) ≤ µ̂max(E) + µ̂max(F ) +
1
2
(
log rk E + log rkF

)
+

log |∆K |
2[K : Q]

,

where ∆K is the discriminant of K.
We state the main result of this article as follows:
Theorem 1.1. Let K be a number field and OK be its integer ring. If

(Ei)n
i=1 is a family of non-zero Hermitian vector bundles on SpecOK , then

(2) µ̂max(E1 ⊗ · · ·⊗ En) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
.

The idea goes back to an article of Bost [2] inspired by Bogomolov [24],
Gieseker [17] and Cornalba–Harris [9]. In an article of Gasbarri [14] a similar
idea also appears. By Minkowski’s First Theorem, we reduce our problem to
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578 HUAYI CHEN

finding an upper bound for the Arakelov degree of an arbitrary Hermitian line
subbundle M of E1⊗· · ·⊗En. In the case where MK is semistable (in the sense
of geometric invariant theory) for the action of GL(E1,K) × · · ·× GL(En,K),
the classical invariant theory gives invariant polynomials with coefficients in Z
whose Archimedean norms are “small”. The general case can be reduced to the
former one using an explicit version of a result of Ramanan–Ramanathan [23].

The structure of the rest of this article is as follows. In the second section
we fix the notation and present some preliminary results. In the third section
we recall the first principal theorem in classical invariant theory and discuss
some generalizations in the case of several vector spaces. We then establish
in the fourth section an upper bound for the Arakelov degree of a Hermitian
line subbundle under semistable hypothesis. The fifth section is contributed
to some basic properties of filtrations in the category of vector spaces. Then
in the sixth section, we state an explicit version of a result of Ramanan–
Ramanathan in our context and, following the method of Totaro, give a proof
of it. In the seventh section a criterion of Arakelov semistability is presented,
which is an arithmetic analogue of a result of Bogomolov. In the eighth
section, we explain how to use the results in previous sections to reduce the
majoration of the Arakelov degree of an arbitrary Hermitian line subbundle
to the case with semistability hypothesis, which has already been discussed
in the fourth section. Finally, we give the proof of Theorem 1.1 in the ninth
section.

2. Notation and preliminary results

Throughout this article, if K is a field and if V is a vector space of finite
rank over K, we denote by P(V ) the K-scheme which represents the functor

(3)
Schemes/K −→ Sets

(p : S → Spec K) +−→
{ locally free quotient

of rank 1 of p∗V

}

In particular, P(V )(K) classifies all hyperplanes in V , or equivalently, all
lines in V ∨. We denote by OV (1) the canonical line bundle on P(V ). In other
words, if π : P(V ) → Spec K is the structural morphism, then OV (1) is the
quotient of π∗V defined as the universal object of the representable functor
(3). For any integer m ≥ 1, we use the expression OV (m) to denote the line
bundle OV (1)⊗m.

Let G be an algebraic group over Spec K and X be a projective variety
over Spec K. Suppose that G acts on X and that L is an ample G-linearized
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line bundle on X. We say that a rational point x of X is semistable for the
action of G relatively to L if there exists an integer D ≥ 1 and a section
s ∈ H0(X, L⊗D) invariant by the action of G such that x lies in the open
subset of X defined by the non-vanishing of s. Clearly x is semistable for the
action of G relatively to L if and only if it is semistable for the action of G
relatively to any strictly positive tensor power of L.

In particular, if G(K) acts linearly on a vector space V of finite rank over K,
then the action of G on V induces naturally an action of G on P(V ), and OV (1)
becomes a G-linearized line bundle. Let R be a vector subspace of rank 1 of
V ∨, which is viewed as a point in P(V )(K). Then R is semistable for the action
of G relatively to OV (1) if and only if there exists an integer m ≥ 1 and a non-
zero section s ∈ H0(P(V ),OV (m)) = SmV which is invariant by the action of
G(K) such that the composed homomorphism R⊗m !! (SmV )∨ s

!! K

is non-zero. Here we have identified (SmV )∨ with the subspace of V ∨⊗m of
vectors which are invariant by the action of the symmetric group Sm.

We present some estimations for maximal slopes in the geometric case. Let
k be an arbitrary field and C be a smooth projective curve of genus g defined
over k. Let b = min{deg(L) | L ∈ Pic(C), L is ample} and a = b + g − 1.

Lemma 2.1. Let E be a non-zero vector bundle on C. If H0(C, E) = 0,
then µmax(E) ≤ g − 1.

Proof. Since H0(C, E) = 0, for any non-zero subbundle F of E, we also
have H0(C, F ) = 0. Recall that the Riemann–Roch theorem asserts that

rkk H0(C, F ) − rkk H1(C, F ) = deg(F ) + rk(F )(1 − g).

Therefore deg(F ) + rk(F )(1− g) ≤ 0, which implies µ(F ) ≤ g − 1. Since F is
arbitrary, µmax(E) ≤ g − 1. !

Proposition 2.2. For any non-zero vector bundles E and F on C, we
have the inequality

µmax(E) + µmax(F ) ≤ µmax(E ⊗ F ) ≤ µmax(E) + µmax(F ) + a,

where a = b + g − 1 only depends on C.
Proof. (1) Let E1 be a subbundle of E such that µ(E1) = µmax(E) and

let F1 be a subbundle of F such that µ(F1) = µmax(F ). Since E1 ⊗ F1 is a
subbundle of E ⊗ F , we obtain

µmax(E) + µmax(F ) = µ(E1) + µ(F1) = µ(E1 ⊗ F1) ≤ µmax(E ⊗ F ),

which is the first inequality.
(2) We first prove that if E′ and E′′ are two non-zero vector bundles on C

such that µmax(E′) + µmax(E′′) < 0, then µmax(E′ ⊗ E′′) ≤ g − 1. In fact, if
µmax(E′ ⊗E′′) > g − 1, then by Lemma 2.1, H0(C, E′ ⊗E′′) ̸= 0. Therefore,
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580 HUAYI CHEN

there exists a non-zero homomorphism ϕ from E′∨ to E′′. Let G be the image
of ϕ, which is non-zero since ϕ is non-zero. The vector bundle G is a subbundle
of E′′ and a quotient bundle of E′∨. Hence G∨ is a subbundle of E′∨∨ ∼= E′.
Therefore, we have µ(G) ≤ µmax(E′′) and µ(G∨) = −µ(G) ≤ µmax(E′). By
the taking the sum, we obtain µmax(E′) + µmax(E′′) ≥ 0.

We now prove the second inequality in the proposition. By the definition of
b, there exists a line bundle M such that −b ≤ µmax(E)+µmax(F )+deg(M) =
µmax(E⊗M)+µmax(F ) < 0. Then, by combining the previously proved result,
we obtain µmax(E ⊗ M ⊗ F ) ≤ g − 1. Therefore,

µmax(E ⊗ F ) ≤ g − 1 − deg(M) ≤ µmax(E) + µmax(F ) + g + b − 1.

!
We now recall some classical results in Arakelov theory, which will be useful

afterwards. We begin by introducing the notation.
Let E be a Hermitian vector bundle on SpecOK . For any finite place p of

K, we denote by Kp the completion of K with respect to p, equipped with
the absolute value | · |p which is normalized as | · |p = #(OK/p)− vp(·) with vp

being the discrete valuation associated to p. The structure of the OK -module
on E naturally induces a norm ∥ · ∥p on EKp := E ⊗K Kp such that EKp

becomes a Banach space over Kp.
If L is a Hermitian line bundle on SpecOK and if s is an arbitrary non-zero

element in L, then

d̂egn(L) =
1

[K : Q]

(
log #(L/OKs) −

∑

σ:K→C
log ∥s∥σ

)
,

which can also be written as

(4) d̂egn(L) = − 1
[K : Q]

( ∑

p

log ∥s∥p +
∑

σ:K→C
log ∥s∥σ

)
.

Note that (4) is analogous to the degree function of a line bundle on a smooth
projective curve. Similarly to the geometric case, for any Hermitian vector
bundle E of rank r on SpecOK , we have

(5) d̂egn(E) = d̂egn(ΛrE)

where ΛrE is the rth exterior power of E, that is, the determinant of E, which
is a Hermitian line bundle. Furthermore, if

0 !! E
′ !! E !! E

′′ !! 0

is a short exact sequence of Hermitian vector bundles on SpecOK , the follow-
ing equality holds:

(6) d̂egn(E) = d̂egn(E′) + d̂egn(E′′).
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Lemma 2.3. If E and F are respectively two Hermitian vector bundles of
ranks r1 and r2 on SpecOK , then

(7) d̂egn(E ⊗ F ) = rk(E)d̂egn(F ) + rk(F )d̂egn(E).

Proof. The determinant Hermitian line bundle Λr1+r2 (E⊗F ) is isomorphic
to (Λr1E)⊗r2 ⊗ (Λr2 F )⊗r1 . Taking Arakelov degree and using (5) we obtain
(7). !

We establish below the arithmetic analogue to the first inequality in Propo-
sition 2.2.

Proposition 2.4. Let E and F be two non-zero Hermitian vector bundles
on SpecOK . Then

µ̂max(E) + µ̂max(F ) ≤ µ̂max(E ⊗ F ).

Proof. Let E1 and F 1 be, respectively, a non-zero Hermitian vector sub-
bundle of E and F . Then E1 ⊗F 1 is a Hermitian vector subbundle of E ⊗F .
Therefore

µ̂(E1) + µ̂(F 1) = µ̂(E1 ⊗ F 1) ≤ µ̂max(E ⊗ F ),

where the equality results from (7). Since E1 and F 1 are arbitrary, we obtain
µ̂max(E) + µ̂max(F ) ≤ µ̂max(E ⊗ F ). !

Corollary 2.5. Let (Ei)1≤i≤n be a finite family of non-zero Hermitian
vector bundles on SpecOK . Then the following equality holds:

(8) µ̂max(E1) + · · · + µ̂max(En) ≤ µ̂max(E1 ⊗ · · ·⊗ En).

Let E and F be two Hermitian vector bundles and ϕ : EK → FK be a
non-zero K-linear homomorphism. For any finite place p of K, we denote by
hp(ϕ) the real number log ∥ϕp∥, where ϕp : EKp → FKp is induced from ϕ
by scalar extension. Note that if ϕ is induced by an OK-homomorphism from
E to F , then hp(ϕ) ≤ 0 for any finite place p. Similarly, for any embedding
σ : K → C, we define hσ(ϕ) = log ∥ϕσ∥, where ϕσ : Eσ,C → Fσ,C is given by
the scalar extension σ. Finally, we define the height of ϕ as

h(ϕ) =
1

[K : Q]

( ∑

p

hp(ϕ) +
∑

σ:K→C
hσ(ϕ)

)
.

Proposition 2.6 (see [3]). Let E and F be two non-zero Hermitian vector
bundles on SpecOK and ϕ : EK → FK be a K-linear homomorphism.

(1) If ϕ is injective, then

(9) µ̂(E) ≤ µ̂max(F ) + h(ϕ).

(2) If ϕ is non-zero, then

(10) µ̂min(E) ≤ µ̂max(E) + h(ϕ)
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where µ̂min(E) is the minimal value of slopes of all non-zero Hermitian
quotient bundles of E.

For any non-zero Hermitian vector bundle E on SpecOK , let ud̂egn(E)
be the maximal degree of line subbundles of E. We recall a result of Bost
and Künnemann comparing the maximal degree and the maximal slope of E,
which is a variant of Minkowski’s First Theorem.

Proposition 2.7 ([6, (3.27)]). Let E be a non-zero Hermitian vector bun-
dle on SpecOK . Then

(11) ud̂egn(E) ≤ µ̂max(E) ≤ ud̂egn(E) +
1
2

log(rkE) +
log |∆K |
2[K : Q]

,

where ∆K is the discriminant of K.

3. Reminder on invariant theory

In this section we recall some known results in classical invariant theory.
We fix K to be a field of characteristic 0. If V is a vector space over K and
if u ∈ N, then the expression V ⊗(− u) denotes the space V ∨⊗u.

Let V be a finite dimensional non-zero vector space over K. For any u ∈ N,
we denote by Ju : EndK(V )⊗u → EndK(V ⊗u) the K-linear homomorphism
(of vector spaces) which sends the tensor product T1⊗· · ·⊗Tu of u elements in
EndK(V ) to their tensor product as an endomorphism of V ⊗u. The mapping
Ju is actually a homomorphism of K-algebras. Furthermore, as a homomor-
phism of vector spaces, Ju can be written as the composition of the following
natural isomorphisms:

EndK(V )⊗u !! (V ∨ ⊗ V )⊗u !! (V ⊗u)∨ ⊗ V ⊗u !! EndK(V ⊗u),

so it is itself an isomorphism. Moreover, there is an action of the symmetric
group Su on V ⊗u by permuting the factors. This representation of Su defines
a homomorphism from the group algebra K[Su] to EndK(V ⊗u). The elements
of Su act by conjugation on EndK(V ⊗u). If we identify EndK(V ⊗u) with
EndK(V )⊗u by the isomorphism Ju, then the corresponding Su-action is just
the permutation of factors in the tensor product. Finally, the group GLK(V )
acts diagonally on V ⊗u.

When u = 0, J0 reduces to the identical homomorphism Id : K → K, and
S0 reduces to the group of one element. The “diagonal” action of GLK(V )
on V ⊗0 ∼= K is trivial.

We recall below the “first principal theorem” of classical invariant theory
(cf. [28, Chapter III]; see also [1, Appendix 1] for a proof).
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Theorem 3.1. Let V be a finite dimensional non-zero vector space over
K. Let u ∈ N and v ∈ Z. If T is a non-zero element in V ∨⊗u ⊗ V ⊗v,
which is invariant by the action of GLK(V ), then u = v, and T is a linear
combination of permutations in Su acting on V (here we identify V ∨⊗u⊗V ⊗u

with EndK(V ⊗u)).
We now present a generalization of Theorem 3.1 to the case of several

linear spaces. In the rest of this section, we fix a family (Vi)1≤i≤n of finite
dimensional non-zero vector spaces over K. For any i ∈ {1, · · · , n}, let ri be
the rank of Vi over K. For any mapping α : {1, · · · , n} → Z, we shall use the
notation

(12) V α := V ⊗α(1)
1 ⊗ · · ·⊗ V ⊗α(n)

n

to simplify the writing. Denote by G the algebraic group GLK(V1)×K · · ·×K

GLK(Vn). Then G(K) is the group GLK(V1) × · · · × GLK(Vn). For any
mapping α : {1, · · · , n} → N with natural integer values, we denote by Sα

the product Sα(1) × · · · × Sα(n) of symmetric groups. We have a natural
isomorphism of K-algebras from EndK(V α) to EndK(V1)⊗α(1) ⊗K · · · ⊗K

EndK(Vn)⊗α(n). The group G(K) acts naturally on V α and the group Sα

acts on V α by permutating tensor factors. By induction on n, Theorem 3.1
implies the following corollary:

Corollary 3.2. With the notation above, if α : {1, · · · , n} → N and β :
{1, · · · , n} → Z are two mappings and if T is a non-zero element in (V α)∨ ⊗
V β which is invariant by the action of G(K), then α = β, and T is a linear
combination of elements in Sα acting on V α.

Let A be a finite non-empty family of mappings from {1, · · · , n} to N and
(bi)1≤i≤n be a family of integers such that ri divides bi for any i. We denote
by W the vector space

⊕
α∈A V α. Note that the group G(K) acts naturally

on W . Let L be the G(K)-module (detV1)⊗b1/r1 ⊗ · · · ⊗ (detVn)⊗bn/rn . For
any integer D ≥ 1 and any element α = (αj)1≤j≤D ∈ AD, let

prα : W⊗D −→ V α1 ⊗ · · ·⊗ V αD

be the canonical projection. Finally, let π : P(W∨) → SpecK be the canonical
morphism.

Theorem 3.3. With the notation above, if m is a strictly positive integer
and if R is a vector subspace of rank 1 of W (considered as a rational point of
P(W∨)) which is semistable for the action of G relatively to OW∨(m)⊗ π∗L,
then there exists an integer D ≥ 1 and a family α = (αj)1≤j≤mD of elements
in A such that, by noting A = α1 + · · ·+αmD, we have A(i) = Dbi and hence
bi ≥ 0 for any i.
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584 HUAYI CHEN

Furthermore, there exists an element σ ∈ SA such that the composition of
homomorphisms

R⊗mD ⊗ L∨⊗D !! W⊗mD ⊗ L∨⊗D
prα ⊗ Id

!! V A ⊗ L∨⊗D

σ⊗Id

""

V A ⊗ L∨⊗D

detV1
⊗Db1/r1⊗···⊗detVn

⊗Dbn/rn⊗Id

""

L⊗D ⊗ L∨⊗D ∼= K

does not vanish, where the first arrow is induced by the canonical inclusion of
R⊗mD in W⊗mD.

Proof. Since R is semistable for the action of G relatively to OW∨(m)⊗π∗L,
there exists an integer D ≥ 1 and an element s ∈ SmD(W∨) ⊗ L⊗D which is
invariant by the action of G(K) such that the composition of homomorphisms

R⊗mD ⊗ L∨⊗D !! SmD(W∨)∨ ⊗ L∨⊗D s
!! K

does not vanish, the first arrow being the canonical inclusion.
As K is of characteristic 0, SmD(W∨) is a direct factor as a GL(W )-module

of W∨⊗mD. Hence SmD(W∨) ⊗ L⊗D is a direct factor as a G(K)-module of
W∨⊗mD⊗L⊗D. So we can choose s′ ∈ W∨⊗mD⊗L⊗D invariant by the action
of G(K) such that the class of s′ in SmD(W∨)⊗L⊗D coincides with s. There
then exists α = (αj)1≤j≤mD ∈ AD such that the composition

R⊗mD ⊗ L∨⊗D !! W⊗mD ⊗ L∨⊗D
prα ⊗ Id

!! V A ⊗ L∨⊗D
s′

α
!! K

is non-zero, where A = α1 + · · ·+αmD and s′α is the component of index α of
s′. Let B : {1, · · · , n} → Z be the mapping which sends i to Dbi. Note that
for any i, ΛriVi = detVi is naturally a direct factor of V ⊗ri

i . We can therefore
choose a preimage s′′α of s′α in (V A)∨ ⊗ V B which is invariant by G(K). By
Corollary 3.2, A = B and s′′α is a linear combination of permutations acting
on V . Therefore the theorem is proved. !

4. Degree of a semistable line subbundle

Let K be a number field and OK be its integer ring. Consider a family
(Ei)1≤i≤n of non-zero Hermitian vector bundles on SpecOK . Let A be a
non-empty and finite family of non-identically zero mappings from {1, · · · , n}

Licensed to Biblio University Jussieu. Prepared on Sun Mar  8 01:44:16 EST 2015 for download from IP 81.194.27.167.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



TENSOR PRODUCT OF HERMITIAN VECTOR BUNDLES 585

to N. We define a new Hermitian vector bundle over SpecOK as follows:

E :=
⊕

α∈A
E

⊗α(1)
1 ⊗ · · ·⊗ E

⊗α(n)
n .

In this section, we shall use the ideas in [2] to obtain an upper bound for the
Arakelov degree of a Hermitian line subbundle M of E under the hypothesis of
semistability (in the sense of geometric invariant theory) for MK . This upper
bound is crucial because, as we shall see later, the general case can be reduced
to this special one through an argument of Ramanan and Ramanathan [23].

For any i ∈ {1, · · · , n}, let ri be the rank of Ei and Vi be the vector space
Ei,K . Let W = EK and π : P(W∨) → SpecK be the canonical morphism. By
definition W =

⊕
α∈A V α, where V α is defined in (12). We denote by G the

algebraic group GLK(V1) × · · · × GLK(Vn) which acts naturally on P(W∨).
Let (bi)1≤i≤n be a family of strictly positive integers such that ri divides bi.
Finally, let

L = (Λr1E1)⊗b1/r1 ⊗ · · ·⊗ (ΛrnEn)⊗bn/rn .

Lemma 4.1. Let H be a Hermitian space of dimension d > 0. Then the
norm of the homomorphism det : H⊗d → ΛdH equals

√
d!.

Proof. Let (ei)1≤i≤d be an orthonormal basis of H and (e∨i )1≤i≤d be its
dual basis in H∨. If we identify ΛdH with C via the basis e1 ∧ · · · ∧ ed, then
the homomorphism det, viewed as an element in H∨⊗d, can be written as

∑

σ∈Sd

sign(σ)e∨σ(1) ⊗ · · ·⊗ e∨σ(d),

which is the sum of d! orthogonal vectors of norm 1 in H∨⊗d. So its norm is√
d!. !
Theorem 4.2. With the notation above, if m ≥ 1 is an integer and if M

is a Hermitian line subbundle of E such that MK is semistable for the action
of G relatively to OW∨(m) ⊗ π∗LK , then

d̂eg(M) ≤ 1
m

d̂eg(L) +
1

2m

n∑

i=1

bi log(rkEi) =
n∑

i=1

bi

m

(
µ̂(Ei) +

1
2

log(rkEi)
)
.

Proof. By Theorem 3.3, we get, by combining the slope inequality (9) and
Lemma 4.1,

mDd̂eg(M) − Dd̂eg(L) = mDd̂eg(M) −
n∑

i=1

Dbiµ̂(Ei)

≤
n∑

i=1

A(i) log(ri!)
2ri

=
n∑

i=1

Dbi log(ri!)
2ri

≤ 1
2
D

n∑

i=1

bi log ri,
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where we have used the evident estimation r! ≤ rr to obtain the last inequality.
Finally, we divide the inequality by mD and obtain

d̂eg(M) ≤ 1
m

d̂eg(L) +
1

2m

n∑

i=1

bi log ri =
n∑

i=1

bi

m

(
µ̂(Ei) +

log ri

2

)
.

!
Let m be a strictly positive integer which is divisible by all ri. We apply

Theorem 4.2 to the special case where A contains a single map α ≡ 1 and
where bi = m for any i. Then we get the following upper bound:

Corollary 4.3. If M is a Hermitian line subbundle of E1 ⊗ · · ·⊗En such
that MK is semistable for the action of G relatively to OW∨(m)⊗π∗LK , then
we have

(13) d̂eg(M) ≤
n∑

i=1

(
µ̂(Ei) +

1
2

log(rkEi)
)
.

5. Filtrations of vector spaces

In this section, we introduce some basic notation and results on R-filtrations
of vector spaces, which we shall use in the sequel. We fix a field K.

5.1. Definition of filtrations. Let V be a non-zero vector space of fi-
nite rank r over K. We call R-filtration of V any family F = (FλV )λ∈R of
subspaces of V such that

(1) FλV ⊃ Fλ′V for all λ ≤ λ′,
(2) FλV = 0 for λ sufficiently positive,
(3) FλV = V for λ sufficiently negative, and
(4) the function x +→ rkK(FxV ) on R is left continuous.

A filtration F of V is equivalent to the data of a flag

(14) V = V0 ! V1 ! V2 ! · · · ! Vd = 0

of V together with a strictly increasing sequence of real numbers (λi)0≤i<d.
In fact, we have the relation FλV =

⋃
λi≥λ Vi. We define the expectation of

F to be

(15) E[F ] :=
d− 1∑

i=0

rkK(Vi/Vi+1)
rkK V

λi.

Furthermore, we define a function λF : V → R∪ {+∞} such that

(16) λF (x) = sup{a ∈ R |x ∈ FaV }.

The function λF takes values in {λ0, · · · , λd− 1}∪{+∞} and is finite on V \{0}.
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5.2. Spaces of filtrations. Let Z be a subset of R. We say that F is
supported by Z if {λi | 0 ≤ i < d} ⊂ Z. We say that a basis e of V is compatible
with F if it is compatible with the flag (14). That is, #(Vi ∩ e) = rk(Vi).

We denote by FilV the set of all filtrations of V . For any non-empty subset
Z of R, denote by FilZV the set of all filtrations of V supported by Z. Finally,
for any basis e, we use the expression File to denote the set of all filtrations
of V with which e is compatible, and we denote by FilZe the subset of File of
filtrations supported by Z.

Proposition 5.1. Let e = (e1, · · · , er) be a basis of V and Z be a non-
empty subset of R. The mapping Φe : FilZe → Zr defined by

(17) Φe(F) = (λF (e1), · · · , λF (er))

is a bijection.
By Proposition 5.1, if F is a subfield of R, then the set FilFe can be viewed

as a vector space of rank r over F via the bijection Φe.
Proposition 5.2. Let v be a non-zero vector in V , F be a subfield of R

and e be a basis of V . Then the function F +→ λF (v) from FilFe to R can be
written as the minimal value of a finite number of F -linear forms.

Proof. Let v =
∑r

i=1 aiei be the decomposition of v in the basis e, then
for any filtration F ∈ FilFe , we have

λF (v) = min
1≤i≤n
ai̸=0

λF (ei).

!
5.3. Construction of filtrations. For any real number ε > 0, we define

the dilation of F by ε as the filtration

(18) ψεF := (FελV )λ∈R

of V . We have

(19) E[ψεF ] = εE[F ] and λψεF = ελF .

Let (V (i))1≤i≤n be a family of non-zero vector spaces of finite rank over K
and V =

⊕n
i=1 V (i) be their direct sum. For each i ∈ {1, · · · , n}, let F (i) be

a filtration of V (i). We construct a filtration F of V such that

FλV =
n⊕

i=1

F (i)
λ V (i).

The filtration F is called the direct sum of F (i) and is denoted by F (1) ⊕ · · ·⊕
F (n). If e(i) is a basis of V (i) which is compatible with F (i), then the disjoint
union e(1)⨿ · · ·⨿e(n), which is a basis of V (1)⊕ · · ·⊕V (n), is compatible with
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F (1) ⊕ · · ·⊕ F(n). Similarly, if W =
⊗n

i=1 V (i) is the tensor product of V (i),
we construct a filtration G of W such that

GλW =
∑

λ1+···+λn≥λ

n⊗

i=1

F (i)
λi

V (i),

called the tensor product of F (i) and denoted by F (1) ⊗ · · · ⊗ F(n). If e(i) is
a basis of V (i) which is compatible with the filtration F (i), then the basis

e(1) ⊗ · · ·⊗ e(n) := {e1 ⊗ · · ·⊗ en | ∀1 ≤ i ≤ n, ei ∈ e(i)}

of V (1) ⊗ · · · ⊗ V (n) is compatible with F (1) ⊗ · · · ⊗ F(n). Finally, for any
ε > 0,

(20) ψε(F (1) ⊗ · · ·⊗ F(n)) = ψεF (1) ⊗ · · ·⊗ ψεF (n).

5.4. Scalar product on the space of filtrations. Let V be a non-zero
vector space of finite rank r over K. If F is a filtration of V corresponding to
the flag (14) and the increasing sequence (λi)0≤i<d, we define a real number

∥F∥ =
(1

r

d− 1∑

i=0

rk(Vi/Vi+1)λ2
i

) 1
2
,

called the norm of the filtration F . If e = (e1, · · · , er) is a basis of V which is

compatible with F , then the equality ∥F∥2 =
1
r

r∑

i=1

λF (ei)2 holds. Note that

∥F∥ = 0 if and only if F is supported by {0}. In this case, we say that the
filtration F is trivial.

If F and G are two filtrations of V , then by Bruhat’s decomposition, there
always exists a basis e of V which is compatible simultaneously with F and
G. We define the scalar product of F and G as

(21) ⟨F ,G⟩ :=
1
r

r∑

i=1

λF (ei)λG(ei).

This definition does not depend on the choice of e. Furthermore, we have
⟨F ,F⟩ = ∥F∥2.

Proposition 5.3. Let e be a basis of V . Then the function

(x, y) +→ r⟨Φ− 1
e (x), Φ− 1

e (y)⟩

on Rr × Rr coincides with the usual Euclidean product on Rr, where Φe :
File → Rr is the bijection defined in (17).
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5.5. Construction of filtration from subquotients. Let V be a non-
zero vector space of finite rank over K and let F be a filtration of V corre-
sponding to the flag V = V0 ! V1 ! V2 ! · · · ! Vd = 0 together with the
sequence (λj)0≤j<d. For any j ∈ {0, · · · , d − 1}, we pick a basis ej of the
subquotient Vj/Vj+1. After choosing a preimage of ej in Vj and taking the
disjoint union of the preimages, we get a basis e = (e1, · · · , er) of V which is
compatible with the filtration F . The basis e defines a natural isomorphism
Ψ from V to

⊕d− 1
j=0(Vj/Vj+1) which sends ei to its class in Vτ(i)/Vτ(i)+1, where

τ (i) = max{j | ei ∈ Vj}.
Let Gj be a filtration of Vj/Vj+1 with which ej is compatible. We construct

a filtration G on V which is the direct sum via Ψ of (Gj)0≤j≤d− 1. Note that
the basis e is compatible with the new filtration G. If ei is an element in e,
then λG(ei) = λGτ(i)(Ψ(ei)). Therefore we have

E[G] =
1
r

d− 1∑

j=0

E[Gj ]rkK(Vj/Vj+1),

⟨F ,G⟩ =
1
r

d− 1∑

j=0

λjE[Gj ] rkK(Vj/Vj+1).

(22)

6. More facts in geometric invariant theory

In this section, we shall establish the explicit version of a result of Ramanan
and Ramanathan [23] (Proposition 1.12), for our particular purpose, along the
path indicated by Totaro [27] in his proof of Fontaine’s conjecture.

Let K be a perfect field. If G is a reductive group over SpecK, we call the
one-parameter subgroup of G any morphism of K-group schemes from Gm,K

to G. Let X be a K-scheme on which G acts. If x is a rational point of X
and if h is a one-parameter subgroup of G, then we get a K-morphism from
Gm,K to X given by the composition

Gm,K
h

!! G
∼

!! G ×K SpecK
Id × x

!! G ×K X
σ

!! X ,

where σ is the action of the group. If in addition X is proper over SpecK,
this morphism extends in the unique way to a K-morphism fh,x from A1

K to
X. We denote by 0 the unique element in A1(K) \ Gm(K). The morphism
fh,x sends the point 0 to a rational point of X which is invariant by the action
of Gm,K . If L is a G-linearized line bundle on X, then the action of Gm,K on
L|fh,x(0) defines a character of Gm,K of the form

t +→ tµ(x,h,L), where µ(x, h, L) ∈ Z.

Licensed to Biblio University Jussieu. Prepared on Sun Mar  8 01:44:16 EST 2015 for download from IP 81.194.27.167.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



590 HUAYI CHEN

Furthermore, if we denote by PicG(X) the group of isomorphism classes of all
G-linearized line bundles, then µ(x, h, ·) is a homomorphism of groups from
PicG(X) to Z.

Remark 6.1. In [21], the authors have defined the µ-invariant with a
minus sign.

We now recall a well-known result which gives a semistability criterion for
rational points in a projective variety equipped with an action of a reductive
group.

Theorem 6.1 (Hilbert–Mumford–Kempf–Rousseau). Let G be a reductive
group which acts on a projective variety X over SpecK, L be an ample G-
linearized line bundle on X and x ∈ X(K) be a rational point. The point x
is semistable for the action of G relatively to L if and only if µ(x, h, L) ≥ 0
for any one-parameter subgroup h of G.

This theorem was originally proved by Mumford (see [21]) for the case
where K is algebraically closed. Then it has been independently proved in all
generality by Kempf [20] and Rousseau [25], where Kempf’s approach has been
revisited by Ramanan and Ramanathan [23] to prove that the tensor product
of two semistable vector bundles on a smooth curve (over a perfect field) is also
semistable. The idea of Kempf is to choose a special one-parameter subgroup
h0 of G destabilizing x, which minimizes a certain function. The uniqueness
of his construction allows us to descend to a smaller field. Later, Totaro [27]
introduced a new approach to Kempf’s construction and thus found an elegant
proof of Fontaine’s conjecture.

In the rest of this section, we recall Totaro’s approach of the Hilbert–
Mumford criterion in our setting. We begin by explicitly calculating the
number µ(x, h, L) using filtrations introduced in the previous section.

Let V be a vector space of finite rank over K and ρ : G → GL(V ) be a
representation of G on V . If h : Gm,K → G is a one-parameter subgroup,
then the multiplicative group Gm,K acts on V via h and ρ. Hence we can
decompose V into the direct sum of eigenspaces. More precisely, we have the
decomposition V =

⊕
i∈Z V (i), where the action of Gm,K on V (i) is given by

the composition

Gm,K ×K V (i)
(t.→ti) × Id

!! Gm,K ×K V (i) !! V (i) ,

the second arrow being the scalar multiplication structure on V (i). We then
define a filtration Fρ,h (supported by Z) of V such that

Fρ,h
λ V =

∑

i≥λ

V (i) where λ ∈ R,
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called the filtration associated to h relatively to the representation ρ. If there
is no ambiguity on the representation, we also write Fh instead of Fρ,h to
simplify the notation. If G = GL(V ) and if ρ is the canonical representation,
then for any filtration F of V supported by Z, there exists a one-parameter
subgroup h of G such that the filtration associated to h equals F .

From the scheme-theoretical point of view, the algebraic group G acts via
the representation ρ on the projective space P(V ∨).

The following result is in [21, Proposition 2.3]. Here we work on the dual
space V ∨.

Proposition 6.2. Let x be a rational point of P(V ∨), viewed as a one-
dimensional subspace of V and let vx be an arbitrary non-zero vector in x.
Then

µ(x, h,OV ∨(1)) = −λFρ,h(vx),
where the function λFρ,h is defined in (16).

Proof. Let vx =
∑

i∈Z vx(i) be the canonical decomposition of vx. Let
i0 = λFρ,h(vx). By definition, it is the maximal index i such that vx(i) is non-
zero. Furthermore, fh,x(0) is just the rational point x0 which corresponds
to the subspace of V generated by vx(i0). The restriction of OV ∨(1) on x0

identifies with the quotient (Kvx(i0))∨ of V ∨. Since the action of Gm,K on
vx(i0) via h is the multiplication by ti0 , its action on (Kvx(i0))∨ is then the
multiplication by t− i0 . Therefore, µ(x, h,OV ∨(1)) = −i0 = −λFρ,h(vx). !

Let (Vi)1≤i≤n be a finite family of non-zero vector spaces of finite rank over
K. For any i ∈ {1, · · · , n}, let ri be the rank of Vi. Let G be the algebraic
group GL(V1) × · · · × GL(Vn). We suppose that the algebraic group G acts
on a vector space V . Let π : P(V ∨) → SpecK be the canonical morphism.
For each i, we choose an integer mi which is divisible by ri. Let M be the
G-linearized line bundle on P(V ∨) defined as

M :=
n⊗

i=1

π∗(ΛriVi)⊗mi/ri.

It is a trivial line bundle on P(V ∨) with possibly non-trivial G-action. Note
that any one-parameter subgroup of G is of the form h = (h1, · · · , hn), where
hi is a one-parameter subgroup of GL(Vi). Let Fhi be the filtration of Vi

associated to hi relatively to the canonical representation of GL(Vi) on Vi.
The action of Gm,K via hi on ΛriVi is nothing but the multiplication by
triE[Fhi]. Thus we obtain the following result.

Proposition 6.3. With the notation above, for any rational point x of
P(V ∨), we have

µ(x, h, M) =
n∑

i=1

miE[Fhi].
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We now introduce Kempf’s destabilizing flag for the action of a finite
product of general linear groups. Consider a family (V (i))1≤i≤n of finite
dimensional non-zero vector space over K. Let W be the tensor product
V (1)⊗K · · ·⊗K V (n) and G be the algebraic group GL(V (1))× · · ·×GL(V (n)).
For any i ∈ {1, · · · , n}, let r(i) be the rank of V (i). The group G acts nat-
urally on W and hence on P(W∨). We denote by π : P(W∨) → Spec K the
canonical morphism. Let m be a strictly positive integer which is divisible by
all r(i) and let L be a G-linearized line bundle on P(W∨) as follows:

(23) L := OW∨(m) ⊗
n⊗

i=1

π∗(detV (i))⊗(m/r(i)).

For any rational point x of P(W∨), we define a function Λx : FilQ
V (1) × · · ·×

FilQ
V (n) → R such that

(24) Λx(G(1), · · · ,G(n)) =
E[G(1)] + · · · + E[G(n)] − λG(1)⊗···⊗G(n)(vx)

(∥G(1)∥2 + · · · + ∥G(n)∥2) 1
2

if at least one filtration among the G(i)’s is non-trivial, and Λx(G(1), · · · ,G(n))
= 0 otherwise. We recall that in (24), vx is an arbitrary non-zero element in
x. Note that the function Λx is invariant by dilation. In other words, for any
positive number ε > 0,

Λx(ψεG(1), · · · , ψεG(n)) = Λx(G(1), · · · ,G(n)),

where the dilation ψε is defined in (18).
Proposition 6.4. Let x be a rational point of P(W∨). Then the point x is

not semistable for the action of G relatively to L if and only if the function
Λx defined above takes at least one strictly negative value.

Proof. By Propositions 6.2 and 6.3, for any rational point x of P(W∨),

(25) µ(x, h, L) = m
( n∑

i=1

E[Fhi] − λFh(vx)
)
.

“=⇒”: By the Hilbert–Mumford criterion (Theorem 6.1), there exists a
one-parameter subgroup h = (h1, · · · , hn) of G such that µ(x, h, L) < 0. The
filtration Fh of W associated to h coincides with the tensor product filtration
Fh1⊗· · ·⊗Fhn , where Fhi is the filtration of V (i) associated to hi. Therefore,

Λx(Fh1 , · · · ,Fhn) =
µ(x, h, L)

m(∥Fh1∥2 + · · · + ∥Fhn∥2) 1
2

< 0.

“⇐=”: Suppose that (G(1), · · · ,G(n)) is an element in FilQ
V (1) × · · ·×FilQ

V (n)

such that Λx(G(1), · · · ,G(n)) < 0. By equalities (19), (20) and the invariance
of Λx by dilation, we can assume that G(1), · · · ,G(n) are all supported by Z.
In this case, there exists, for each i ∈ {1, · · · , n}, a one-parameter subgroup
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hi of GL(V (i)) such that Fhi = G(i). Let h = (h1, · · · , hn). By combining
the negativity of Λx(Fh1 , · · · ,Fhn) with (25), we obtain µ(x, h, L) < 0, so x
is not semistable. !

Proposition 6.6 below generalizes Proposition 2 of [27]. The proof uses
Lemma 6.5, which is equivalent to Lemma 3 of [27], or Lemma 1.1 of [23]; see
[23] for the proof of the lemma.

Lemma 6.5. Let n ≥ 1 be an integer and let T be a finite non-empty
family of linear forms on Rn. Let Λ : Rn → R such that Λ(y) = ∥y∥− 1 max

l∈T
l(y)

for y ̸= 0, and that Λ(0) = 0. Suppose that the function Λ takes at least one
strictly negative value. Then

(1) the function Λ attains its minimal value, furthermore, all points in
Rn minimizing Λ are proportional;

(2) if c is the minimal value of Λ and if y0 ∈ Rn is a minimizing point of
Λ, then for any y ∈ Rn,

(26) Λ(y) ≥ c
⟨y0, y⟩

∥y0∥ · ∥y∥
;

(3) if, in addition, all linear forms in T are of rational coefficients, then
there exists a point in Qn which minimizes Λ.

Proposition 6.6. With the notation of Proposition 6.4, if x is not semi-
stable for the action of G relatively to L, then the function Λx attains its
minimal value. Furthermore, the element in FilQ

V (1) × · · ·×FilQ
V (n) minimizing

Λx is unique up to dilatation. Finally, if (F (1), · · · ,F (n)) is an element in
FilQ

V (1) × · · · × FilQ
V (n) minimizing Λx and if c is the minimal value of Λx,

then for any element (G(1), · · · ,G(n)) in FilQ
V (1) × · · ·×FilQ

V (n) , the following
inequality holds:

(27)
n∑

i=1

E[G(i)] − λG(1)⊗···⊗G(n)(vx) ≥ c
⟨F (1),G(1)⟩ + · · · + ⟨F (n),G(n)⟩

(∥F (1)∥2 + · · · + ∥F (n)∥2) 1
2

.

Proof. For each i ∈ {1, · · · , n}, let e(i) = (e(i)
j )1≤j≤r(i) be a basis of V (i).

Let e = (e(i))1≤i≤n. Denote by Λe
x the restriction of Λx on FilQ

e(1) × · · · ×
FilQ

e(n) . The space FilQ
e(1) × · · ·×FilQ

e(n) is canonically embedded in File(1) ×
· · ·×File(n) , which can be identified as an Euclidian space with Rr(1) × · · ·×
Rr(n)

through Φe(1) × · · · × Φe(n) (see Proposition 5.3). We extend naturally
Λe

x to a function Λe,†
x on File(1) × · · · × File(n) , whose numerator part is the

maximal value of a finite number of linear forms with rational coefficients (see
Proposition 5.2) and whose denominator part is just the norm of vector in the
Euclidean space. Then by Lemma 6.5, the function Λe,†

x attains its minimal
value, and there exists an element in FilQ

e(1) × · · · × FilQ
e(n) which minimizes
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Λe,†
x . By definition the same element also minimizes Λe

x. Since the function
Λe

x, viewed as a function on Rr(1)+···+r(n)
, only depends on the set

{
S ⊂

n∏

i=1

{1, · · · , r(i)}
∣∣∣ vx ∈

∑

(j1,··· ,jn)∈S

Ke(1)
j1

⊗ · · ·⊗ e(n)
jn

}
,

there are only a finite number of functions on Euclidian space of dimension
r(1) + · · ·+ r(n) of the form Λe

x. Thus we deduce that the function Λx attains
globally its minimal value, and the minimizing element of Λx could be chosen
in FilQ

V (1) × · · ·× FilQ
V (n) .

Suppose that there are two elements in FilQ
V (1) × · · ·× FilQ

V (n) which min-
imizes Λx. By Bruhat’s decomposition, we can choose e as above such that
both elements lie in FilQ

e(1)×· · ·×FilQ
e(n) . Therefore, by Lemma 6.5 they differ

only by a dilation. Finally to prove inequality (27), it suffices to choose e such
that (F (1), · · · ,F (n)) and (G(1), · · · ,G(n)) are both in FilQ

e(1) × · · · × FilQ
e(n) ,

and then apply Lemma 6.5(2). !
Although the minimizing filtrations (F (1), · · · ,F (n)) in Proposition 6.6 are

a priori supported by Q, it is always possible to choose them to be supported
by Z after a dilation.

In the rest of the section, let x be a rational point of P(W∨) which
is not semistable for the action of G relatively to L. We fix an element
(F (1), · · · ,F (n)) in FilZV (1) × · · · × FilZV (n) minimizing Λx. Let c =
Λx(F (1), · · · ,F (n)) and define

(28) c̃ :=
c

(∥F (1)∥2 + · · · + ∥F (n)∥2) 1
2
.

Note that c̃ < 0. Moreover, it is a rational number since the following equality
holds:

c̃ =
E[F (1)] + · · · + E[F (n)] − λF(1)⊗···⊗F(n)(vx)

∥F (1)∥2 + · · · + ∥F (n)∥2
.

We suppose that F (i) corresponds to the flag D (i) : V (i) = V (i)
0 ! V (i)

1

! · · · ! V (i)
d(i) = 0 and the strictly increasing sequence of integers λ(i) =

(λ(i)
j )0≤j<d(i) . Let G̃ be the algebraic group

G̃ :=
n∏

i=1

d(i)− 1∏

j=0

GL(V (i)
j /V (i)

j+1).

Let F = F (1) ⊗ · · ·⊗F(n) and β = λF (vx), which is the largest integer i such
that vx ∈ FiW . Let W̃ := FiW/Fi+1W and let ṽx be the canonical image of
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vx in W̃ . Notice that

W̃ =
∑

λ(1)
j1

+···+λ(n)
jn

≥β

n⊗

i=1

V (i)
ji

/
∑

λ(1)
j1

+···+λ(n)
jn

>β

n⊗

i=1

V (i)
ji

∼=
⊕

λ(1)
j1

+···+λ(n)
jn

=β

n⊗

i=1

(
V (i)

ji
/V (i)

ji+1

)
.

So the algebraic group G̃ acts naturally on W̃ . Let x̃ be the rational point of
P(W̃∨) corresponding to the subspace of W̃ generated by ṽx.

For all integers i, j such that 1 ≤ i ≤ n and 0 ≤ j < d(i), let r(i)
j be the

rank of V (i)
j /V (i)

j+1 over K. We choose a strictly positive integer N divisible
by all r(i) = rkK V (i) and such that the number

a(i)
j := −

Nc̃λ(i)
j

r(i)

is an integer. This is always possible since c̃ ∈ Q. The sequence (λ(i)
j )0≤j<d(i)

is strictly increasing, so is a(i) := (a(i)
j )0≤j<d(i) . Finally we define b(i)

j :=
N

r(i)
+ a(i)

j .
We are now able to establish an explicit version of Proposition 1.12 in [23]

for the product of general linear groups.
Proposition 6.7. Let π̃ : P(W̃∨) → SpecK be the canonical morphism

and let

L̃ := OW̃∨(N) ⊗
( n⊗

i=1

d(i)− 1⊗

j=0

π̃∗(Λr(i)
j (V (i)

j /V (i)
j+1)

)⊗b(i)
j

)
.

Then the rational point x̃ of P(W̃∨) is semistable for the action of G̃ relatively
to the G-linearized line bundle L̃.

Proof. We choose an arbitrary filtration G(i),j of V (i)
j /V (i)

j+1 supported by
Z. We have explained in Subsection 5.5 how to construct a new filtration G(i)

of V (i) from G(i),j . Let

G =
n⊗

i=1

G(i), G̃ =
⊕

λ(1)
j1

+···+λ(n)
jn

=β

n⊗

i=1

G(i),ji.

From the construction we know that λG(vx) = λG̃(ṽx). Using (22), the in-
equality (27) implies

(29)
n∑

i=1

d(i)− 1∑

j=0

r(i)
j

r(i)
E[G(i),j ] −

n∑

i=1

d(i)− 1∑

j=0

c̃λ(i)
j r(i)

j

r(i)
E[G(i),j ] − λG̃(ṽx) ≥ 0,
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where the constant c̃ is defined in (28). Hence

(30)
n∑

i=1

d(i)− 1∑

j=0

b(i)
j r(i)

j E[G(i),j ] − NλG̃(ṽx) ≥ 0.

Let h be an arbitrary one-parameter subgroup of G̃ corresponding to filtra-
tions G(i),j . By Propositions 6.2 and 6.3, together with the fact that µ(x̃, h, ·)
is a homomorphism of groups, we obtain

µ(x̃, h, L̃) = µ(x̃, h,OW̃∨(N)) +
n∑

i=1

d(i)− 1∑

j=0

b(i)
j r(i)

j E[G(i),j ]

= −NλG̃(ṽx) +
n∑

i=1

d(i)− 1∑

j=0

b(i)
j r(i)

j E[G(i),j ] ≥ 0.

By Hilbert-Mumford criterion, the point x̃ is semistable for the action of G̃
relatively to L̃. !

Finally we point out the following consequence of the inequality (30).
Proposition 6.8. The minimizing filtrations (F(1), · · · ,F (n)) satisfy

E[F (1)] = · · · = E[F (n)] = 0.

In other words, the equality
∑d(i)− 1

j=0 a(i)
j r(i)

j = 0 holds, or equivalently,

d(i)− 1∑

j=0

λ(i)
j r(i)

j = 0 for any i ∈ {1, · · · , n}.

Proof. Let (ui)1≤i≤n be an arbitrary sequence of integers. Let G(i),j be the
filtration of V (i)

j /V (i+1)
j which is supported by {ui}. Note that in this case G̃

is supported by {u1 + · · · + un}. The inequality (30) gives

n∑

i=1

d(i)− 1∑

j=0

b(i)
j r(i)

j ui − N
n∑

i=1

ui =
n∑

i=1

ui

d(i)− 1∑

j=0

a(i)
j r(i)

j ≥ 0.

Since (ui)1≤i≤n is arbitrary,
∑d(i)− 1

j=0 a(i)
j r(i)

j = 0 and
∑d(i)− 1

j=0 λ(i)
j r(i)

j = 0. !

7. A criterion of Arakelov semistability

We shall give a semistability criterion for Hermitian vector bundles, which is
the arithmetic analogue of a result due to Bogomolov in geometric framework
(see [24]).
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Let E be a non-zero Hermitian vector bundle over SpecOK and let V =
EK . We denote by r its rank. If D : V = V0 ! V1 ! · · · ! Vd = 0 is a flag
of V , it induces a strictly decreasing sequence of saturated sub-OK -modules
E = E0 ! E1 ! · · · ! Ed = 0 of E. For any j ∈ {0, · · · , d − 1}, let rj be the
rank of Ej/Ej+1. If a = (aj)0≤j<d is an element in rZd, we denote by L

a
D

the Hermitian line bundle on SpecOK as follows

(31) L
a
D :=

d− 1⊗

j=0

(
(Λrj (Ej/Ej+1))⊗aj ⊗ (ΛrE)∨⊗ rjaj

r

)
.

If a = (aj)0≤j<d ∈ Zd satisfies
∑d− 1

j=0 rjaj = 0, we define

L
a
D :=

d− 1⊗

j=0

(Λrj (Ej/Ej+1))⊗aj .

Proposition 7.1. If the Hermitian vector bundle E is Arakelov semistable,
then for any integer d ≥ 1, any flag D of length d of V , and any strictly
increasing sequence a = (aj)0≤j<d of integers either in rZd, or such that∑d− 1

j=0 rjaj = 0, we have d̂eg(L
a
D) ≤ 0.

Proof. By definition,

d̂eg(L
a
D) =

d− 1∑

j=0

aj

[
− rk(Ej) − rk(Ej+1)

r
d̂eg(E) + d̂eg(Ej) − d̂eg(Ej+1)

]

=
d− 1∑

j=0

aj

[
rk(Ej)

(
µ̂(Ej) − µ̂(E)

)
− rk(Ej+1)

(
µ̂(Ej+1) − µ̂(E)

)]

=
d− 1∑

j=1

(aj − aj− 1) rk(Ej)
(
µ̂(Ej) − µ̂(E)

)
.

If E is Arakelov semistable, then µ̂(Ej) ≤ µ̂(E) for any j. Hence d̂eg(L
a
D))

≤ 0. !
Remark 7.1. The converse of Proposition 7.1 is also true. Let E1 be a

saturated sub-OK -module of E. Consider the flag D : V ! E1,K ! 0 and
the integer sequence a = (0, r). Then d̂eg(L

a
D) = r rk(E1)

(
µ̂(E) − µ̂(E1)

)
.

Therefore µ̂(E1) ≤ µ̂(E). Since E1 is arbitrary, the Hermitian vector bundle
E is Arakelov semistable.
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8. Degree of a general line subbundle

In this section, we shall give an upper bound for the Arakelov degree of
a Hermitian line subbundle of a finite tensor product of Hermitian vector
bundles. As explained in Section 1, we shall use the results established in
Section 6 to reduce our problem to the case with semistability condition (in
geometric invariant theory sense), which has already been discussed in Section
4. We point out that, in order to obtain the same estimation as (13) in
full generality, we should assume that all Hermitian vector bundles Ei are
Arakelov semistable, as a price paid for removing the semistability condition
for MK .

We denote by K a number field and by OK its integer ring. Let (E(i))1≤i≤n

be a family of Arakelov semistable Hermitian vector bundles on SpecOK .
For any i ∈ {1, · · · , n}, let r(i) be the rank of E(i) and V (i) = E(i)

K . Let E =
E

(1)⊗· · ·⊗E
(n) and W = EK . We denote by π : P(W∨) → SpecK the natural

morphism. The algebraic group G := GLK(V (1)) ×K · · ·×K GLK(V (n)) acts
naturally on P(W∨). Let M be a Hermitian line subbundle of E and m be a
strictly positive integer which is divisible by all r(i)’s.

Proposition 8.1. For any Hermitian line subbundle M of E
(1)⊗· · ·⊗E

(n),
we have

d̂eg(M) ≤
n∑

i=1

(
µ̂(E(i)) +

1
2

log(rkE(i))
)
.

Proof. We have proved in Corollary 4.3 that if MK is semistable for the
action of G relatively to OW∨(m) ⊗ π∗

( ⊗n
i=1(Λ

r(i)
V (i))⊗m/r(i)

)
, where m

is a strictly positive integer which is divisible by all r(i), then the following
inequality holds:

d̂eg(M) ≤
n∑

i=1

(
µ̂(Ei) +

1
2

log r(i)
)
.

If this hypothesis of semistability is not fulfilled, by Proposition 6.7, there
exist two strictly positive integers N and β, and for any i ∈ {1, · · · , n},

(1) a flag D (i) : V (i) = V (i)
0 ! V (i)

1 ! · · · ! V (i)
d(i) = 0 of V (i) corresponding

to the sequence E(i) = E(i)
0 ! E(i)

1 ! · · · ! E(i)
d(i) = 0 of saturated

sub-OK -modules of E,
(2) two strictly increasing sequences λ(i) = (λ(i)

j )0≤j<d(i) and a(i) =
(a(i)

j )0≤j<d(i) of integers,
such that

(i) N is divisible by all r(i)’s,
(ii)

∑d(i)− 1
j=0 a(i)

j r(i)
j = 0, where r(i)

j = rk(V (i)
j /V (i)

j+1),
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(iii) the inclusion of M in E factorizes through
∑

λ(1)
i1

+···λ(n)
in

≥β

E(1)
i1

⊗ · · ·⊗ E(n)
in

,

(iv) the canonical image of MK in

W̃ :=
∑

λ(1)
j1

+···+λ(n)
jn

≥β

n⊗

i=1

V (i)
ji

/
∑

λ(1)
j1

+···+λ(n)
jn

>β

n⊗

i=1

V (i)
ji

∼=
⊕

λ(1)
j1

+···+λ(n)
jn

=β

n⊗

i=1

(
V (i)

ji
/V (i)

ji+1

)

is non-zero, and is semistable for the action of the group

G̃ :=
n∏

i=1

d(i)− 1∏

j=0

GL(V (i)
j /V (i)

j+1)

relatively to

OW̃∨(N) ⊗
( n⊗

i=1

d(i)− 1⊗

j=0

π̃∗(Λr(i)
j (V (i)

j /V (i)
j+1)

)⊗b(i)
j

)
,

where π̃ : P(W̃∨) → SpecK is the canonical morphism, and b(i)
j =

N/r(i) + a(i)
j .

Note that
⊗d(i)− 1

j=0

(
Λr(i)

j (E(i)
j /E

(i)
j+1)

)⊗a(i)
j is nothing other than L

a(i)

D(i) defined
in Section 7.

Applying Theorem 4.2, we get

d̂eg(M) ≤ 1
N

n∑

i=1

d(i)− 1∑

j=0

N

r(i)

(
d̂eg(E(i)

j ) − d̂eg(E(i)
j+1)

)

+
1
N

n∑

i=1

d̂egL
a(i)

D(i) +
n∑

i=1

d(i)− 1∑

j=0

r(i)
j b(i)

j

2N
log r(i)

j

=
n∑

i=1

µ̂(E(i)) +
1
N

n∑

i=1

d̂egL
a(i)

D(i) +
n∑

i=1

d(i)− 1∑

j=0

r(i)
j b(i)

j

2N
log r(i)

j

≤
n∑

i=1

µ̂(E(i)) +
n∑

i=1

d(i)− 1∑

j=0

r(i)
j b(i)

j

2N
log r(i)

j ,

where the last inequality is because E
(i)’s are Arakelov semistable (see Propo-

sition 7.1). By Theorem 3.3, the semistability of the canonical image of MK
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implies that b(i)
j ≥ 0. Therefore

d̂eg(M) ≤
n∑

i=1

µ̂(E(i)) +
n∑

i=1

d(i)− 1∑

j=0

r(i)
j b(i)

j

2N
log r(i).

Since
∑d(i)− 1

j=0 r(i)
j a(i)

j = 0 (see Proposition 6.8), we have proved the proposi-
tion. !

Corollary 8.2. The following inequality is verified:

(32) µ̂max(E
(1) ⊗ · · ·⊗ E

(n)) ≤
n∑

i=1

(
µ̂(E(i)) + log(rkE(i))

)
+

log |∆K |
2[K : Q]

.

Proof. Since the Hermitian line bundle M in Proposition 8.1 is arbitrary,
we obtain

ud̂egn(E(1) ⊗ · · ·⊗ E
(n)) ≤

n∑

i=1

(
µ̂(E(i)) +

1
2

log(rkE(i))
)
.

Combining with (11) we obtain (32). !

9. Proof of Theorem 1.1

We finally give the proof of Theorem 1.1.
Lemma 9.1. Let K be a number field and OK be its integer ring. Let

(Ei)1≤i≤n be a finite family of non-zero Hermitian vector bundles (non-
necessarily Arakelov semistable) and E = E1 ⊗ · · ·⊗ En. Then

µ̂max(E) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2[K : Q]

.

Proof. Let F be a sub-OK -module of E. By taking Harder–Narasimhan
flags of Ei’s (cf. [3]), there exists, for any i ∈ {1, · · · , n}, an Arakelov
semistable subquotient F i/Gi of Ei such that

(1) µ̂(F i/Gi) ≤ µ̂max(Ei),
(2) the inclusion homomorphism from F to E factorizes through F1 ⊗

· · ·⊗ Fn,
(3) the canonical image of F in (F1/G1)⊗ · · ·⊗ (Fn/Gn) does not vanish.
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Combining with the slope inequality (10), Corollary 8.2 implies that

µ̂min(F ) ≤
n∑

i=1

(
µ̂(F i/Gi) + log(rk(Fi/Gi))

)
+

log |∆K |
2[K : Q]

≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2[K : Q]

.

Since F is arbitrary, the lemma is proved. !
Proof of Theorem 1.1. Let N ≥ 1 be an arbitrary integer. On one hand, by

Lemma 9.1 we have, by considering E
⊗N as E1 ⊗ · · ·⊗ E1︸ ︷︷ ︸

N copies

⊗ · · · ⊗

En ⊗ · · ·⊗ En︸ ︷︷ ︸
N copies

, that

µ̂max(E
⊗N ) ≤

n∑

i=1

N
(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2[K : Q]

.

On the other hand, by Corollary 2.5, µ̂max(E
⊗N ) ≥ Nµ̂max(E). Hence

µ̂max(E) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2N [K : Q]

.

Since N is arbitrary, we obtain by taking N → +∞,

µ̂max(E) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
,

which completes the proof. !
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