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In this article, we consider an analogue of Arakelov theory of arithmetic surfaces

over a trivially valued field. In particular, we establish an arithmetic Hilbert–Samuel

theorem and study the effectivity up to R-linear equivalence of pseudoeffective metrised

R-divisors.

1 Introduction

In Arakelov geometry, one considers an algebraic variety over the spectrum of a number

field and studies various constructions and invariants on the variety such as metrised

line bundles, intersection product, height functions, etc. Although these notions have

some similarities to those in classic algebraic geometry, their construction is often more

sophisticated and needs analytic tools.

Recently, an approach of R-filtration has been proposed to study several

invariants in Arakelov geometry, which allows one to get around analytic techniques in

the study of some arithmetic invariants, see for example [6, 12, 13]. Let us recall briefly

this approach in the setting of Euclidean lattices for simplicity. Let E = (E, ‖·‖) be a

Euclidean lattice, namely a free Z-module of finite type E equipped with a Euclidean

norm ‖·‖ on ER = E ⊗Z R. We construct a family of vector subspaces of EQ = E ⊗Z Q as
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follows. For any t ∈ R, let F t(E) be the Q-vector subspace of EQ generated by the lattice

vectors s such that ‖s‖ � e−t. This construction is closely related to the successive

minima of Minkowski. In fact, the i-th minimum of the lattice E is equal to

exp
(
− sup{t ∈ R | rkQ(F t(E)) � i}

)
.

The family (F t(E))t∈R is therefore called the R-filtration by minima of the Euclidean

lattice E.

Classically in Diophantine geometry, one focuses on the lattice points of small

length, which are analogous to global sections of a vector bundle over a smooth

projective curve. However, such points are in general not stable by addition. This

phenomenon brings difficulties to the study of Arakelov geometry over a number field

and prevents the direct transplantation of algebraic geometry methods in the arithmetic

setting. In the R-filtration approach, the arithmetic invariants are encoded in a family

of vector spaces, which allows to apply directly algebraic geometry methods to study

some problems in Arakelov geometry.

If we equipped Q with the trivial absolute value | · |0 such that |a|0 = 1 if a

belongs to Q \ {0} and |0|0 = 0, then the above R-filtration by minima can be considered

as an ultrametric norm ‖·‖0 on the Q-vector space EQ such that

‖s‖0 = exp(− sup{t ∈ R | s ∈ F t(E)}).
Interestingly, finite-dimensional ultrametrically normed vector spaces over a trivially

valued field are also similar to vector bundles over a smooth projective curve. This

method is especially successful in the study of the arithmetic volume function. More-

over, R-filtrations, or equivalently ultrametric norms with respect to the trivial absolute

value, are also closely related to the geometric invariant theory of the special linear

group, as shown in [11, §6].

All these works suggest that there would be an Arakelov theory over a trivially

valued field. From the philosophical point of view, the R-filtration approach should

be considered as a correspondence from the arithmetic geometry over a number field

to that over a trivially valued field, which preserves some interesting arithmetic

invariants. The purpose of this article is to build up such a theory for curves over a

trivially valued field (which are actually analogous to arithmetic surfaces). Considering

the simplicity of the trivial absolute value, one might expect such a theory to be simple.

On the contrary, the arithmetic intersection theory for adelic divisors in this setting is

already highly non-trivial, which has interesting interactions with the convex analysis

on infinite trees.
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Let k be a field equipped with the trivial absolute value and X be a regular

irreducible projective curve over Spec k. We denote by Xan the Berkovich analytic space

associated with X, which identifies with a tree of length 1 whose leaves correspond to

closed points of X (see [2, §3.5]).

In fact, the elements of Xan are of the form ξ = (j(ξ), | · |ξ ), where j(ξ) is a scheme point of

X and | · |ξ is an absolute value on the residue field κ(ξ) of the scheme point j(ξ), which

extends the absolute value | · | on k. Any regular function f over a Zariski open subset

U of X determines a function |f | : j−1(U) → R, which sends ξ ∈ j−1(U) to |f (j(ξ))|ξ . The

set Xan is then equipped with the most coarse topology, which makes continuous the

map j : Xan → X and function |f |, where f runs over the set of all regular functions on

Zariski open subsets of X. We denote by η0 the generic point of X together with the trivial

absolute value on the function field of X. For each closed point x of X, we denote by x0

the scheme point x together with the trivial absolute value on the residue field of x. Note

that the closed point x also determines a discrete valuation ordx(·) on the function field

of X. Thus, each positive real number t corresponds to an element of Xan, which consists

of the generic point of X and the absolute value exp(−t ordx(·)). Such elements form an

edge of the above infinite tree linking the points η0 (which is the root) and x0 (which

is a leaf). We denote by [η0, x0] the corresponding closed edge, which is parametrised

by the interval [0,+∞] and we denote by t(·) : [η0, x0] → [0,+∞] the parametrisation

map. Recall that an R-divisor D on X can be viewed as an element in the free real vector

space over the set X(1) of all closed points of X. We denote by ordx(D) the coefficient

of x ∈ X(1) in the writing of D into a linear combination of elements of X(1). We call

Green function of D any continuous map g : Xan → [−∞,+∞] such that there exists a

continuous function ϕg : Xan → R, which satisfies the following condition:

∀x ∈ X(1), ∀ ξ ∈ [η0, x0[, ϕg(ξ) = g(ξ)− ordx(D)t(ξ).

The couple D = (D, g) is called a metrised R-divisor on X. Note that the set D̂ivR(X) of

metrised R-divisors on X actually forms a vector space over R.

Let D be an R-divisor on X. We denote by H0(D) the subset of the field Rat(X)

of rational functions on X consisting of the zero rational function and all rational

functions s such that D+ (s) is effective as an R-divisor, where (s) denotes the principal
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divisor associated with s, whose coefficient of x is the order of s at x. The set H0(D) is

actually a k-vector subspace of Rat(X). Moreover, the Green function g determines an

ultrametric norm ‖·‖g on the vector space H0(D) such that

‖s‖g = exp
(
− inf

ξ∈Xan
(g+ g(s))(ξ)

)
,

where g(s) is the canonical Green function associated with the divisor (s) (see

Definition 3.5 and Remark 5.2, (2)).

Let D1 = (D1, g1) and D2 = (D2, g2) be metrised R-divisors on X such that

ϕg1
and ϕg2

are absolutely continuous with square integrable densities, we define an

intersection pairing of D1 and D2 as (see Section 3.3 for details)

(D1 · D2) := g1(η0) deg(D1)+ g2(η0) deg(D1)

−
∑

x∈X(1)

[κ(x) : k]
∫ x0

η0

g′1(ξ)g′2(ξ) dt(ξ).
(1.1)

One major contribution of the article is to describe the asymptotic behaviour

of the system of ultrametrically normed vector spaces (H0(nD), ‖·‖ng) in terms of the

intersection pairing, under the condition that the Green function g is plurisubharmonic

(see Definition 6.14). More precisely, we obtain an analogue of the arithmetic Hilbert–

Samuel theorem as follows (see Section 7 infra).

Theorem 1.1. Let D = (D, g) be a metrised R-divisor on X. We assume that deg(D) > 0

and g is plurisubharmonic. Then one has

lim
n→+∞

− ln‖s1 ∧ · · · ∧ srn
‖ng,det

n2/2
= (D · D),

where (si)
rn
i=1 is a basis of H0(nD) over k (with rn being the dimension of the k-vector

space H0(nD)), ‖·‖ng,det denotes the determinant norm associated with ‖·‖ng, and (D · D)

is the self-intersection number of D.

Note that the pairing (1.1) is similar to the local admissible pairing introduced

in [31, §2] or, more closely, similar to the Arakelov intersection theory on arithmetic

surfaces with L2
1-Green functions (see [4, §5]). This construction is also naturally related

to harmonic analysis on metrised graphes introduced in [1] (see also [17] for the capacity

pairing in this setting), although the point η0 is linked to infinitely many vertices. An

alternative way to construct the intersection pairing (under diverse extra conditions

on Green functions) is to introduce a base change to a field extension k′ of k, which is
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equipped with a non-trivial absolute value extending the trivial absolute value on k. It is

then possible to define a Monge–Ampère measure on Xan
k′ for the pull-back of g1, either

by the theory of δ-forms [19, 20], or by the non-Archimedean Bedford–Taylor theory

developed in [9], or more directly, by the method of Chambert–Loir measure [8, 10]. We

also refer to the thesis of Thuillier [28] for a detailed construction in the case of curves.

It turns out that the push-forward of this measure on Xan does not depend on the choice

of valued extension k′/k (see [5, Lemma 7.2]). With this point of view, the intersection

pairing could be considered as the height of D2 with respect to (D1, g1) plus the integral

of g2 with respect to the push-forward of this Monge–Ampère measure (see Remark 7.2).

We refer the readers to [15, §3.9] for more details. However, although it is expected

that the two constructions lead to the same intersection number, only several particular

cases are known and it remains an intriguing problem to explicitly compare the two

approaches and to reprove certain results of the current article by using the base change

to a non-trivially valued field. Our construction (1.1) has, however, several advantages.

Despite of its flexibility on the choice of Green functions, the formula (1.1) is completely

explicit. Moreover, compare to the classic formulation of Monge–Ampère measure, the

L2
1 inner product, combined with Legendre-type transform (see Proposition 2.6), reveals

the deep connection between convex analysis and the geometry of graded linear series,

which is a key argument to prove Theorem 1.1.

Diverse notions of positivity, such as bigness and pseudo-effectivity, are dis-

cussed in the article. We also study the effectivity up to R-linear equivalence of pseudo-

effective metrised R-divisors. The analogue of this problem in algebraic geometry is

very deep. It is the core of the non-vanishing conjecture, which has applications in

the existence of log minimal models [3]. It is also related to Keel’s conjecture (see [22,

Question 0.9] and [25, Question 0.3]) for the ampleness of divisors on a projective surface

over a finite field. In the setting of an arithmetic curve associated with a number field,

this problem can actually be interpreted as Dirichlet’s unit theorem in algebraic number

theory. In the setting of higher dimensional arithmetic varieties, the above effectivity

problem is very subtle. Both examples and obstructions were studied in the literature,

see for example [16, 24] for more details.

In this article, we establish the following result.

Theorem 1.2. Let (D, g) be a metrised R-divisor on X. For any x ∈ X(1), we let

μinf,x(g) := inf
ξ∈]η0,x0[

g(ξ)

t(ξ)
.
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Let

μinf(g) :=
∑

x∈X(1)

μinf,x(g)[κ(x) : k].

Then the following assertions hold:

(1) (D, g) is pseudo-effective if and only if μinf(g) � 0.

(2) (D, g) is R-linearly equivalent to an effective metrised R-divisor if and only

if μinf,x(g) � 0 for all but finitely many x ∈ X(1) and if one of the following

conditions holds:

(a) μinf(g) > 0, and

(b)
∑

x∈X(1) μinf,x(g)x is a principal R-divisor.

The article is organised as follows. In the 2nd section, we discuss several

properties of convex functions on a half line. In the 3rd section, we study Green

functions on an infinite tree. The 4th section is devoted to a presentation of graded

linear series on a regular projective curve. These sections prepare various tools to

develop in the 5th section an Arakelov theory of metrised R-divisors on a regular

projective curve over a trivially valued field. In the 6th section, we discuss diverse

notions of global and local positivity of metrised R-divisors. Finally, in the 7th section,

we prove the Hilbert–Samuel theorem for arithmetic surfaces in the setting of Arakelov

geometry over a trivially valued field.

2 Asymptotically Linear Functions

2.1 Asymptotic linear functions on R>0

We say that a continuous function g : R>0 → R is asymptotically linear (at the infinity)

if there exists a real number μ(g) such that the function

ϕg : R>0 −→ R, ϕg(t) := g(t)− μ(g)t

extends to a continuous function on [0,+∞]. The real number μ(g) satisfying this

condition is unique. We call it the asymptotic slope of g. The set of asymptotically linear

continuous functions forms a real vector space with respect to the addition and the

multiplication by a scalar. The map μ(·) is a linear form on this vector space.

We denote by L2
1(R>0) the vector space of continuous functions ϕ on R>0 such

that the derivative (in the sense of distribution) ϕ′ is represented by a square-integrable

function on R>0. We say that an asymptotically linear continuous function g on R>0 is

pairable if the function ϕg belongs to L2
1(R>0).
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Remark 2.1. The functional space L2
1 is a natural object of the potential theory

on Riemann surfaces. In the classic setting of Arakelov geometry, it has been

used in the intersection theory on arithmetic surfaces. We refer to [4, §3] for

more details.

2.2 Convex function on [0,+∞]

Let ϕ be a convex function on R>0. Then ϕ is continuous on R>0. Moreover, for any

t ∈ R>0, the right derivative of ϕ at t, given by

lim
ε↓0

ϕ(t+ ε)− ϕ(t)

ε
,

exists in R. By abuse of notation, we denote by ϕ′ the right derivative function of ϕ on

R>0. It is a right continuous increasing function. We refer to [26, Theorem 1.26] for more

details. Moreover, for any (a, b) ∈ R2
>0, one has

ϕ(b)− ϕ(a) =
∫

]a,b[
ϕ′(t) dt. (2.1)

See [26, Theorem 1.28] for a proof. In particular, the function ϕ′ represents the derivative

of ϕ in the sense of distribution.

Proposition 2.2. Let ϕ be a convex function on R>0, which is bounded.

(1) One has ϕ′ � 0 on R>0 and limt→+∞ ϕ′(t) = 0. In particular, the function ϕ is

decreasing and extends to a continuous function on [0,+∞].

(2) We extend ϕ continuously on [0,+∞]. The function

(t ∈ R>0) �−→ ϕ(t)− ϕ(0)

t

is increasing. Moreover, one has

lim
t↓0

ϕ(t)− ϕ(0)

t
= lim

t↓0
ϕ′(t) ∈ [−∞, 0],

which is denoted by ϕ′(0).

In addition, we have the following two propositions.

Proposition 2.3. Let ϕ and ψ be continuous functions on [0,+∞], which are convex on

R>0. One has ∫
]0,+∞]

ϕ dψ ′ = −
∫
R>0

ψ ′(t)ϕ′(t) dt− ϕ(0)ψ ′(0) ∈ [−∞,+∞[. (2.2)
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In particular, if ϕ(0) = ψ(0) = 0, then one has∫
]0,+∞]

ϕ dψ ′ =
∫

]0,+∞]
ψ dϕ′. (2.3)

Proof. By (2.1), one has∫
]0,+∞]

ϕ dψ ′ =
∫

]0,+∞]

∫
]0,x[

ϕ′(t) dt dψ ′(x)+ ϕ(0)

∫
]0,+∞]

dψ ′.

By Fubini’s theorem (by Proposition 2.2, one has ϕ′ � 0 and hence Fubini’s theorem

applies, see for example [27, Theorem 8.8]), the double integral is equal to∫
R>0

ϕ′(t)
∫

]t,+∞]
dψ ′ dt = −

∫
R>0

ϕ′(t)ψ ′(t) dt.

Therefore, the equality (2.2) holds. In the case where ϕ(0) = ψ(0) = 0, one has∫
]0,+∞]

ϕ dψ ′ = −
∫
R>0

ψ ′(t)ϕ′(t) dt =
∫

]0,+∞]
ψ dϕ′.

�

Proposition 2.4. Let ϕ be a continuous function on [0,+∞], which is convex on R>0.

One has ∫
R>0

x dϕ′(x) = ϕ(0)− ϕ(+∞). (2.4)

Proof. This is a consequence of Fubini’s theorem together with Proposition 2.2. �

2.3 Transform of Legendre type

Definition 2.5. Let ϕ be a continuous function on [0,+∞], which is convex on R>0. We

denote by ϕ∗ the function on [0,+∞] defined as

∀ λ ∈ [0,+∞], ϕ∗(λ) := inf
x∈[0,+∞]

(xλ+ ϕ(x)− ϕ(0)).

Clearly, the function ϕ∗ is increasing and non-positive. Moreover, one has

ϕ∗(0) = inf
x∈[0,+∞]

ϕ(x)− ϕ(0) = ϕ(+∞)− ϕ(0).

Therefore, for any λ ∈ [0,+∞], one has

ϕ(+∞)− ϕ(0) � ϕ∗(λ) � 0.

The following proposition is important for the Hilbert–Samuel formula.
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Proposition 2.6. Let ϕ be a continuous function on [0,+∞], which is convex on R>0.

For p ∈ R>1, one has

∫ +∞

0
(−ϕ′(x))pdx = −(p− 1)p

∫ +∞

0
λp−2ϕ∗(λ)dλ.

In particular,

∫ +∞

0
ϕ′(x)2dx = −2

∫ +∞

0
ϕ∗(λ) dλ. (2.5)

Proof. Since ϕ′ is increasing one has

ϕ∗(λ) = inf
x∈[0,+∞[

∫ x

0
(λ+ ϕ′(t)) dt =

∫ +∞

0
min{λ+ ϕ′(t), 0}dt.

Therefore, by Fubini’s theorem,

∫ +∞

0
λp−2ϕ∗(λ) dλ =

∫ +∞

0

(∫ +∞

0
λp−2 min{λ+ ϕ′(t), 0}dλ

)
dt

=
∫ +∞

0

(∫ −ϕ′(t)

0
λp−2(λ+ ϕ′(t)) dλ

)
dt

=
∫ +∞

0

[
λp

p
+ ϕ′(t)λp−1

p− 1

]−ϕ′(t)

0
dt

= −1

(p− 1)p

∫ +∞

0
(−ϕ′(t))p dt,

as required. �

2.4 Convex envelope of asymptotically linear functions

Let g : R>0 → R be an asymptotically linear continuous function (see Section 2.1).

We define the convex envelope of g as the largest convex function ğ on R>0, which

is bounded from above by g. Note that ğ identifies with the supremum of all affine

functions bounded from above by g.

Proposition 2.7. Let g : R>0 → R be an asymptotically linear continuous func-

tion. Then ğ is also an asymptotically linear continuous function. Moreover, one has

μ(g) = μ(ğ) and g(0) = ğ(0).
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Proof. Let ϕg : [0,+∞] → R be the continuous function such that ϕg(t) = g(t) − μ(g)t

on R>0. Let M be a real number such that |ϕg(t)| � M for any t ∈ [0,+∞]. One has

μ(g)t−M � g(t) � μ(g)t+M.

Therefore,

μ(g)t−M � ğ(t) � μ(g)t+M.

By Proposition 2.2, the function

ϕğ : R>0 → R, ϕğ(t) := ğ(t)− μ(g)t

extends continuously on [0,+∞]. It remains to show that g(0) = ğ(0). Let ε > 0. The

function t �→ (g(t)− g(0)+ ε)/t is continuous on ]0,+∞] and one has

lim
t↓0

g(t)− g(0)+ ε

t
= +∞.

Therefore, this function is bounded from below by a real number α. Hence, the function

g is bounded from below on R>0 by the affine function

t �−→ αt+ g(0)− ε,

which implies that ğ(0) � g(0) − ε. Since g � ğ and since ε is arbitrary, we obtain

ğ(0) = g(0). �

3 Green Functions on a Tree of Length 1

The purpose of this section is to establish a framework of Green functions on a tree of

length 1, which serves as a fundament of the arithmetic intersection theory of metrised

R-divisors on an arithmetic surface over a trivially valued field.

3.1 Tree of length 1 associated with a set

Let S be a non-empty set. We denote by T (S) the quotient set of the disjoint union∐
x∈S[0,+∞] obtained by gluing the points 0 in the copies of [0,+∞]. The quotient

map from
∐

x∈S[0,+∞] to T (S) is denoted by π . For each x ∈ S, we denote by

ξx : [0,+∞] → T (S) the restriction of the quotient map π to the copy of [0,+∞] indexed

by x. The set T (S) is the union of ξx([0,+∞]), x ∈ S.

Notation 3.1. Note that the images of 0 in T (S) by all maps ξx are the same, which we

denote by η0. The image of +∞ by the map ξx is denoted by x0. If a and b are elements

of [0,+∞] such that a < b, the images of the intervals [a, b], [a, b[, ]a, b], ] a, b[ by ξx are

denoted by [ξx(a), ξx(b)], [ξx(a), ξx(b)[,]ξx(a), ξx(b)], ]ξx(a), ξx(b)[ respectively.
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Definition 3.2. We denote by t : T (S) → [0,+∞] the map, which sends an element

ξ ∈ ξx([0,+∞]) to the unique number a ∈ [0,+∞] such that ξx(a) = ξ . In other words, for

any x ∈ S, the restriction of t(·) to [η0, x0] is the inverse of the injective map ξx. We call

t(·) the parametrisation map of T (S).

Definition 3.3. We equip T (S) with the following topology. A subset U of T (S) is open

if and only if the conditions below are simultaneously satisfied:

(1) for any x ∈ S, ξ−1
x (U) is an open subset of [0,+∞], and

(2) if η0 ∈ U, then U contains [η0, x0] for all but finitely many x ∈ S.

By definition, all maps ξx : [0,+∞] → T (S) are continuous. However, if S is an infinite

set, then the parametrisation map t(·) is not continuous.

Note that the topological space T (S) is compact. We can visualise it as an infinite

tree of length 1 whose root is η0 and whose leaves are x0 with x ∈ S.

3.2 Green functions

Let S be a non-empty set and w : S → R>0 be a map. We call Green function on T (S) any

continuous map g from T (S) to [−∞,+∞] such that, for any x ∈ S, the composition of g

with ξx|R>0
defines an asymptotically linear function on R>0. For any x ∈ S, we denote

by μx(g) the unique real number such that the function

(u ∈ R>0) �−→ g(ξx(u))− μx(g)u

extends to a continuous function on [0,+∞]. We denote by ϕg : T (S) → R the continuous

function on T (S) such that

ϕg(ξ) = g(ξ)− μx(g)t(ξ) for any ξ ∈ [η0, x0], x ∈ S.

Remark 3.4. Let g be a Green function on T (S). It takes finite values on T (S) \
{x0 : x ∈ S}. Moreover, for any x ∈ S, the value of g at x0 is finite if and only if μx(g) = 0.

As g is a continuous map, g−1(R) contains all but finitely many x0 with x ∈ S. In other

words, for all but finitely many x ∈ S, one has μx(g) = 0. Note that the Green function g

is bounded if and only if μx(g) = 0 for any x ∈ S.

Definition 3.5. Let g be a Green function on T (S). We denote by gcan the map from

T (S) to [−∞,+∞], which sends ξ ∈ [η0, x0] to μx(g)t(ξ). Note that the composition of

gcan with ξx|R>0
is a linear function on R>0. We call it the canonical Green function

associated with g. Note that there is a unique bounded Green function ϕg on T (S) such
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that g = gcan+ϕg. We call it the bounded Green function associated with g. The formula

g = gcan + ϕg is called the canonical decomposition of the Green function g. If g = gcan,

we say that the Green function g is canonical.

Proposition 3.6. Let g be a Green function on T (S). For all but countably many x ∈ S,

the restriction of g on [η0, x0] is a constant function.

Proof. For any n ∈ N such that n � 1, let Un be set of ξ ∈ T (S) such that

|g(ξ)− g(η0)| < n−1.

This is an open subset of T (S), which contains η0. Hence, there is a finite subset Sn of S

such that [η0, x0] ⊂ Un for any x ∈ S\Sn. Let S′ =⋃
n∈N, n�1 Sn. This is a countable subset

of S. For any x ∈ S \ S′ and any ξ ∈ [η0, x0], one has g(ξ) = g(η0) �

Remark 3.7. It is clear that, if g is a Green function on T (S), for any a ∈ R, the

function ag : T (S) → [−∞,+∞] is a Green function on T (S). Moreover, the canonical

decomposition of Green functions allows to define the sum of two Green functions. Let

g1 and g2 be two Green functions on T (S). We define g1+g2 as (g1,can+g2,can)+(ϕg1
+ϕg2

).

Note that the set of all Green functions, equipped with the addition and the

multiplication by a scalar, forms a vector space over R.

3.3 Pairing of Green functions

Let S be a non-empty set and w : S → R>0 be a map, called a weight function. We say

that a Green function g on T (S) is pairable with respect to w if the following conditions

are satisfied:

(1) for any x ∈ S, the function ϕg ◦ξx|R>0
belongs to L2

1(R>0) (see Section 2.1), and

(2) one has

∑
x∈S

w(x)

∫
R>0

(ϕg ◦ ξx|R>0
)′(u)2 du < +∞.

For each x ∈ S we fix a representative of the function (ϕg ◦ ξx|R>0
)′ and we denote by

ϕ′g :
⋃
x∈S

]η0, x0[ −→ R

the function, which sends ξ ∈ ]η0, x0[ to (ϕg ◦ ξx|R>0
)′(t(ξ)).
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We equip
∐

x∈S[0,+∞] with the disjoint union of the weighted Lebesgue measure

w(x) du, where du denotes the Lebesgue measure on [0,+∞]. We denote by νS,w the

push-forward of this measure by the projection map∐
x∈S

[0,+∞] −→ T (S).

Then the function ϕ′g is square-integrable with respect to the measure νS,w.

Definition 3.8. Note that pairable Green functions form a vector subspace of the

vector space of Green functions. Let g1 and g2 be pairable Green functions on T (S).

We define the pairing of g1 and g2 as∑
x∈S

w(x)
(
μx(g1)g2(η0)+ μx(g2)g1(η0)

)
−

∫
T (S)

ϕ′g1
(ξ)ϕ′g2

(ξ) νS,w(dξ),

denoted by 〈g1, g2〉w, called the pairing of Green functions g1 and g2. Note that 〈 , 〉w is a

symmetric bilinear form on the vector space of pairable Green functions.

3.4 Convex Green functions

Let S be a non-empty set. We say that a Green function g on T (S) is convex if, for any

element x of S, the function g ◦ ξx on R>0 is convex.

Convention 3.9. If g is a convex Green function on T (S), by convention we choose, for

each x ∈ S, the right derivative of ϕg ◦ ξx|R>0
to represent the derivative of ϕg ◦ ξx|R>0

in the sense of distribution. In other words, ϕ′g ◦ ξx|R>0
is given by the right derivative

of the function ϕg ◦ ξx|R>0
. Moreover, for any x ∈ S, we denote by ϕ′g(η0; x) the element

ϕ′g◦ξx
(0) ∈ [−∞, 0] (see Proposition 2.2 (2)). We emphasise that ϕ′g◦ξx

(0) could differ when

x varies.

Definition 3.10. Let g be a Green function on T (S). We call convex envelope of g and

we denote by ğ the continuous map from T (S) to [−∞,+∞] such that, for any x ∈ S,

ğ ◦ ξx|R>0
is the convex envelope of g ◦ ξx|R>0

(see Section 2.4). By Proposition 2.7, the

function ğ is well defined and defines a convex Green function on T (S). Moreover, it is

the largest convex Green function on T (S), which is bounded from above by g.

Proposition 3.11. Let g be a Green function on T (S). The following equalities hold:

gcan = ğcan, g(η0) = ğ(η0), ϕ̆g = ϕğ.
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Proof. The 1st two equalities follow from Proposition 2.7. The 3rd equality comes from

the 1st one and the fact that ğ = gcan + ϕ̆g. �

3.5 Infimum slopes

Let S be a non-empty set and g be a Green function on T (S). For any x ∈ S, we denote by

μinf,x(g) the element

inf
ξ∈]η0,x0[

g(ξ)

t(ξ)
∈ [−∞,∞[.

Clearly, one has μinf,x(g) � μx(g). Therefore, by Remark 3.4 we obtain that μinf,x(g) � 0

for all but finitely many x ∈ S. If w : S → R�0 is a weight function, we define the global

infimum slope of g with respect to w as∑
x∈X(1)

μinf,x(g)w(x) ∈ [−∞,∞[.

This element is well defined because μinf,x(g) � 0 for all but finitely many x ∈ S. If there

is no ambiguity about the weight function (notably when S is the set of closed points

of a regular projective curve, cf. Definition 6.6), the global infimum slope of g is also

denoted by μinf(g).

Proposition 3.12. Let g be a convex Green function on T (S). For any x ∈ S one has

μinf,x(g− g(η0)) = μx(g)+ ϕ′g(η0; x).

Proof. This is a direct consequence of Proposition 2.2 (2). �

4 Graded Linear Series

Let k be a field and X be a regular projective curve over Speck. We denote by X(1) the set

of closed points of X.

Definition 4.1. By R-divisor on X, we mean an element in the free R-vector space

generated by X(1). We denote by DivR(X) the R-vector space of R-divisors on X. If D is an

element of DivR(X), the coefficient of x in the expression of D into a linear combination

of elements of X(1) is denoted by ordx(D). If ordx(D) belongs to Q for any x ∈ X(1), we

say that D is a Q-divisor; if ordx(D) ∈ Z for any x ∈ X(1), we say that D is a divisor on X.

The subsets of DivR(X) consisting of Q-divisors and divisors are denoted by DivQ(X)

and Div(X), respectively.
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Definition 4.2. Let D be an R-divisor on X. We define the degree of D to be

deg(D) :=
∑

x∈X(1)

[κ(x) : k] ordx(D), (4.1)

where for x ∈ X, κ(x) denotes the residue field of x. Denote by Supp(D) the set of all

x ∈ X(1) such that ordx(D) �= 0, called the support of the R-divisor D. This is a finite

subset of X(1).

Remark 4.3. Although X(1) is an infinite set, (4.1) is actually a finite sum: one has

deg(D) =
∑

x∈Supp(D)

[κ(x) : k] ordx(D).

Definition 4.4. Denote by Rat(X) the field of rational functions on X. If f is a non-zero

element of Rat(X), we denote by (f ) the principal divisor associated with f , namely the

divisor on X given by ∑
x∈X(1)

ordx(f )x,

where ordx(f ) ∈ Z denotes the valuation of f with respect to the discrete valuation ring

OX,x. The map Rat(X)× → Div(X) is additive and hence induces an R-linear map

Rat(X)×R := Rat(X)× ⊗Z R −→ DivR(X),

which we still denote by f �→ (f ).

Definition 4.5. We say that an R-divisor D is effective if ordx(D) � 0 for any x ∈ X(1).

We denote by D � 0 the condition “D is effective”. For any R-divisor D on X, we denote

by H0(D) the set

{f ∈ Rat(X)× : (f )+ D � 0} ∪ {0}.

It is a finite-dimensional k-vector subspace of Rat(X). We denote by genus(X) the genus

of the curve X relatively to k.

Remark 4.6. The theorem of Riemann–Roch implies that if D is a divisor such that

deg(D) > 2 genus(X)− 2, then one has

dimk(H0(D)) = deg(D)+ 1− genus(X). (4.2)

We refer the readers to [14, Lemma 2.2] for a proof.
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Definition 4.7. Let D be an R-divisor on X. We denote by (D)×R the set

{f ∈ Rat(X)×R : (f )+ D � 0}.
This is an R-vector subspace of Rat(X)×R . Similarly, we denote by (D)×Q the Q-vector

subspace

{f ∈ Rat(X)×Q : (f )+ D � 0}
of Rat(X)×Q. Note that one has

(D)×Q =
⋃

n∈N, n�1

{f 1
n : f ∈ H0(nD) \ {0}}. (4.3)

Definition 4.8. Let D be an R-divisor on X. We denote by �D� and �D� the divisors on

C such that

ordx(�D�) = �ordx(D)�, ordx(�D�) = �ordx(D)�.

Clearly, one has deg(�D�) � deg(D) � deg(�D�). Moreover,

deg(�D�) > deg(D)−
∑

x∈Supp(D)

[κ(x) : k], (4.4)

deg(�D�) < deg(D)+
∑

x∈Supp(D)

[κ(x) : k]. (4.5)

Let (Di)i∈I be a family of R-divisors on X such that

sup
i∈I

ordx(Di) = 0

for all but finitely many x ∈ X(1). We denote by supi∈I Di the R-divisor such that

∀x ∈ X(1), ordx

(
sup
i∈I

Di

) = sup
i∈I

ordx(Di).

It is easy to see the following proposition (left as an exercise to the reader).

Proposition 4.9. Let D be an R-divisor on X such that deg(D) � 0. One has

lim
n→+∞

dimk(H0(nD))

n
= deg(D). (4.6)

Next we consider the following:
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Proposition 4.10. Let D be an R-divisor on X such that deg(D) > 0. Then one has

sup
s∈(D)×Q

(s−1) = D. (4.7)

Proof. For any s ∈ (D)×Q one has

∀x ∈ X(1), ordx(s)+ ordx(D) � 0

and hence ordx(s−1) � ordx(D).

For any x ∈ X(1) and any ε > 0, we pick an R-divisor Dx,ε on X such that D− Dx,ε

is effective, ordx(Dx,ε) = ordx(D) and 0 < deg(Dx,ε) < ε. Since deg(Dx,ε) > 0, the set

(Dx,ε)
×
Q is not empty (see (4.3) and Proposition 4.9). This set is also contained in (D)×Q

since Dx,ε � D. Let f be an element of (Dx,ε)
×
Q. One has

Dx,ε + (f ) � 0 and deg(Dx,ε + (f )) = deg(Dx,ε) < ε.

Therefore,

ordx(D+ (f )) = ordx(Dx,ε + (f )) � ε

[κ(x) : k]
,

which leads to

ordx(f−1) � ordx(D)− ε

[κ(x) : k]
.

Since ε > 0 is arbitrary, we obtain

sup
s∈(D)×Q

ordx(s−1) = ordx(D).

�

Remark 4.11. Let D be an R-divisor on X. Note that one has

sup
s∈(D)×R

(s−1) � D.

Therefore, the above proposition implies that, if deg(D) > 0, then

sup
s∈(D)×R

(s−1) = D.
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This equality also holds when deg(D) = 0 and (D)×R �= ∅. In fact, if s is an element of

(D)×R , then one has D + (s) � 0. Moreover, since deg(D) = 0, one has deg(D + (s)) =
deg(D)+deg((s)) = 0 and hence D+ (s) = 0. Similarly, if D is an R-divisor on X such that

(D)×Q �= ∅, then the equality

sup
s∈(D)×Q

(s−1) = D

always holds.

Definition 4.12. Let Rat(X) be the field of rational functions on X. By graded linear

series on X, we refer to a graded sub-k-algebra V• = ⊕
n∈N VnTn of Rat(X)[T] =⊕

n∈N Rat(X)Tn, which satisfies the following conditions:

(1) V0 = k,

(2) there exists n ∈ N�1 such that Vn �= {0}, and

(3) there exists an R-divisor D on X such that Vn ⊆ H0(nD) for any n ∈ N.

If W is a k-vector subspace of Rat(X), we denote by k(W) the extension

k({f /g : (f , g) ∈ (W \ {0})2})

of k. If V• is a graded linear series on V, we set

k(V•) := k
( ⋃

n∈N�1

{f /g : (f , g) ∈ (Vn \ {0})2}
)
.

If k(V•) = Rat(X), we say that the graded linear series V• is birational.

Example 4.13. Let D be an R-divisor on X such that deg(D) > 0. Then the total graded

linear series
⊕

n∈N H0(nD) is birational.

Proposition 4.14. Let V• be a graded linear series on X. The set

N(V•) := {n ∈ N�1 : Vn �= {0}}

equipped with the additive law forms a sub-semigroup of N�1. Moreover, for any n ∈
N(V•), which is sufficiently positive, one has k(V•) = k(Vn).

Proof. Let n and m be elements of N(V•). If f and g are respectively non-zero elements

of Vn and Vm, then fg is a non-zero element of Vn+m. Hence, n + m belongs to N(V•).
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Therefore, N(V•) is a sub-semigroup of N�1. In particular, if d � 1 is a generator of the

subgroup of Z generated by N(V•), then there exists N0 ∈ N�1 such that dn ∈ N(V•) for

any n ∈ N, n � N0.

Since k ⊆ k(V•) ⊆ Rat(X) and Rat(X) is finitely generated over k, the extension

k(V•)/k is finitely generated (see [7, Chapter V, §14, n◦7, Corollary 3]). Therefore, there

exist a finite family {n1, . . . , nr} of elements in N�1, together with pairs (fi, gi) ∈ (Vdni
\

{0})2 such that k(V•) = k(f1/g1, . . . , fr/gr). Let N ∈ N such that

N −max{n1, . . . , nr} � N0.

For any i ∈ {1, . . . , r} and M ∈ N�N , let hM,i ∈ Vd(M−ni)
\ {0}. Then

(hM,ifi, hM,igi) ∈ (VdM \ {0})2,

which shows that k(V•) = k(VdM). �

Definition 4.15. If V• is a graded linear series, we define (V•)
×
Q as

⋃
n∈N�1

{f 1
n | f ∈ Vn \ {0}},

and let D(V•) be the following R-divisor

sup
s∈(V•)×Q

(s−1),

called the R-divisor generated by V•. The conditions (2) and (3) in Definition 4.12 show

that the R-divisor D(V•) is well defined and has non-negative degree.

Proposition 4.16. Let V• be a birational graded linear series on X. One has

lim
n∈N, Vn �={0}n→+∞

dimk(Vn)

n
= deg(D(V•)) > 0. (4.8)

Proof. By definition, for any n ∈ N one has Vn ⊆ H0(nD(V•)). Therefore, Proposition 4.9

leads to

lim sup
n→+∞

dimk(Vn)

n
� deg(D(V•)).
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Let p ∈ N(V•) be a sufficiently positive integer (so that Rat(X) = k(Vp)). Let

V [p]
• :=

⊕
n∈N

Im(SnVp −→ Vnp)Tn.

Clearly, one has D(V [p]
• ) � pD(V•). Conversely, one has

D(V•) = sup
p∈N(V•)
f∈Vp\{0}

1

p
(f−1) � sup

p∈N(V•)

1

p
D(V [p]

• ).

Hence, the following equality holds:

D(V•) = sup
p∈N(V•)

1

p
D(V [p]

• ).

Moreover, since Rat(X) = k(Vp), X identifies with the normalisation of Proj(V [p]
• ) and the

pull-back on X of the tautological line bundle on Proj(V [p]
• ) identifies with O(D(V [p]

• )).

This leads to

1

p
deg(D(V [p]

• )) = lim
n→+∞

dimk(V [p]
n )

pn
� lim inf

n∈N, Vn �={0}
n→+∞

dimk(Vn)

n
,

where in the inequality we have used the fact that dimk(Vnp) � dimk(Vnp+r) once

Vr �= {0}. As the map p �→ 1
pD(V [p]

• ) preserves the order if we consider the relation of

divisibility on p, by the relation D(V•) = supp
1
pD(V [p]

• ) we obtain that

deg(D(V•)) = sup
p

1

p
deg(D(V [p]

• )) � lim inf
n∈N, Vn �={0}

n→+∞

dimk(Vn)

n
.

Therefore, the equality in (4.8) holds.

If p is a positive integer such that Rat(X) = k(Vp), then Vp admits an element

s, which is transcendental over k. In particular, the graded linear series V [p]
• contains a

polynomial ring of one variable, which shows that

lim inf
n→+∞

dimk(Vn)

n
> 0.

�
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5 Arithmetic Surface Over a Trivially Valued Field

In this section, we fix a commutative field k and we denote by | · | the trivial absolute

value on k. Let X be a regular projective curve over Speck. We denote by Xan the

Berkovich topological space associated with X. Recall that, as a set Xan consists of

couples of the form ξ = (x, | · |ξ ), where x is a scheme point of X and | · |ξ is an absolute

value on the residue field κ(x) of x, which extends the trivial absolute value on k. We

denote by j : Xan → X the map sending any pair in Xan to its 1st coordinate. For any

ξ ∈ Xan, we denote by κ̂(ξ) the completion of κ(j(ξ)) with respect to the absolute value

| · |ξ , on which | · |ξ extends in a unique way. For any regular function f on a Zariski open

subset U of X, we let |f | be the function on j−1(U) sending any ξ to the absolute value of

f (j(ξ)) ∈ κ(j(ξ)) with respect to |·|ξ . The Berkovich topology on Xan is defined as the most

coarse topology making the map j and all functions of the form |f | continuous, where f

is a regular function on a Zariski open subset of X.j

Remark 5.1. Let X(1) be the set of all closed points of X. The Berkovich topological

space Xan identifies with the tree T (X(1)), where

(a) the root point η0 of the tree T (X(1)) corresponds to the pair consisting of the

generic point η of X and the trivial absolute value on the field of rational

functions on X;

(b) for any x ∈ X(1), the leaf point x0 ∈ T (X(1)) corresponds to the closed point x

of X together with the trivial absolute value on the residue field κ(x);

(c) for any x ∈ X(1), any ξ ∈ ]η0, x0[ corresponds to the pair consisting of the

generic point η of X and the absolute value e−t(ξ) ordx(·), where ordx(·) is the

discrete valuation on the field of rational functions Rat(X) corresponding to

x and t(·) is the parametrization map on T (X(1)) (see Definition 3.2).

5.1 Metrised divisors

We call metrised R-divisor on X any pair (D, g), where D is an R-divisor on X and g is a

Green function on T (X(1)) such that μx(g) = ordx(D) for any x ∈ X(1) (see Section 3.2). If

in addition D is a Q-divisor (resp. divisor), we say that D is a metrised Q-divisor (resp.

metrised divisor).
If (D, g) is a metrised R-divisor on X and a is a real number, then (aD, ag) is

also a metrised R-divisor, denoted by a(D, g). Moreover, if (D1, g1) and (D2, g2) are two

metrised R-divisors on X, then (D1 + D2, g1 + g2) is also a metrised R-divisor, denoted

by (D1, g1)+ (D2, g2). The set D̂ivR(X) of all metrised R-divisors on X then forms a vector

space over R.
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If (D, g) is a metrised R-divisor on X, we say that g is a Green function of the

R-divisor D.

Remark 5.2.

(1) Let (D, g) be a metrised R-divisor on X. Note that the R-divisor part D

is uniquely determined by the Green function g. Therefore, the study of

metrised R-divisors on X is equivalent to that of Green functions on the

infinite tree T (X(1)). The notation of pair (D, g) facilitates however the

presentation on the study of metrised linear series of (D, g).

(2) Let D be an R-divisor on X, there is a unique canonical Green function on

T (X(1)) (see Definition 3.5), denoted by gD, such that (D, gD) is an metrised

R-divisor. On each edge [η0, x0] of the infinite tree Xan, this Green function is

equal to ordx(D)t(·). For a general Green function g of D, the canonical Green

function associated with g (see Definition 3.5) is equal to gD. In particular,

if (D, g) is a metrised R-divisor such that D is the zero R-divisor, then the

Green function g is bounded.

Canonical Green functions are similar to Green functions arising from

integral models in the classic setting of Arakelov geometry over number

fields. Here the valuation ring of (k, | · |) identifies with k and hence the

only “integral model” of (X, D) is (X, D) itself.

Definition 5.3. Let Rat(X) be the field of rational functions on X and Rat(X)×R be the

R-vector space Rat(X)× ⊗Z R. For any φ in Rat(X)×R , the couple ((φ), g(φ)) is called the

principal metrised R-divisor associated with φ and is denoted by (̂φ).

Definition 5.4. If (D, g) is a metrised R-divisor, for any φ ∈ (D)×R , we define

‖φ‖g := exp
(
− inf

ξ∈T (X(1))
(g(φ) + g)(ξ)

)
. (5.1)

By convention, ‖0‖g is defined to be zero.

5.2 Ultrametrically normed vector spaces

Let E be a finite-dimensional vector space over k (equipped with the trivial absolute

value). By ultrametric norm on E, we mean a map ‖·‖ : E → R�0 such that

(1) for any x ∈ E, ‖x‖ = 0 if and only if x = 0,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/7/5473/6527302 by Institut d'astrophysique de Paris user on 17 August 2024



Arakelov Theory 5495

(2) ‖ax‖ = ‖x‖ for any x ∈ E and a ∈ k \ {0}, and

(3) for any (x, y) ∈ E × E, ‖x + y‖ � max{‖x‖, ‖y‖}.
Let r be the rank of E over k. We define the determinant norm associated with ‖·‖ the

norm ‖·‖det on det(E) = �r(E) such that

∀ η ∈ det(E), ‖η‖ = inf
(s1,...,sr)∈Er

s1∧...∧sr=η

‖s1‖ · · · ‖sr‖.

We define the Arakelov degree of (E, ‖·‖) as

d̂eg(E, ‖·‖) = − ln‖η‖det, (5.2)

where η is a non-zero element of det(E). We then define the positive Arakelov degree as

d̂eg+(E, ‖·‖) := sup
F⊂E

d̂eg(F, ‖·‖F),

where F runs over the set of all vector subspaces of E, and ‖·‖F denotes the restriction

of ‖·‖ to F.

Example 5.5. Let (D, g) be a metrised R-divisor on X. Note that the restriction of ‖·‖g

to H0(D) defines an ultrametric norm on the k-vector space H0(D).

Assume that (E, ‖·‖) is a non-zero finite-dimensional ultrametrically normed

vector space over k. We introduce a Borel probability measure P(E,‖·‖) on R such that,

for any t ∈ R,

P(E,‖·‖)(]t,+∞[) = dimk({s ∈ E : ‖s‖ < e−t})
dimk(E)

.

Then, for any random variable Z that follows P(E,‖·‖) as its probability law, one has

d̂eg(E, ‖·‖)
dimk(E)

= E[Z] =
∫
R

tP(E,‖·‖)(dt) (5.3)

and

d̂eg+(E, ‖·‖)
dimk(E)

= E[max(Z, 0)] =
∫ +∞

0
tP(E,‖·‖)(dt). (5.4)

5.3 Essential infima

Let (D, g) be a metrised R-divisor on X such that (D)×R is not empty. We define

λess(D, g) := sup
φ∈(D)×R

inf
ξ∈Xan

(g(φ) + g)(ξ),
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called the essential infimum of the metrised R-divisor (D, g). By (5.1), we can also write

λess(D, g) as

sup
φ∈(D)×R

(
− ln‖φ‖g

)
.

The superadditivity of λess is an easy consequence of its definition (left as an

exercise to the reader).

Proposition 5.6. Let (D1, g1) and (D2, g2) be metrised R-divisors such that (D1)×R and

(D2)×R are non-empty. Then one has

λess(D1 + D2, g1 + g2) � λess(D1, g1)+ λess(D2, g2). (5.5)

Remark 5.7. In the literature, the essential infimum of height function is studied

in the number field setting. We can consider its analogue in the setting of Arakelov

geometry over a trivially valued field. For any closed point x of X, we define the height

of x with respect to (D, g) as

h(D,g)(x) := ϕg(x0),

where ϕg = g−gcan is the bounded Green function associated with g (see Definition 3.5),

and x0 denotes the point of Xan corresponding to the closed point x equipped with the

trivial absolute value on its residue field. In particular, for any element x ∈ X(1) outside

of the support of D, one has

h(D,g)(x) = g(x0).

Then the essential infimum of the height function h(D,g) is defined as

μess(D, g) := sup
Z�X

inf
x∈X(1)\Z

h(D,g)(x),

where Z runs over the set of closed subschemes of X, which are different from X (namely

a finite subset of X(1)). If (D)×R is not empty, one has

λess(D, g) � sup
φ∈(D)×R

inf
x∈X(1)

(g(φ) + g)(x0).

For each φ ∈ (D)×R , one has

inf
x∈X(1)

(g(φ) + g(x0)) � inf
x∈X(1)\(Supp(D)∪Supp((φ)))

g(x0),
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which is clearly bounded from above by μess(D, g). Therefore, one has

λess(D, g) � μess(D, g). (5.6)

The following proposition implies that λess(D, g) is actually finite.

Proposition 5.8. Let (D, g) be a metrised R-divisor on X. One has μess(D, g) = g(η0),

where η0 denotes the point of Xan corresponding to the generic point of X equipped

with the trivial absolute value on its residue field.

Proof. Let α be a real number that is > g(η0). The set

{ξ ∈ Xan : g(ξ) < α}
is an open subset of Xan containing η0 and hence there exists a finite subset S of X(1)

such that g(x0) < α for any x ∈ X(1) \ S. Therefore, we obtain μess(D, g) � α. Since

α > g(η0) is arbitrary, we get μess(D, g) � g(η0).

Conversely, if β is a real number such that β < g(η0), then

{ξ ∈ Xan : g(ξ) > β}
is an open subset of Xan containing η0. Hence, there exists a finite subset S′ of X(1) such

that g(x0) > β for any x ∈ X(1) \ S′. Hence, μess(D, g) � β. Since β < g(η0) is arbitrary, we

obtain μess(D, g) � g(η0). �

Lemma 5.9. Let r ∈ N�1 and s1, . . . , sr be elements of Rat(X)×Q and a1, . . . , ar be real

numbers, which are linearly independent over Q. Let s := sa1
1 · · · sar

r ∈ Rat(X)×R . Then for

any i ∈ {1, . . . , r} one has Supp((si)) ⊂ Supp((s)).

Proof. Let x be a closed point of X, which does not lie in the support of (s). One has
r∑

i=1

ordx(si)ai = 0

and hence ordx(s1) = . . . = ordx(sr) = 0 since a1, . . . , ar are linearly independent

over Q. �

Lemma 5.10. Let n and r be two positive integers, �1, . . . , �n be linear forms on Rr of

the form

�j(y) = bj,1y1 + · · · + bj,ryr, where (bj,1, . . . , bj,r) ∈ Qr
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and q1, . . . , qn be non-negative real numbers. Let a = (a1, . . . , ar) be an element of Rr
>0,

which forms a linearly independent family over Q, and such that �j(a) + qj � 0 for any

j ∈ {1, . . . , n}. Then, for any ε > 0, there exists a sequence

δ(m) = (δ
(m)
1 , . . . , δ(m)

r ), m ∈ N

in Rr
>0, which converges to (0, . . . , 0) and verifies the following conditions:

(1) for any j ∈ {1, . . . , n}, one has �j(δ
(m))+ εqj � 0, and

(2) for any m ∈ N and any i ∈ {1, . . . , r}, one has δ
(m)

i + ai ∈ Q.

Proof. Without loss of generality, we may assume that q1 = · · · = qd = 0 and

min{qd+1, . . . , qn} > 0. Since a1, . . . , ar are linearly independent over Q, for j ∈ {1, . . . , d},
one has �j(a) > 0. Hence, there exists an open convex cone C in Rr

>0 that contains a , such

that �j(y) > 0 for any y ∈ C and j ∈ {1, . . . , d}. Moreover, if we denote by ‖·‖sup the norm

on Rr (where R is equipped with its usual absolute value) defined as

‖(y1, . . . , yr)‖sup := max{|y1|, . . . , |yr|},

then there exists λ > 0 such that, for any z ∈ C such that ‖z‖sup < λ and any j ∈
{d+ 1, . . . , n}, one has �j(z)+ εqj � 0. Let

Cλ = {y ∈ C : ‖y‖sup < λ}.

It is a convex open subset of Rr. For any y ∈ Cλ and any j ∈ {1, . . . , n}, one has

�j(y)+ εqj � 0.

Since Cλ is open and convex, so is its translation by −a . Note that the set of rational

points in a convex open subset of Rr is dense in the convex open subset. Therefore, the

set of all points δ ∈ Cλ such that δ + a ∈ Qr is dense in Cλ. Since (0, . . . , 0) lies on the

boundary of Cλ, it can be approximated by a sequence (δ(m))m∈N of elements in Cλ such

that δ(m) + a ∈ Qr for any m ∈ N. �

Remark 5.11. We keep the notation and hypotheses of Lemma 5.10. For any m ∈ N,

and j ∈ {1, . . . , n} one has

�j(a + δ(m))+ (1+ ε)qj � 0,
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or equivalently,

�j

( 1

1+ ε
(a + δ(m))

)
+ qj � 0.

Therefore, one can find a sequence (a(p))p∈N of elements in Qr that converges to a and

such that

�j(a
(p))+ qj � 0

hods for any j ∈ {1, . . . , n} and any p ∈ N.

The following proposition says that, in order to define the essential infimum,

we can replace R with Q under the assumption (D)×Q �= ∅.

Proposition 5.12. Let (D, g) be a metrised R-divisor on X such that (D)×Q �= ∅. One has

λess(D, g) = sup
φ∈(D)×Q

inf
ξ∈Xan

(g(φ) + g)(ξ) = sup
φ∈(D)×Q

(
− ln‖φ‖g

)

= sup
n∈N, n�1

1

n
sup

s∈H0(nD)\{0}

(
− ln‖s‖ng

)
.

(5.7)

Proof. By definition one has

(D)×Q =
⋃

n∈N, n�1

{s 1
n : s ∈ H0(nD) \ {0}}.

Moreover, for φ ∈ (D)×Q, one has

inf
ξ∈Xan

(g(φ) + g)(ξ) = − ln‖φ‖g.

Therefore, the 2nd and 3rd equalities of (5.7) hold. To show the 1st equality, we denote

temporarily by λQ,ess(D, g) the 2nd term of (5.7).

Let a be an arbitrary positive rational number. The correspondence (D)×Q →
(aD)×Q given by φ �→ φa is a bijection. Moreover, for φ ∈ (D)×Q one has ‖φa‖ag = ‖φ‖a

g .

Hence, the equality

λQ,ess(aD, ag) = aλQ,ess(D, g) (5.8)

holds.
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By our assumption, we can choose φ ∈ (D)×Q. For K ∈ {Q,R}, the map

αψ : (D)×K −→ (D+ (ψ))×K, φ �−→ φψ−1

is a bijection. Moreover, for any φ ∈ (D)×K,

‖φ‖g = ‖αψ(φ)‖g+g(ψ)
.

Hence, one has

λQ,ess(D, g) = λQ,ess(D+ (ψ), g+ g(ψ)), (5.9)

λess(D, g) = λess(D+ (ψ), g+ g(ψ)). (5.10)

Furthermore, for any c ∈ R, one has

λQ,ess(D, g+ c) = λQ,ess(D, g)+ c, (5.11)

λess(D, g+ c) = λess(D, g)+ c. (5.12)

Therefore, to prove the proposition, we may assume without loss of generality that D is

effective and ϕg � 0.

By definition one has λQ,ess(D, g) � λess(D, g). To show the converse inequality, it

suffices to prove that, for any s ∈ (D)×R , one has

− ln‖s‖g � λQ,ess(D, g).

We choose s1, . . . , sr in Rat(X)×Q and a1, . . . , ar in R>0 such that a1, . . . , ar are linearly

independent over Q and that s = sa1
1 · · · sar

r . By Lemma 5.9, for any i ∈ {1, . . . , r}, the

support of (si) is contained in that of (s). Assume that Supp((s)) = {x1, . . . , xn}. Since

s ∈ (D)×R , for j ∈ {1, . . . , n}, one has

a1 ordxj
(s1)+ · · · + ar ordxj

(sr)+ ordxj
(D) � 0. (5.13)

By Lemma 5.10, for any rational number ε > 0, there exists a sequence

(δ
(m)
1 , . . . , δ(m)

r ), m ∈ N

in Rr, which converges to (0, . . . , 0), and such that:
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(1) for any j ∈ {1, . . . , n} and any m ∈ N, one has

δ
(m)
1 ordxj

(s1)+ · · · + δ
(m)
r ordxj

(sr)+ ε ordxj
(D) � 0;

(2) for any i ∈ {1, . . . , r} and any m ∈ N, δ
(m)

i + ai ∈ Q.

For any m ∈ N, let

s(m) = s
δ
(m)
1

1 · · · sδ
(m)
r

r ∈ (εD)×R .

The conditions (1) and (2) above imply that s · s(m) ∈ ((1+ ε)D)×Q. Hence, one has

inf
ξ∈Xan

(
(1+ ε)g+ g(s·s(m))

)
(ξ) � λQ,ess((1+ ε)D, (1+ ε)g).

Since D is effective and ϕg � 0 by s(m) ∈ (εD)×R , one has

εg+ g(s(m)) � εϕg � 0.

Therefore, we obtain

− ln‖s‖g = inf
ξ∈Xan

(g+ g(s))(ξ) � λQ,ess((1+ ε)D, (1+ ε)g) = (1+ ε)λQ,ess(D, g),

where the last equality comes from (5.8). Taking the limit when ε ∈ Q>0 tends to 0, we

obtain the desired inequality. �

5.4 χ-volume

Let (D, g) be a metrised R-divisor on X. We define the χ -volume of (D, g) as

v̂olχ (D, g) := lim sup
n→+∞

d̂eg(H0(nD), ‖·‖ng)

n2/2
.

This invariant is similar to the χ-volume function in the number field setting introduced

in [29]. Note that, if deg(D) < 0, then H0(D) = {0}, so that H0(nD) = {0} for all n ∈ Z>0.

Indeed, if f ∈ H0(D) \ {0}, then 0 � deg(D + (f )) = deg(D) < 0, which is a contradiction.

Hence, v̂olχ (D, g) = 0.

The following two propositions are easily proved by using the definition of v̂olχ
(left as an exercise to the reader).
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Proposition 5.13. Let D be an R-divisor on X, and g and g′ be Green functions of D. If

g � g′, then v̂olχ (D, g) � v̂olχ (D, g′).

Proposition 5.14. Let (D, g) be a metrised R-divisor such that deg(D) � 0. For any

c ∈ R, one has

v̂olχ (D, g+ c) = 2c deg(D)+ v̂olχ (D, g). (5.14)

Definition 5.15. Let (D, g) be a metrised R-divisor such that deg(D) > 0. We denote by

(D, g)×R the set of s ∈ (D)×R such that ‖s‖g < 1. Similarly, we denote by (D, g)×Q the set

of s ∈ (D)×Q such that ‖s‖g < 1. For any t ∈ R such that t < λess(D, g), we let Dg,t be the

R-divisor

sup
s∈(D, g−t)×Q

(s−1).

For sufficiently negative number t such that ‖s‖g < e−t for any s ∈ (D)×R , one has

(D, g− t)×Q = (D)×Q

and hence, by Proposition 4.10, Dg,t = D. If t � λess(D, g), by convention we let Dg,t be

the zero R-divisor.

Proposition 5.16. Let (D, g) be a metrised R-divisor such that deg(D) > 0, and t ∈ R

such that t < λess(D, g). Let

Vt
• (D, g) :=

⊕
n∈N

{s ∈ H0(nD) : ‖s‖ng < e−tn}Tn ⊆ K[T].

Then one has

lim
n→+∞

dimk(Vt
n(D, g))

n
= deg(Dg,t) > 0. (5.15)

Proof. By Proposition 4.16, it suffices to show that the graded linear series Vt
• (D, g)

is birational (see Definition 4.12). As deg(D) > 0, there exists m ∈ N�1 such that

k(H0(mD)) = Rat(X) (see Example 4.13 and Proposition 4.14). Note that the norm ‖·‖mg

is a bounded function on H0(mD). In fact, if (si)
rm
i=1 is a basis of H0(kmD), as the norm

‖·‖mg is ultrametric, for any (λi)
rm
i=1 ∈ krm , one has

‖λ1s1 + · · · + λrm
srm

‖mg � max
i∈{1,...,rm}

‖si‖mg.
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We choose ε > 0 such that t + ε < λess(D, g). By (5.7) we obtain that there exist n ∈ N�1

and s ∈ H0(nD) such that ‖s‖ng � e−n(t+ε). Let d be a positive integer such that

d >
1

nε

(
tm+ max

i∈{1,...,rm}
ln‖si‖mg

)
.

Then, for any s′ ∈ H0(mD), one has

‖sds′‖(dn+m)g < e−(dn+m)t,

which means that sds′ ∈ Vt
dn+m(D, g). Therefore, we obtain k(Vt

dn+m(D, g)) = Rat(X) since

it contains k(H0(mD)). The graded linear series Vt
• (D, g) is thus birational and (5.15) is

proved. �

Theorem 5.17. Let (D, g) be a metrised R-divisor such that deg(D) > 0. Let P(D,g) be

the Borel probability measure on R such that

P(D,g)(]t,+∞[) = deg(Dg,t) (5.16)

for t < λess(D, g) and P(D,g)(]t,+∞[) = 0 for t � λess(D, g). Then one has

v̂olχ (D, g)

2 deg(D)
=

∫
R

tP(D,g)(dt). (5.17)

Proof. For any n ∈ N, let Pn be the Borel probability measure on R such that

Pn(]t,+∞[) = dimk(Vt
n(D, g))

dimk(H0(nD))

for t < λess(D, g) and Pn(]t,+∞[) = 0 for t � λess(D, g). By Propositions 5.16 and 4.9, one

has

∀ t ∈ R, lim
n→+∞Pn(]t,+∞[) = P(D,g)(]t,+∞[).

Therefore, the sequence of probability measures (Pn)n∈N converges weakly to P. More-

over, if we write g as gD+ϕg, where ϕg is a continuous function on Xan, then the supports
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of the probability measures Pn are contained in [inf ϕg, g(η0)]. Therefore, one has

lim
n→+∞

∫
R

tPn(dt) =
∫
R

tP(D,g)(dt).

By (5.3), for any n ∈ N�1 such that H0(nD) �= {0}, one has

∫
R

tPn(dt) = d̂eg(H0(nD), ‖·‖ng)

dimk(H0(nD))
.

Therefore, we obtain (5.17). �

Remark 5.18. Theorem 5.17 and Proposition 4.9 show that the sequence defining the

χ-volume function has a limit. More precisely, if (D, g) is a metrised R-divisor such that

deg(D) > 0, then one has

v̂olχ (D, g) = lim
n→+∞

d̂eg(H0(nD), ‖·‖ng)

n2/2
.

Definition 5.19. Let (D, g) be a metrised R-Cartier divisor on X such that deg(D) > 0.

We denote by G(D,g) : [0, deg(D)] → R the function sending u ∈ [0, deg(D)] to

sup{t ∈ R<g(η) : deg(Dg,t) > u}.

For any t < g(η0) one has

P(D,g)(]G(D,g)(λ),+∞[) =
deg(Dg,G(D,g)(λ))

deg(D)
,

namely, the probability measure P(D,g) coincides with the direct image of the uniform

distribution on [0, deg(D)] by the map G(D,g).

Proposition 5.20. Let (D, g) be a metrised R-divisor such that deg(D) > 0. For any t ∈ R

such that t < λess(D, g), one has

Dg,t = sup
s∈(D, g−t)×R

(s−1). (5.18)

Proof. Since deg(D) > 0, the set (D)×Q is not empty. Let φ ∈ (D)×Q and (D′, g′) =
(D, g) + (̂φ). By (5.9), one has λess(D, g) = λess(D

′, g′). Moreover, the correspondence
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s �→ s · φ−1 defines a bijection from (D, g − t)×K to (D′, g′ − t)×K for K = Q or

R. Therefore, without loss of generality, we may assume that D is effective. More-

over, by replacing g by g − t and t by 0 we may assume that λess(D, g) > 0 and

t = 0.

It suffices to check that Dg,0 � (s−1) for any s ∈ (D, g)×R . We write s as sa1
1 · · · sar

r ,

where s1, . . . , sr are elements of Rat(X)×Q, and a1, . . . , ar are positive real numbers which

are linearly independent over Q. Assume that Supp((s)) = {x1, . . . , xn}. By Lemma 5.9, for

any i ∈ {1, . . . , r}, the support of (si) is contained in {x1, . . . , xn}. For any j ∈ {1, . . . , n}, one

has

ordxj
(D)+

r∑
i=1

ordxj
(si)ai � 0.

By Lemma 5.10 and Remark 5.11, there exists a sequence of vectors

a(m) = (a(m)
1 , . . . , a(m)

r ), m ∈ N

in Qr such that

ordxj
(D)+

r∑
i=1

ordxj
(si)a

(m)

i � 0 (5.19)

and

lim
m→+∞a(m) = (a1, . . . , ar). (5.20)

For any m ∈ N, let

s(m) = s
a(m)

1
1 · · · sa(m)

r
r .

By (5.19) one has s(m) ∈ (D)×Q. Moreover, by (5.20) and the fact that ‖s‖g < 1, for

sufficiently positive m, one has ‖s(m)‖g < 1 and hence Dg,0 � ((s(m))−1). By taking the

limit when m →+∞, we obtain Dg,0 � (s−1). �

Corollary 5.21. Let (D, g) be a metrised R-Cartier divisor such that deg(D) > 0. For any

a > 0 one has

v̂olχ (aD, ag) = a2 v̂olχ (D, g).

Proof. Let M be a sufficiently positive real number such that Dg,−M = D. By

Proposition 5.20 one has

(aD)ag,at = aDg,t.
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By (5.17) and integration by parts one has

v̂olχ (aD, ag) = −2 deg(aD)

∫ λess(D,g)

−M
at d deg((aD)ag,at)

= 2
∫ λess(D,g)

−M
deg((aD)ag,at) dat+ 2aM deg(aD)

= 2a2
∫ λess(D,g)

−M
deg(Dg,t) dt+ 2a2M deg(D) = a2 v̂olχ (D, g).

�

Theorem 5.22. Let (D1, g1) and (D2, g2) be metrised R-Cartier divisors such that

deg(D1) > 0 and deg(D2) > 0. One has

v̂olχ (D1 + D2, g1 + g2)

deg(D1)+ deg(D2)
�

v̂olχ (D1, g1)

deg(D1)
+ v̂olχ (D2, g2)

deg(D2)

Proof. Let t1 and t2 be real numbers such that t1 < λess(D1, g2) and t2 < λess(D2, g2).

For all s1 ∈ (D1, g1 − t1)×R and s2 ∈ (D2, g2 − t2)×R one has

s1s2 ∈ (D1 + D2, g1 + g2 − t1 − t2)×R .

Therefore, by Proposition 5.20 one has

(D1 + D2)g1+g2,t1+t2
� (D1)g1,t1

+ (D2)g2,t2
. (5.21)

As a consequence, for any (λ1, λ2) ∈ [0, deg(D1)]× [0, deg(D2)], one has

G(D1+D2,g1+g2)(λ1 + λ2) � G(D1,g1)(λ1)+ G(D2,g2)(λ2). (5.22)

Let U be a random variable that follows the uniform distribution on [0, deg(D1)]. Let

f : [0, deg(D1)] → [0, deg(D2)] be the linear map sending u to u deg(D2)/ deg(D1). By

Theorem 5.17 one has

v̂olχ (D1 + D2, g1 + g2)

2(deg(D1)+ deg(D2))
= E[G(D1+D2,g1+g2)(U + f (U))]

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/7/5473/6527302 by Institut d'astrophysique de Paris user on 17 August 2024



Arakelov Theory 5507

since U + f (U) follows the uniform distribution on [0, deg(D1) + deg(D2)]. By (5.22) we

obtain

v̂olχ (D1 + D2, g1 + g2)

2(deg(D1)+ deg(D2))
� E[G(D1,g1)(U)]+ E[G(D2,g2)(f (U))]

�
v̂olχ (D1, g1)

2 deg(D1)
+ v̂olχ (D2, g2)

2 deg(D2)
.

The theorem is thus proved. �

Finally, let us consider other properties of v̂olχ (·). First of all, it is easy to see

the following (left as an exercise to the reader).

Proposition 5.23. Let D be an R-divisor on X such that deg(D) � 0, and g and g′ be

Green functions of D. Then one has the following:

(1) 2 deg(D) min
ξ∈Xan

{ϕg(ξ)} � v̂olχ (D, g) � 2 deg(D) max
ξ∈Xan

{ϕg(ξ)}.
(2) |v̂olχ (D, g)− v̂olχ (D, g′)| � 2‖ϕg − ϕg′ ‖sup deg(D).

(3) If deg(D) = 0, then v̂olχ (D, g) = 0.

Next let us consider the continuity of v̂olχ .

Proposition 5.24. Let V be a finite-dimensional vector subspace of D̂ivR(X). Then

v̂olχ (·) is continuous on V.

Proof. We denote by V+ the subset of those (D, g) such that deg(D) > 0. The function

V+ → R given by (D, g) �→ v̂olχ (D, g)/ deg(D) is concave by Corollary 5.21 and Theorem

5.22, and hence it is continuous on V+.

We fix (D, g) ∈ V. If deg(D) < 0, then there exists a neighbourhood U of (D, g) in

V such that deg(D′) < 0 for any (D′, g′) ∈ U. Hence, v̂olχ (·) vanishes on U. If deg(D) > 0,

then the above observation shows the continuity at (D, g), so that we may assume that

deg(D) = 0. Then, by (3) of Proposition 5.23, v̂olχ (D, g) = 0. Therefore, it is sufficient to

show that

lim
(ε1,n,...,εr,n)→(0,...,0)

v̂olχ (ε1,n(D1, g1)+ · · · + εr,n(Dr, gr)+ (D, g)) = 0,
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where (D1, g1), . . . , (Dr, gr) ∈ V. By using (1) of Proposition 5.23,

|v̂olχ (ε1,n(D1, g1)+ · · · + εr,n(Dr, gr)+ (D, g))|
� 2‖ε1,nϕg1

+ · · · + εr,nϕgr
+ ϕg‖sup deg(ε1,nD1 + · · · + εr,nDr + D)

On the other hand, note that⎧⎪⎪⎨⎪⎪⎩
lim

(ε1,n,...,εr,n)→(0,...,0)
‖ε1,nϕg1

+ · · · + εr,nϕgr
+ ϕg‖sup = ‖ϕg‖sup,

lim
(ε1,n,...,εr,n)→(0,...,0)

deg(ε1,nD1 + · · · + εr,nDr + D) = deg(D) = 0.

Thus, the assertion follows. �

5.5 Volume function

Let (D, g) be a metrised R-divisor on X. We define the volume of (D, g) as

v̂ol(D, g) := lim sup
n→+∞

d̂eg+(nD, ng)

n2/2
.

Note that this function is analogous to the arithmetic volume function introduced

in [23].

Proposition 5.25. Let (D, g) be a metrised R-divisor such that deg(D) > 0. Let P(D,g) be

the Borel probability measure on R defined in Theorem 5.17. Then one has

v̂ol(D, g)

2 deg(D)
=

∫
R

max{t, 0}P(D,g)(dt), (5.23)

v̂ol(D, g) =
∫ +∞

0
deg(Dg,t) dt. (5.24)

Proof. We keep the notation introduced in the proof of Theorem 5.17. By (5.4), for any

n ∈ N�1 one has

d̂eg+(H0(nD), ‖·‖ng)

dimk(H0(nD))
=

∫
R

max{t, 0}Pn(dt).

By passing to limit when n → +∞, we obtain the 1st equality. The 2nd equality comes

from the 1st one and (5.16) by integration by part. �
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6 Positivity

The purpose of this section is to discuss several positivity conditions of metrised

R-divisors. We fix in this section a field k equipped with the trivial absolute value | · |
and a regular integral projective curve X over Spec k.

6.1 Bigness and pseudo-effectivity

Let (D, g) be a metrised R-divisor on X. If v̂ol(D, g) > 0, we say that (D, g) is big; if for

any big metrised R-divisor (D0, g0) on X, the metrised R-divisor (D + D0, g + g0) is big,

we say that (D, g) is pseudo-effective.

Remark 6.1. Let (D, g) be a metrised R-divisor. Let n ∈ N, n � 1. If H0(nD) �= {0}, then

(D)×Q is not empty. Moreover, for any non-zero element s ∈ H0(nD), one has

− ln‖s‖g � nλess(D, g)

by (5.7) and (5.6) and Proposition 5.8. In particular, one has

d̂eg+(H0(nD), ‖·‖ng) � n max{λess(D, g), 0}dimk(H0(nD)).

Therefore, if v̂ol(D, g) > 0, then one has deg(D) > 0 and λess(D, g) > 0. Moreover, in the

case where (D, g) is big, one has

v̂ol(D, g)

2 deg(D)
� λess(D, g). (6.1)

Proposition 6.2. Let (D, g) be a metrised divisor on X. The following assertions are

equivalent:

(1) (D, g) is big.

(2) deg(D) > 0 and λess(D, g) > 0

(3) deg(D) > 0 and there exists s ∈ (D)×R such that ‖s‖g < 1.

(4) deg(D) > 0 and there exists s ∈ (D)×Q such that ‖s‖g < 1.

Proof. “(1)⇔ (2)” We have seen in the above Remark that, if (D, g) is big, then deg(D) > 0

and λess(D, g) > 0. The converse comes from the equality

v̂ol(D, g) =
∫ +∞

0
deg(Dg,t) dt
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5510 H. Chen and A. Moriwaki

proved in Proposition 5.25. Note that the function t �→ deg(Dg,t) is decreasing. Moreover,

by Proposition 5.16, one has deg(Dg,t) > 0 once t < λess(D, g). Therefore, if λess(D, g) > 0,

then v̂ol(D, g) > 0.

“(2)⇔(3)” comes from the definition of λess(D, g).

“(2)⇔(4)” comes from Proposition 5.12. �

Corollary 6.3.

(1) If (D, g) is a big metrised R-divisor on X, then, for any positive real number

ε, the metrised R-divisor ε(D, g) = (εD, εg) is big.

(2) If (D1, g1) and (D2, g2) are two metrised R-divisor on X, which are big, then

(D1 + D2, g1 + g2) is also big.

Proof. The 1st assertion follows from Proposition 6.2 and the equalities deg(εD) =
ε deg(D) and λess(ε(D, g)) = ελess(D, g).

We then prove the 2nd assertion. Since (D1, g1) and (D2, g2) are big, one has

deg(D1) > 0, deg(D2) > 0, λess(D1, g1) > 0, λess(D2, g2) > 0. Therefore, deg(D1 + D2) =
deg(D1)+ deg(D2) > 0. Moreover, by (5.5) one has

λess(D1 + D2, g1 + g2) � λess(D1, g1)+ λess(D2, g2) > 0.

Therefore, (D1 + D2, g1 + g2) is big. �

Corollary 6.4. Let (D, g) be a metrised R-divisor on X such that deg(D) > 0. Then (D, g)

is pseudo-effective if and only if λess(D, g) � 0.

Proof. Suppose that (D, g) is pseudo-effective. Since deg(D) > 0, by (5.12) there exists

c > 0 such that λess(D, g + c) > 0 (and thus (D, g + c) is big by Proposition 6.2). Hence,

for any ε ∈ ]0, 1[,

(1− ε)(D, g)+ ε(D, g+ c) = (1− ε)
(
(D, g)+ ε

1− ε
(D, g+ c)

)
is big. Therefore,

λess

(
(1− ε)(D, g)+ ε(D, g+ c)

) = λess(D, g+ εc) = λess(D, g)+ εc > 0.

Since ε ∈ ]0, 1[ is arbitrary, we obtain λess(D, g) � 0.
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In the following, we assume that λess(D, g) � 0 and we prove that (D, g) is pseudo-

effective. For any big metrised R-divisor (D1, g1) one has

deg(D+ D1) = deg(D)+ deg(D1) > 0

and, by (5.5),

λess(D+ D1, g+ g1) � λess(D, g)+ λess(D1, g1) > 0.

Therefore, (D+ D1, g+ g1) is big. �

Proposition 6.5. Let (D, g) be a metrised R-divisor on X, which is pseudo-effective.

Then one has deg(D) � 0 and g(η0) � 0.

Proof. Let (D1, g1) be a big metrised R-divisor. For any ε > 0, the metrised R-divisor

(D+ εD1, g+ εg1) is big. Therefore, by Proposition 6.2, one has

deg(D+ εD1) = deg(D)+ ε deg(D1) > 0.

Moreover, by Proposition 6.2, the inequality (5.6), and Proposition 5.8, one has

g(η0)+ εg1(η0) � λess(D+ εD1, g+ εg1) > 0.

Since ε > 0 is arbitrary, we obtain deg(D) � 0 and g(η0) � 0. �

6.2 Criteria of effectivity up to R-linear equivalence

Let (D, g) be a metrised R-divisor on X. We say that (D, g) is effective if D is effective

and g is a non-negative function. We say that two metrised R-divisor are R-linearly

equivalent if there exists an element ϕ ∈ Rat(X)×R such that

(D2, g2) = (D1, g1)+ (̂ϕ).

By Proposition 6.2, if (D, g) is big, then it is R-linearly equivalent to an effective metrised

R-divisor.
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5512 H. Chen and A. Moriwaki

Definition 6.6. Let (D, g) be a metrised R-divisor on X. We denote by μinf(g) the value

∑
x∈X(1)

μinf,x(g)[κ(x) : k] ∈ [−∞,∞[,

where by definition (see Section 3.5)

μinf,x(g) = inf
ξ∈]η0,x0[

g(ξ)

t(ξ)
.

Note that

μinf,x(g) � lim
ξ→x0

g(ξ)

t(ξ)
= ordx(D).

Therefore,

μinf(g) �
∑

x∈X(1)

ordx(D)[κ(x) : k] = deg(D). (6.2)

Moreover, if D1 is an R-divisor and gD1
is the canonical Green function associated with

D1, then one has

∀x ∈ X(1), μinf,x(g+ gD1
) = μinf,x(g)+ ordx(D1) (6.3)

and hence

μinf(g+ gD1
) = μinf(g)+ deg(D1). (6.4)

The invariant μinf(·) is closely related to the effectivity of a metrised R-divisor.

Proposition 6.7. Let (D, g) be a metrised R-divisor. Assume that there exists an element

φ ∈ (D)×R such that g + g(φ) � 0. Then for all but a finite number of x ∈ X(1) one has

μinf,x(g) = 0. Moreover, μinf(g) � 0.

Proof. By (6.3) , for any x ∈ X(1) one has

μinf,x(g+ g(φ)) = μinf,x(g)+ ordx(φ).
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Therefore, for all but a finite number of x ∈ X(1), one has

μinf,x(g) = μinf,x(g+ g(φ)) � 0.

Note that μinf,x(g) � ordx(D) for any x ∈ X(1), and hence μinf,x(g) � 0 for x ∈
X(1) \ Supp(D). We then deduce that μinf,x(g) vanishes for all but finitely many x ∈ X(1).

Moreover, by (6.4) one has

μinf(g) = μinf(g+ g(φ)) � 0.

�

Proposition 6.8. Let (D, g) be a metrised R-divisor on X.

(1) (D, g) is R-linearly equivalent to an effective metrised R-divisor if and only

if there exists s ∈ (D)×R with ‖s‖g � 1.

(2) If (D, g) is R-linearly equivalent to an effective metrised R-divisor, then (D, g)

is pseudo-effective.

(3) Assume that μinf,x(g) � 0 for all but finitely many x ∈ X(1) and μinf(g) > 0,

then (D, g) is R-linearly equivalent to an effective metrised R-divisor.

(4) Assume that μinf,x(g) � 0 for all but finitely many x ∈ X(1), and μinf(g) = 0,

then (D, g) is R-linearly equivalent to an effective metrised R-divisor if and

only if the R-divisor
∑

x∈X(1) μinf,x(g)x is principal.

Proof. (1) Let s be an element of (D)×R , one has

(D, g)+ (̂s) = (D+ (s), g(s) + g).

By definition, D+ (s) is effective. Moreover,

− ln‖s‖g = inf(g(s) + g).

Therefore, ‖s‖g � 1 if and only if g(s) + g � 0.

(2) Since there exists s ∈ (D)×R such that ‖s‖g � 1, one has λess(D, g) � 0

and deg(D) � 0. Let (D1, g1) be a big metrised R-divisor. By Proposition 6.2, one has

deg(D) > 0 and λess(D, g) > 0. Therefore,

deg(D+ D1) = deg(D)+ deg(D1) > 0,
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and, by Proposition 5.6,

λess(D+ D1, g+ g1) � λess(D, g)+ λess(D1, g1) > 0.

Still by Proposition 6.2, we obtain that (D+ D1, g+ g1) is big.

(3) Let S be a finite subset of X(1), which contains Supp(D) and all x ∈ X(1) such

that μinf,x(g) < 0 and satisfies the inequality

∑
x∈S

μinf,x(g)[κ(x) : k] > 0.

Since the R-divisor
∑

x∈S μinf,x(g)x has a positive degree, there exists an element ϕ of

Rat(X)×R such that

ordx(ϕ) �

⎧⎨⎩−μinf,x(g), if x ∈ S,

0, if x ∈ X(1) \ S.
(6.5)

Note that μinf,x(g) � ordx(D) for any x ∈ X(1). Hence, ϕ ∈ (D)×R . Moreover, by (6.5) one

has

g+ g(ϕ) � 0.

Hence, (D, g)+ (̂ϕ) is effective.

(4) Note that μinf,x(g) � ordx(D) = 0 for any x ∈ X(1) \ Supp(D), we obtain that

μinf,x(g) = 0 for all but finitely many x ∈ X(1). Therefore,
∑

x∈X(1) μinf,x(g)x is well defined

as an R-divisor on X.

Assume that the R-divisor
∑

x∈S μinf,x(g)x is principal, namely of the form (ϕ) for

some ϕ ∈ Rat(X)×R . Then the metrised R-divisor

(D, g)− (̂ϕ)

is effective. Conversely, if φ is an element of Rat(X)×R , which is different from

−∑
x∈X(1) μinf,x(g)x, then there exists x ∈ X(1) such that ordx(φ) < −μinf,x(g) since

∑
x∈X(1)

ordx(φ)[κ(x) : k] = −
∑

x∈X(1)

μinf,x(g)[κ(x) : k] = 0.

Therefore, the function g+ g(φ) can not be non-negative. �
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Combining Propositions 6.7 and 6.8, we obtain the following criterion of effec-

tivity up to R-linear equivalence for metrised R-divisors.

Theorem 6.9. Let (D, g) be a metrised R-divisor on X. Then (D, g) is R-linearly

equivalent to an effective metrised R-divisor if and only if μinf,x(g) = 0 for all but finitely

many x ∈ X(1) and one of the following conditions holds:

(a) μinf(g) > 0,

(b)
∑

x∈X(1) μinf,x(g)x is a principal R-divisor on X.

6.3 Criterion of pseudo-effectivity

By using the criteria of effectivity up to R-linear equivalence in the previous subsection,

we prove a numerical criterion of pseudo-effectivity in terms of the invariant μinf(·).

Lemma 6.10. Let (D, g) be a metrised R-divisor. Assume that (D, g + ε) is pseudo-

effective for any ε > 0. Then (D, g) is also pseudo-effective.

Proof. Let (D1, g1) be a big metrised R-divisor. By Proposition 6.2, one has deg(D1) > 0

and λess(D1, g1) > 0. Let ε be a positive number such that ε < λess(D1, g1). By (5.12) one

has

λess(D1, g1 − ε) = λess(D1, g1)− ε > 0.

Hence, (D1, g1 − ε) is big (by Proposition 6.2). Therefore,

(D, g)+ (D1, g1) = (D+ D1, g+ g1) = (D, g+ ε)+ (D1, g1 − ε)

is big. �

Proposition 6.11. A metrised R-divisor (D, g) on X is pseudo-effective if and only if

μinf(g) � 0.

Proof. “⇐�”: For any ε > 0, one has μinf(g + ε) > 0. By Theorem 6.9, (D, g + ε) is

R-linearly equivalent to an effective metrised R-divisor, and hence is pseudo-effective

(see Proposition 6.8 (2)). By Lemma 6.10, we obtain that (D, g) is pseudo-effective.

“�⇒”: We begin with the case where deg(D) > 0. If (D, g) is pseudo-effective,

then by Corollary 6.4, one has λess(D, g) � 0. Hence, (D, g + ε) is big for any ε > 0 (by
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(5.12) and Proposition 6.2). In particular, one has μinf(g + ε) � 0 for any ε > 0. For each

x ∈ X(1), the function (ε > 0) �→ μinf,x(g + ε) is decreasing and bounded from below by

μinf,x(g). Moreover, for any ξ ∈ ]η0, x0[ one has

inf
ε>0

g(ξ)+ ε

t(ξ)
= g(ξ)

t(ξ)

and hence

inf
ε>0

μinf,x(g+ ε) � g(ξ)

t(ξ)
.

Therefore, we obtain

inf
ε>0

μinf,x(g+ ε) = μinf,x(g).

By the monotone convergence theorem we deduce that

μinf(g) = inf
ε>0

μinf(g+ ε) � 0.

We now treat the general case. Let y be a closed point of X. We consider y as an

R-divisor on X and denote it by Dy. Let gy be the canonical Green function associated

with Dy. As Dy is effective and gy � 0, we obtain that (Dy, gy) is effective and hence

pseudo-effective. Therefore, for any δ > 0,

(D, g)+ δ(Dy, gy) = (D+ δDy, g+ δgy)

is pseudo-effective. Moreover, one has deg(D + δDy) > 0. Therefore, by what we have

shown above, one has

μinf(g+ δgy) = μinf(g)+ δ[κ(y) : k] � 0.

Since δ > 0 is arbitrary, one obtains μinf(g) � 0. �

6.4 Positivity of Green functions

Let D be an R-divisor on X such that (D)×R is not empty. For any Green function g of D,

we define a map

g̃ : Xan \ {x0 : x ∈ X(1)} −→ R

as follows. For any ξ ∈ Xan \ {x0 : x ∈ X(1)}, let

g̃(ξ) := sup
s∈(D)×R

(
ln |s|(ξ)− ln‖s‖g

)
. (6.6)
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Proposition 6.12. Let D be an R-divisor on X such that (D)×Q is not empty. For any

ξ ∈ Xan \ {x0 : x ∈ X(1)} one has

g̃(ξ) = sup
s∈(D)×Q

(
ln |s|(ξ)− ln‖s‖g

)
. (6.7)

Proof. Without loss of generality, we may assume that D is effective. For clarifying the

presentation, we denote temporarily by

g̃0(ξ) := sup
s∈(D)×Q

(
ln |s|(ξ)− ln‖s‖g

)
.

Let s be an element of (D)×R , which is written in the form sa1
1 · · · sar

r , where

s1, . . . , sr are elements of Rat(X)×Q and a1, . . . , ar are positive real numbers, which are

linearly independent over Q. Let {x1, . . . , xn} be the support of (s). By Lemma 5.9, for any

i ∈ {1, . . . , r}, the support of (si) is contained in {x1, . . . , xn}. Since s belongs to (D)×Q, for

j ∈ {1, . . . , n}, one has

a1 ordxj
(s1)+ · · · + ar ordxj

(sr)+ ordxj
(D) � 0.

By Lemma 5.10 and Remark 5.11, there exist a sequence (ε(m))m∈N in Q>0 and a sequence

δ(m) = (δ
(m)
1 , . . . , δ(m)

r ), m ∈ N

of elements of Rr
>0, which satisfy the following conditions:

(1) the sequence (ε(m))m∈N converges to 0,

(2) the sequence (δ(m))m∈N converges to (0, . . . , 0), and

(3) if we denote by u(m) the element

s
δ
(m)
1

1 · · · sδ
(m)
r

r

in Rat(X)×R , one has u(m) ∈ (ε(m)D)×R and

s(m) := (su(m))(1+ε(m))−1 ∈ Rat(X)×Q,

and hence it belongs to (D)×Q.
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5518 H. Chen and A. Moriwaki

Note that one has

‖su(m)‖(1+ε(m))g � ‖s‖g · ‖u(m)‖ε(m)g.

Since u(m) ∈ (ε(m)D)×R , one has

− ln‖u(m)‖ε(m) = inf
(
ε(m)g+

r∑
i=1

δ
(m)

i g(si)

)
� ε(m) inf ϕg.

Therefore,

− ln‖s‖g � −(1+ ε(m)) ln‖s(m)‖g − ε(m) inf ϕg.

Thus,

ln |s|(ξ)− ln‖s‖g = (1+ ε(m)) ln |s(m)|(ξ)−
r∑

i=1

δ
(m)

i ln |si|(ξ)− ln‖s‖g

� (1+ ε(m))̃g0(ξ)−
r∑

i=1

δ
(m)

i ln |si|(ξ)− ε(m) inf ϕg.

Taking the limit when m →+∞, we obtain

ln |s|(ξ)− ln‖s‖g � g̃0(ξ).

The proposition is thus proved. �

Proposition 6.13. Let D be an R-divisor on X such that (D)×R is not empty. For any

Green function g of D, the function g̃ extends on Xan to a convex Green function of D,

which is bounded from above by g.

Proof. We first show that g̃ is bounded from above by g. For any s ∈ (D)×R one has

∀ ξ ∈ Xan, − ln‖s‖g = inf(g(s) + g) � g(ξ)− ln |s|(ξ),

so that

∀ ξ ∈ Xan, ln |s|(ξ)− ln‖s‖g � g(ξ).

It remains to check that g̃ extends by continuity to a convex Green function of D.
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We first treat the case where deg(D) = 0. By Remark 4.11 we obtain that (D)×R
contains a unique element s and one has D = −(s). Therefore,

g̃ = ln |s| − ln‖s‖g = gD − ln‖s‖g,

which clearly extends to a convex Green function of D.

In the following, we assume that deg(D) > 0. Let x be an element of X(1). The

function g̃ ◦ ξx|R>0
(see Section 3.1) can be written as

(t ∈ R>0) �−→ sup
s∈(D)×R

−t ordx(s)− ln‖s‖g,

which is the supremum of a family of affine functions on t > 0. Therefore, g̃ ◦ ξx|R>0
is a

convex function on R>0. This expression also shows that, for any s ∈ (D)×R , one has

lim inf
ξ→x0

g̃(ξ)

t(ξ)
� ordx(s−1).

By Proposition 4.10 (see also Remark 4.11), one has

lim inf
ξ→x0

g̃(ξ)

t(ξ)
� sup

s∈(D)×R
ordx(s−1) = ordx(D).

Moreover, since g̃ � g and since g is a Green function of D, one has

lim sup
ξ→x0

g̃(ξ)

t(ξ)
� lim

ξ→x0

g(ξ)

t(ξ)
= ordx(D).

Therefore, one has

lim
ξ→x0

g̃(ξ)

t(ξ)
= ordx(D).

The proposition is thus proved. �

Definition 6.14. Let (D, g) be a metrised R-divisor on X such that (D)×R is not empty.

We call g̃ the plurisubharmonic envelope of the Green function g. In the case where the

equality g = g̃ holds, we say that the Green function g is plurisubharmonic. Note that g̃

is bounded from above by the convex envelope ğ of g.
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5520 H. Chen and A. Moriwaki

Remark 6.15. If we set ϕ = g− g̃, then ϕ is a non-negative continuous function on Xan,

so that, in some sense, the decomposition (D, g) = (D, g̃) + (0, ϕ) gives rise to a Zariski

decomposition of (D, g) on X.

Theorem 6.16. Let (D, g) be a metrised R-Cartier divisor on X such that (D)×R is not

empty. Then g̃(η0) = g(η0) if and only if μinf(g − g(η0)) � 0. Moreover, in the case where

these equivalent conditions are satisfied, g̃ identifies with the convex envelope ğ of g.

Proof. Step 1: We first treat the case where deg(D) = 0. In this case (D)×R contains a

unique element s (with D = −(s)) and one has (see the proof of Proposition 6.13)

g̃ = gD − ln‖s‖g.

Hence,

g̃(η0) = − ln‖s‖g = inf(g(s) + g) = inf ϕg.

Note that g(η0) = ϕg(η0). Therefore, the equality g̃(η0) = g(η0) holds if and only if ϕg

attains its minimal value at η0, or equivalently

∀x ∈ X(1), μinf,x(g− g(η0)) = ordx(g).

In particular, if g̃(η0) = g(η0), then

μinf(g− g(η0)) =
∑

x∈X(1)

ordx(g)[κ(x) : k] = 0.

Conversely, if μinf(g− g(η0)) � 0, then by (6.2) one obtains that

μinf(g− g(η0)) = 0

and the equality μinf,x(g− g(η0)) = ordx(g) holds for any x ∈ X(1). Hence, g̃(η0) = g(η0).

If ϕ is a bounded Green function on Xan, which is bounded from above by ϕg, by

Proposition 2.2 one has

ϕ(ξ) � ϕ(η0) � ϕg(η0) = g(η0)
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for any ξ ∈ Xan. In the case where the inequality g̃(η0) = g(η0) holds, the function

g̃ = gD + g(η0) is the largest convex Green function of D, which is bounded from above

by g, namely the equality g̃ = ğ holds.

Step 2: In the following, we assume that deg(D) > 0. By replacing g by g− g(η0)

it suffices to check that, in the case where g(η0) = 0, the equality g̃(η0) = 0 holds if and

only if μinf(g) � 0. By definition one has

g̃(η0) = sup
s∈(D)×R

(− ln‖s‖g).

Step 2.1: We first assume that g̃(η0) = 0 and show that μinf(g) � 0. Let s be an element

of (D)×R . By definition one has

− ln‖s‖g = inf
ξ∈Xan

(g+ g(s))(ξ).

Let (D1, g1) be a big metrised R-divisor. We fix s1 ∈ (D1)×R such that ‖s1‖g1
< 1 (see

Proposition 6.2 for the existence of s1). Since g̃(η0) = 0, there exists s ∈ (D)×R such that

‖ss1‖g+g1
� ‖s‖g · ‖s1‖g1

< 1.

Therefore, λess(D+D1, g+ g1) > 0 and hence (D+D1, g+ g1) is big (see Proposition 6.2).

We then obtain that (D, g) is pseudo-effective and hence μinf(g) � 0 (see Proposition 6.5).

Step 2.2: We now show that μinf(g) > 0 implies g̃(η0) = 0. For ε > 0, let

Uε := {ξ ∈ Xan : g(ξ) > −ε}.

This is an open subset of Xan, which contains η0. Hence, there exists a finite set X(1)
ε of

closed points of X, which contains the support of D and such that, for any closed point

x of X lying outside of X(1)
ε , one has g|[η0,x0] > −ε. Moreover, for any x ∈ X(1) \ Supp(D)

one has μinf,x(g) � 0 since g is bounded on [η0, x0]. Therefore, the condition μinf(g) > 0

implies that

∑
x∈X(1)

ε

μinf,x(g)[κ(x) : k] > 0. (6.8)

We let sε be an element of Rat(X)×R such that ordx(sε) � −μinf,x(g) for any x ∈ X(1)
ε and

that ordx(sε) � 0 for any x ∈ X(1) \ X(1)
ε . This is possible by the inequality (6.8). In fact,
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5522 H. Chen and A. Moriwaki

the R-divisor

E =
∑

x∈X(1)
ε

μinf,x(g) · x

has a positive degree, and hence (E)×R is not empty. Note that μinf,x(g) � ordx(D) for any

x ∈ X(1). Therefore, D + (sε) is effective. Moreover, for any x ∈ X(1) \ X(1)
ε and ξ ∈ [η0, x0[

one has

(g− ln |sε|)(ξ) � g(ξ) � −ε.

Therefore, we obtain ‖sε‖ � eε since g− ln |sε| � 0 on [η0, x0[ for any x ∈ X(1)
ε . This leads

to g̃(η0) = 0 since ε is arbitrary.

Step 2.3: We assume that μinf(g) > 0 and show that ğ = g̃. By definition, for any x ∈ X(1),

the function g̃ ◦ ξx|R>0
can be written as the supremum of a family of affine functions,

hence it is a convex function on R>0 bounded from above by g. In the following, we fix

a closed point x of X.

Without loss of generality, we may assume that x belongs to X(1)
ε for any ε > 0.

Note that for any ξ ∈ [η0, x0] one has

g̃(ξ) � ln |sε|(ξ)− ln‖sε‖g � μinf,x(g)t(ξ)− ε.

Since ε > 0 is arbitrary, one has g̃(ξ) � μinf,x(g)t(ξ).

Let a and b be real numbers such that at(ξ) + b � g(ξ) for any ξ ∈ [η0, x0[. Then

one has b � 0 since g(η0) = 0. Moreover, one has

a = lim
ξ→x0

at(ξ)+ b

t(ξ)
� lim

ξ→x0

g(ξ)

t(ξ)
= ordx(D).

We will show that at(ξ) + b � g̃(ξ) for any ξ ∈ [η0, x0[. This inequality is trivial when

a � μx(g) since g̃(ξ) � μinf,x(g)t(ξ) and b � 0. In the following, we assume that a > μx(g).

For any ε > 0, we let sa,b
ε be an element of Rat(X)×R such that

ordy(sa,b
ε ) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−a if y = x,

−μinf,y(g) if y ∈ X(1)
ε , y �= x,

0 if y ∈ X(1) \ X(1)
ε .
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This is possible since μinf(g) > 0 and a > μinf,x(g). Note that sa,b
ε belongs to (D)×R .

Moreover, for ξ ∈ [η0, x0[, one has

g(ξ)− ln |sa,b
ε |(ξ) � g(ξ)− at(ξ) � b;

for any y ∈ X(1)
ε \ {x}, one has

g(ξ)− ln |sa,b
ε |(ξ) = g(ξ)− μinf,y(g)t(ξ) � 0;

for any y ∈ X(1) \ Xε, one has g(ξ)− ln |sa,b
ε |(ξ) � g(ξ) � −ε. Therefore, we obtain

− ln‖sa,b
ε ‖ � min{−ε, b}.

As a consequence, for any ξ ∈ [η0, x0[, one has

g̃(ξ) � ln |sa,b
ε |(ξ)− ln‖s‖g = at(ξ)+min{−ε, b}.

Since b � 0 and since ε > 0 is arbitrary, we obtain g̃(ξ) � at(ξ)+ b.

Step 3: In this step, we assume that deg(D) > 0 and μinf(g − g(η0)) = 0. We show that

and ğ = g̃. Without loss of generality, we assume that g(η0) = 0. Since

deg(D) =
∑

x∈X(1)

μx(g)[κ(x) : k] > 0,

there exists y ∈ X(1) such that

μinf,y(g) < ordx(D) = μy(g).

We let g0 be the bounded Green function on T (X(1)) such that g0(ξ) = 0 for

ξ ∈
⋃

x∈X(1), x �=y

[ξ0, x0],

and

g0(ξ) = min{t(ξ), 1}, for ξ ∈ [η0, y0].
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One has g0 � 0, and

sup
ξ∈X(1)

g0(ξ) � 1.

For any ε > 0, we denote by gε the Green function g+ εg0. One has

μinf,x(gε) > μinf,x(g) � 0.

Moreover, by definition gε(η0) = 0. Therefore, by what we have shown in Step 2.2, one

has

g̃ε(η0) = sup
s∈(D)×R

(− ln‖s‖gε

) = 0.

Note that for any s ∈ (D)×R one has

eε‖s‖gε
� ‖s‖g � ‖s‖gε

.

Hence, we obtain

g̃ε − ε � g̃ � g̃ε.

Since g̃ε(η0) = 0 for any ε > 0, we obtain g̃(η0) = 0. Finally, the inequalities

gε − ε � g � gε

lead to

ğε − ε � ğ � ğε.

By what we have shown in Step 2.3, one has g̃ε = ğε for any ε > 0. Therefore, the equality

g̃ = ğ holds. �

Corollary 6.17. Let (D, g) be a metrised R-divisor on X such that (D)×R �= ∅. Then g is

plurisubharmonic if and only if it is convex and μinf(g− g(η0)) � 0.

6.5 Global positivity conditions under metric positivity

Let X be a regular projective curve over Speck and (D, g) be a metrised R-divisor. In

this section, we consider global positivity conditions under the hypothesis that g is

plurisubharmonic.

Proposition 6.18. Let (D, g) be a metrised R-divisor such that (D)×R is not empty and

that the Green function g is plurisubharmonic.
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(1) (D, g) is pseudo-effective if and only if g(η0) � 0.

(2) One has λess(D, g) = g(η0).

(3) The metrised R-divisor (D, g) is big if and only if deg(D) > 0 and g(η0) > 0.

Proof. (1) We have already seen in Proposition 6.5 that, if (D, g) is pseudo-effective,

then g(η0) � 0. It suffices to prove that g(η0) � 0 implies that (D, g) is pseudo-effective.

Since g is plurisubharmonic, by Theorem 6.16 one has

μinf(g) � μinf(g− g(η0)) � 0.

By Proposition 6.11, one obtains that (D, g) is pseudo-effective

(2) By (5.6) and Proposition 5.8, it suffices to prove that g(η0) � λess(D, g).

In the case where deg(D) = 0, the hypotheses that (D)×R is not empty and g is

plurisubharmonic imply that D is a principal R-divisor, (D)×R contains a unique element

s with D = −(s), and g − g(η0) is the canonical Green function of D (see the 1st step of

the proof of Theorem 6.16). Therefore, one has

λess(D, g) = − ln‖s‖g = g(η0).

In the following we treat the case where deg(D) > 0. Since g is plurisubharmonic, by

Theorem 6.16 one has μinf(g − g(η0)) � 0, so that (D, g − g(η0)) is pseudo-effective (see

Proposition 6.11). As deg(D) > 0, by Corollary 6.4 and (5.12), one has

λess(g− g(η0)) = λess(g)− g(η0) � 0.

(3) Follows from (2) and Proposition 6.2. �

7 Hilbert–Samuel Formula on Curves

Let k be a field equipped with the trivial valuation. Let X be a regular and irreducible

projective curve over k. The purpose of this section is to prove a Hilbert–Samuel formula

for metrised R-divisors on X.

Definition 7.1. We identify Xan with the infinite tree T (X(1)) and consider the weight

function w : X(1) → ]0,+∞[ defined as w(x) = [κ(x) : k]. If D1 = (D1, g1) and D2 = (D2, g2)

are metrised R-divisors on X such that g1 and g2 are both pairable (see Definition 3.8)
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we define (D1 · D2) as the pairing 〈g1, g2〉w, namely

(D1 · D2) = g2(η0) deg(D1)+ g1(η0) deg(D2)

−
∑

x∈X(1)

[κ(x) : k]
∫ +∞

0
ϕ′g1◦ξx

(t)ϕ′g2◦ξx
(t) dt.

(7.1)

Remark 7.2. We compare the above construction to the arithmetic intersection

product in the classic form. We assume that g1 is plurisubharmonic. Denote by

hD1
(D2) :=

∑
x∈X(1)

[κ(x) : k]ϕg1
(x0) ordx(D2).

This term should be considered as the logarithmic height of the R-divisor with respect

to D1 (see Remark 5.7). By Proposition 2.3, we can rewrite (D1 · D2) as (see Convention

3.9 for the notation of ϕ′g1
(η0; x))

g2(η0) deg(D1)+ g1(η0) deg(D2)+
∑

x∈X(1)

[κ(x) : k]g2(η0)ϕ′g1
(η0; x)

+
∑

x∈X(1)

[κ(x) : k]
∫ +∞

0
ϕg2◦ξx

(t) dϕ′g1◦ξx
(t)

= hD1
(D2)+

∑
x∈X(1)

[κ(x) : k] ordx(D2)(ϕg1
(η0)− ϕg1

(x0))

+
∑

x∈X(1)

[κ(x) : k]
(∫ +∞

0
ϕg2

◦ ξx(t) dϕ′g1◦ξx
(t)+

∫ +∞

0
g2(η0)ϕ′g1

(η0; x)

)

= hD1
(D2)+

∫
Xan

g2(ξ)

(
γg1

(dξ)+
∑

x∈X(1)

[κ(x) : k]ϕ′g1
(η0; x)δη0

)
,

where on ]η0, x0] the measure γg1
identifies with the push-forward of dϕ′g1◦ξx

by ξx, and

in the 2nd equality we have applied the equality (see Proposition 2.4)

ϕg1
(η0)− ϕg1

(x0) =
∫ +∞

0
t dϕ′g1◦ξx

(t).

The measure

γg1
(dξ)+

∑
x∈X(1)

[κ(x) : k]ϕ′g1
(η0; x)δη0

should be considered as the Monge–Ampère measure of (D1, g1).
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Remark 7.3. Assume that s is an element of Rat(X)×R such that

D2 = (̂s) = ((s), g(s)).

One has (see Definition 3.8)

(D1, D2) = 〈g1, g(s)〉w = g1(η0) deg((s)) = 0.

Theorem 7.4. Let D = (D, g) be a metrised R-divisor on X such that (D)×R �= ∅ and g is

plurisubharmonic. Then v̂olχ (D) = (D · D).

Remark 7.5. Let gD be the canonical Green function of D and ϕg := g− gD (considered

as a continuous function on Xan). Note that a plurisubharmonic Green function is convex

(see Proposition 6.13). Therefore, by Proposition 3.12, one has

μinf,x(g− g(η0)) = ordx(D)+ ϕ′g(η0; x).

Theorem 6.16 shows that

μinf(g− g(η0)) = deg(D)+
∑

x∈X(1)

ϕ′g(η0; x)[κ(x) : k] � 0. (7.2)

In the case where deg(D) = 0, one has g = g(η0)+ gD (see Step 1 in the proof of Theorem

6.16). Therefore, one has

(D · D) = 2g(η0) deg(D) = 0 = v̂olχ (D),

where the last equality comes from (3) of Proposition 5.23. Therefore, to prove Theorem

7.4, it suffices to treat the case where deg(D) > 0.

Assumption 7.6. Let � be the set consisting of closed points x of X such that ϕg is

not a constant function on [η0, x0]. Note that � is countable by Proposition 3.6. Here we

consider additional assumptions (i)–(iv):

(i) D is a divisor.

(ii) � is finite.

(iii) ϕg(η0) = 0.

(iv) μinf(g− g(η0)) � 0.
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These assumptions actually describe a special case of the setting of the above

theorem, but it is an essential case because the theorem in general is a consequence of

its assertion under these assumptions by using the continuity of v̂olχ (·). Before starting

the proof of Theorem 7.4 under the above assumptions, we need to prepare several facts.

For a moment, we proceed with arguments under Assumption 7.6. Let L = OX(D) and h

be the continuous metric of L given by exp(−ϕg). For x ∈ �, let

ax := ϕ′g(η0; x) and ϕ′x := ϕ′g◦ξx
.

For x ∈ � and n ∈ N�1, we set ax,n = �−nax�. One has

ax,n � −nax < ax,n + 1 and lim
n→∞

ax,n

n
= −ax.

Moreover, as

∑
x∈�

ax[κ(x) : k]+ deg(L) > 0

by our assumptions, there exists n0 ∈ N�1 such that

2(genus(X)− 1)+∑
x∈� ax,n[κ(x) : k]+∑

x∈� [κ(x) : k]

n

� 2(genus(X)− 1)+∑
x∈� [κ(x) : k]

n
−

∑
x∈�

ax[κ(x) : k] < deg(L)

holds for any integer n � n0, that is,

∀n ∈ N�n0
, 2(genus(X)− 1)+

∑
x∈�

(ax,n + 1)[κ(x) : k] < n deg(L). (7.3)

We set

Dn =
∑
x∈�

(ax,n + 1)x and Dx,n = Dn − (ax,n + 1)x.
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Note that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H0(X, nL⊗OX(−Dn)) = {s ∈ H0(X, nL) : ordx(s) � ax,n + 1 (∀x ∈ �)},

H0(X, nL⊗OX(−Dx,n − ix))

=
{
s ∈ H0(X, nL) : ordy(s) � ay,n + 1 (∀y ∈ � \ {x}) and ordx(s) � i

}
Lemma 7.7. For any integer n such that n � 0, the following assertions hold.

(1)
∑

x∈� H0(X, nL⊗OX(−Dx,n)) = H0(X, nL).

(2) One has

H0(X, nL)/H0(X, nL⊗OX(−Dn))

=
⊕
x∈�

H0(X, nL⊗OX(−Dx,n))/H0(X, nL⊗OX(−Dn))

Proof. (1) Let us consider a natural homomorphism

⊕
x∈�

nL⊗OX(−Dx,n) → nL.

Note that the above homomorphism is surjective and the kernel is isomorphic to (nL ⊗
OX(−Dn))⊕ card(�)−1. Moreover, by Serre’s duality,

H1(X, nL⊗OX(−Dn)) � H0(X, ωX ⊗−nL⊗OX(Dn))∨

and

deg(ωX ⊗−nL⊗OX(Dn))

= 2(genus(X)− 1)− n deg(L)+
∑
x∈�

(ax,n + 1)[κ(x) : k] < 0,

so that H1(X, nL⊗OX(−Dn)) = 0. Therefore, one has (1).

(2) By (1), it is sufficient to see that if

∑
x∈�

sx ∈ H0(X, nL⊗OX(−Dn))
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and

∀x ∈ �, sx ∈ H0(X, nL⊗OX(−Dx,n)),

then

sx ∈ H0(X, nL⊗OX(−Dn))

for all x ∈ �. Indeed, as

∀y ∈ � \ {x}, sy ∈ H0(X,OX(−(ax,n + 1)x))

and ∑
y∈�

sy ∈ H0(X,OX(−(ax,n + 1)x)),

we obtain

sx ∈ H0(X,OX(−(ax,n + 1)x)),

so that sx ∈ H0(X,OX(−Dn)), as required. �

Lemma 7.8. For x ∈ � and i ∈ {0, . . . , ax,n},

dimk

(
H0(X, nL⊗OX(−Dx,n − ix))/H0(X, nL⊗OX(−Dx,n − (i+ 1)x))

)
= [κ(x) : k].

Proof. Let us consider an exact sequence

0 → nL⊗OX(−Dx,n − (i+ 1)x) → nL⊗OX(−Dx,n − ix) → κ(x) → 0,

so that, since

deg(ωX ⊗−nL⊗OX(Dx,n + (i+ 1)x))

= 2(genus(X)− 1)− n deg(L)+ (
(i+ 1)− (ax,n + 1)

)
[κ(x) : k]

+
∑
y∈�

(ay,n + 1)[κ(y) : k]

� 2(genus(X)− 1)− n deg(L)+
∑
y∈�

(ay,n + 1)[κ(y) : k] < 0,

one has the assertion as before. �
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By Lemma 7.8, for each x ∈ �, there are

s(�)
x,0, . . . , s(�)

x,ax,n ∈ H0(X, nL⊗OX(−Dx,n)), � ∈ {1, . . . , [κ(x) : k]}

such that the classes of s(�)
x,0, . . . , s(�)

x,ax,n form a basis of

H0(X, nL⊗OX(−Dx,n))/H0(X, nL⊗OX(−Dn))

and

s(�)

x,i ∈ H0(X, nL⊗OX(−Dx,n − ix)) \ H0(X, nL⊗OX(−Dx,n − (i+ 1)x))

whose classes form a basis of

H0(X, nL⊗OX(−Dx,n − ix))/H0(X, nL⊗OX(−Dx,n − (i+ 1)x))

for i = 0, . . . , ax,n. Moreover, we choose a basis {t1, . . . , ten
} of H0(X, nL⊗OX(−Dn)). Then,

by Lemma 7.7,

�n := {t1, . . . , ten
} ∪

⋃
x∈�

{
s(�)

x,0, . . . , s(�)
x,ax,n : � ∈ {1, . . . , [κ(x) : k]}}

forms a basis of H0(X, nL).

Lemma 7.9.

(1) The equality

‖s(�)

x,i‖nh = exp(−nϕ∗x(i/n))

holds for x ∈ �, � ∈ {1, . . . , [κ(x) : k]} and i ∈ {0, . . . , ax,n}. Moreover, ‖tj‖nh = 1

for all j ∈ {1, . . . , en}.
(2) The basis �n of H0(X, nL) is orthogonal with respect to ‖.‖nh.

Proof. First of all, note that, for s ∈ H0(X, nL) \ {0} and ξ ∈ Xan,

− ln |s|nh(ξ) =
⎧⎨⎩t(ξ) ordx(s) ≥ 0 if ξ ∈ [η0, x0] and x �∈ �,

n
(
t(ξ)(ordx(s)/n)+ ϕx(t(ξ))

)
if ξ ∈ [η0, x0] and x ∈ �,
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so that

‖s‖nh = max
{

1, max
x∈�

{exp(−nϕ∗x(ordx(s)/n))}
}

. (7.4)

(1) The assertion follows from (7.4) because ϕ∗x(λ) = 0 if λ � −ax.

(2) Fix s ∈ H0(X, nL) \ {0}. We set

s = b1t1 + · · · + ben
ten

+
∑
x∈�

ax,n∑
i=0

[κ(x):k]∑
�=1

c(�)

x,is
(�)

x,i.

If s ∈ H0(X, nL⊗OX(−Dn)), then c(�)

x,i = 0 for all x, i and �. Thus,

1 = max
j∈{1,...,en}

{|bj| · ‖tj‖nj} = ‖s‖nh.

Next we assume that s �∈ H0(X, nL⊗OX(−Dn)). If we set

T = {x ∈ � : ordx(s) � ax,n},

then T �= ∅ and, for x ∈ � and � ∈ {1, . . . , [κ(x) : k]},

⎧⎨⎩c(�)
x,0 = · · · = c(�)

x,ax,n = 0 if x �∈ T,

c(�)
x,0 = · · · = c(�)

x,ordx(s)−1 = 0, (c(�)

x,ordx(s))
[κ(x):k]
�=1 �= (0, . . . , 0) if x ∈ T.

Therefore, by (7.4),

max

⎧⎨⎩ max
j=1,...,en

{|bj| · ‖tj‖nh}, max
x∈�,

i=0,...,ax,n

{|cx,i| · ‖sx,i‖nh}
⎫⎬⎭ = max

x∈T, �
{‖s(�)

x,ordx(s)‖nh}

= max
x∈�, �

{‖s(�)

x,ordx(s)‖nh} = max
x∈�

{exp(−nϕ∗x(ordx(s)/n))} = ‖s‖nh,

as required. �
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Let us begin the proof of Theorem 7.4 under Assumption 7.6. By Lemma 7.9

together with Definition 3.8 and Proposition 2.6,

lim
n→∞

d̂eg
(
H0(X, nL), ‖.‖nh

)
n2/2

= 2
∑
x∈�

lim
n→∞[κ(x) : k]

ax,n∑
i=0

1

n
ϕ∗x(i/n)

= 2
∑
x∈�

[κ(x) : k]
∫ −ax

0
ϕ∗x(λ)dλ = −

∑
x∈�

[κ(x) : k]
∫ ∞

0
(ϕ′x)2dt = (D · D),

as required.

Proof of Theorem 7.4 without additional assumptions. First of all, note that � is a

countable set (cf. Proposition 3.6).

Step 1: (the case where D is Cartier divisor, � is finite and ϕ′g(η0)+ deg(D) > 0).

By the previous observation,

v̂olχ (D, g− g(η0)) = (
(D, g− g(η0)) · (D, g− g(η0))

)
.

On the other hand, by Proposition 5.14, one has

v̂olχ (D, g) = v̂olχ (D, g− g(η0))+ 2 deg(D)g(η0).

Moreover, by the bilinearity of the arithmetic intersection pairing, one has

(
D · D) = (

(D, g− g(η0)) · (D, g− g(η0))
)+ 2 deg(D)g(η0).

Thus, the assertion follows.

Step 2: (the case where D is Cartier divisor and � is finite). For 0 < ε < 1, we set

gε = gcan
D + εϕg. If ϕ′g(η0) = 0, then � = ∅, so that the assertion is obvious. Thus, we may

assume that ϕ′g(η0) < 0. As ϕ′g(η0)+ deg(D) � 0, we have εϕ′g(η0)+ deg(D) > 0. Therefore,

by Step 1,

v̂olχ (D, gε) =
(
(D, gε) · (D, gε)

)
.

Thus, the assertion follows by Proposition 5.24.

Step 3: (the case where D is Cartier divisor and � is infinite). We write � in

the form of a sequence {x1, . . . , xn, . . . , }. For any n ∈ Z�1, let gn be the Green function
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defined as follows:

∀ ξ ∈ Xan, gn(ξ) = gD(ξ)+
⎧⎨⎩ϕg(ξ) if ξ ∈⋃n

i=1[η0, xi,0],

g(η0) otherwise.

Note that

lim
n→∞ sup

ξ∈Xan
|ϕgn

(ξ)− ϕg(ξ)| = 0.

Indeed, as ϕg is continuous at η0, for any ε > 0, there is an open set U of Xan such that

η0 ∈ U and |ϕg(ξ) − ϕg(η0)| � ε for any ξ ∈ U. Since η0 ∈ U, one can find N such that

[η0, xn,0] ⊆ U for all n � N. Then, for n � N,

|ϕg(ξ)− ϕgn
(ξ)|

⎧⎨⎩� ε if ξ ∈ [η0, xi,0] for some i > n,

= 0 otherwise,

as required. Thus, by (2) in Proposition 5.23, the assertion is a consequence of Step 2.

Step 4: (the case where D is Q-Cartier divisor). Choose a positive integer a such

that aD is Cartier divisor. Then, by Step 3,

v̂olχ (aD) = (aD · aD) = a2(D · D).

By Corollary 5.21, one has v̂olχ (aD) = a2v̂olχ (D). Hence, the equality

v̂olχ (D) = (D · D)

holds.

Step 5: (general case). By our assumption, there are metrised Q-Cartier divisors

(E1, h1), . . . , (Er, hr) and a1, . . . , ar ∈ R>0 such that E1, . . . , Er are semiample, h1, . . . , hr

are plurisubharmonic, and (D, g) = a1(E1, h1) + · · · + ar(Er, hr). We choose sequences

{a1,n}∞n=1, . . . , {ar,n}∞n=1 of positive rational numbers such that limn→∞ ai,n = ai for

i = 1, . . . , r. We set (Dn, gn) = a1,n(E1, h1) + · · · + ar,n(Er, hr). Then we may assume that

deg(Dn) > 0. By Step 4, then v̂olχ (Dn, gn) = (Dn, gn)2. On the other hand, by Proposition

5.24, v̂olχ (D, g) = limn→∞ v̂olχ (Dn, gn). Moreover,

(
(D, g) · (D, g)

) = lim
n→∞

(
(Dn, gn) · (Dn, gn)

)
.

Thus, the assertion follows. �
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Remark 7.10. Let D1 = (D1, g1) and D2 = (D2, g2) be metrised R-divisors such that

deg(D1) > 0 and deg(D2) > 0. Let D = (D1+D2, g1+g2). If g1 and g2 are plurisubharmoic,

then Theorems 5.22 and 7.4 lead to the following inequality:

(D · D)

deg(D)
� (D1 · D1)

deg(D1)
+ (D2 · D2)

deg(D2)
. (7.5)

This inequality actually holds without plurisubharmonic condition (namely it suffices

that g1 and g2 are pairable). In fact, by (7.1) one has

(Di · Di)

deg(Di)
= 2gi(η0)−

∑
x∈X(1)

[κ(x) : k]

deg(Di)

∫ +∞

0
ϕ′gi◦ξx

(t)2 dt

for i ∈ {1, 2}, and

(D · D)

deg(D)
= 2(g1(η0)+ g2(η0))

−
∑

x∈X(1)

[κ(x) : k]

deg(D1)+ deg(D2)

∫ +∞

0
(ϕ′g1◦ξx

(t)+ ϕ′g2◦ξx
(t))2 dt,

which leads to

(deg(D1)+ deg(D2))

(
(D · D)

deg(D)
− (D1 · D1)

deg(D1)
− (D2 · D2)

deg(D2)

)
=

∑
x∈X(1)

[κ(x) : k]
(

deg(D2)

deg(D1)

∫ +∞

0
ϕ′g1◦ξx

(t)2 dt+ deg(D1)

deg(D2)

∫ +∞

0
ϕ′g2◦ξx

(t)2 dt

− 2
∫ +∞

0
ϕ′g1◦ξx

(t)ϕ′g2◦ξx
(t) dt

)
� 0,

by using Cauchy–Schwarz inequality and the inequality of arithmetic and geometric

means.

The inequality (7.5) leads to

2(D1 · D2) � deg(D2)

deg(D1)
(D1 · D1)+ deg(D1)

deg(D2)
(D2 · D2).
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In the case where (D1 ·D2) and (D2 ·D2) are non-negative, by the inequality of arithmetic

and geometric means, we obtain that

(D1 · D2) �
√

(D1 · D1)(D2 · D2),

where the equality holds if and only if D1 and D2 are proportional up to R-linear equiva-

lence. This could be considered as an analogue of the arithmetic Hodge index inequality

of Faltings [18, Theorem 4] and Hriljac [21, Theorem 3.4], see also [30, Theorem 7.1]

and [4, §5.5].
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