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Abstract
Hilbert’s fourteenth problem studies the finite generation property of the intersection
of an integral algebra of finite type with a subfield of the fraction field of the algebra.
It has a negative answer due to a counterexample of Nagata. We show that a subfinite
version of Hilbert’s fourteenth problem has an affirmative answer. We then establish a
graded analogue of this result, which permits to show that the subfiniteness of graded
linear series does not depend on the function field in which we consider it. Finally, we
apply the subfiniteness result to the study of geometric and arithmetic graded linear
series.

Keywords Hilberts fourteenth problem · Algebra of subfinite type · Graded linear
series · Newton–Okounkov bodies
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1 Introduction

Let k be a field and X be an integral projective scheme over Spec k. If D is a Cartier
divisor on X , as a graded linear series of D, one refers to a graded sub-k-algebra
of

⊕
n∈N H0(X , nD). The graded linear series are closely related to the positivity

of the divisor and are objects of central interest in the study of the geometry of the
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underlying polarised scheme (X , D). Classically the asymptotic behaviour of graded
linear series of finite type is well understood through the theory of Hilbert polynomi-
als. Several results in birational algebraic geometry, such as Fujita’s approximation
theorem [8,28], show that certain graded linear series, even though not of finite type,
still have a similar asymptotic behaviour as in the finite generation case.More recently,
Lazarsfeld–Mustaţă [15] and Kaveh–Khovanskii [12,13] have proposed, after ideas of
Okounkov [24,25], a method to encode the asymptotic behaviour of dimensions of the
homogeneous components of a given graded linear series into a convex body (called
the Newton–Okounkov body) in a Euclidean space.

Note that a graded linear series of a Cartier divisor is always a graded subalgebra of
a graded algebra of finite type. It is then quite natural to ask if there is a nice birational
geometry for algebras of subfinite type (namely subalgebras of an algebra of finite
type) over a field.

From the point of view of birational geometry, it is more convenient to consider
graded linear series of a finitely generated field extension K/k without specifying a
polarisedmodel of K . In this framework, as a graded linear series of K/k, we refer to a
graded sub-k-algebra V• of the polynomial algebra K [T ] such that V0 = k and that Vn

is a finite-dimensional vector space over k for any n ∈ N. In [5], a new construction of
Newton–Okounkov bodies has been proposed by using ideas fromArakelov geometry,
which only depends on a choice of a tower of successive field extensions k = K0 ⊂
K1 ⊂ · · · ⊂ Kd = K such that each extension Ki+1/Ki is transcendental and
of transcendence degree 1. The construction is valid for graded linear series V• of
subfinite type (namely contained in a graded linear series of finite type of K/k) whose
field of rational functions k(V•) coincides with K (see Definition 3.1). More precisely,
the graded linear series V• determines, for any i ∈ {0, . . . , d}, a graded linear series
V•,Ki of K/Ki by extension of scalars. Moreover, if we denote by Ci the regular
projective curve over Spec Ki−1 whose field of rational functions coincides with Ki ,
then V•,Ki−1 generates a graded algebra E (i)

• of vector bundles on Ci , whose generic
fibre coincides with V•,Ki .We then construct by induction a sequence of convex bodies
�(i)(V•) ⊂ R

d−i, i ∈ {0, . . . , d}, such that �(i−1)(V•) is the graph of the concave
transform of the filtration by minima on V•,Ki associated with the graded algebra of
vector bundles E (i)

• (the concave transform here is a concave function defined on the
convex body �(i)(V•)). We refer the readers to [1, Section 2.4] for the construction
of concave transform of the filtration by minima in the number field setting and to [4,
Section 8] for its functionfield analogue.Our alternative version ofNewton–Okounkov
body is given by the convex body�(0)(V•).We emphasise that this construction is quite
different compared to the classic one of Kaveh and Khovanskii which arises from a
Z

d -valuation with one-dimensional leaves on the field K over k (see [13, Section 2.1]
for this notion). See [3] for some explicit computations in the case of a projective
bundle over a curve.

The above alternative construction of Newton–Okounkov body is particularly inter-
esting when the extension K/k is not geometrically integral because in this case there
does not exist a Z

d -valuation with one-dimensional leaves (see Remark 6.3 for more
details). One may expect that the method applies to general graded linear series of
subfinite type V• by considering V• as a graded linear series of k(V•)/k. However, the
main obstruction to this strategy is that a priori the condition of subfiniteness depends
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on the extension K/k with respect to which we consider the graded linear series. This
leads to the following subfiniteness problem: given a graded linear series V• of K/k of
subfinite type, does there exist a graded linear series W• of finite type of the extension
k(V•)/k which contains V•?

Note that the above problem is closely related to Hilbert’s fourteenth problem1.
In fact, given a graded linear series V• of K/k which is contained in a graded linear
series of finite type V ′

• . The intersection of V ′
• with k(V•)[T ] gives a graded linear

series of k(V•)/k containing V•, where k(V•) is the field of rational functions of V•.
Unfortunately the intersection is not necessarily a k-algebra of finite type, as is shown
by Nagata’s counterexamples [22,23] to Hilbert’s fourteenth problem.

Note that the above subfiniteness problem actually asks for a weaker condition
than the finite generation of the intersection of V ′

• with k(V•)[T ]. It suffices that the
intersection is contained in a graded linear series of finite type of k(V•). Similarly, we
can consider the following subfinite version of Hilbert’s fourteenth problem, which
actually has a positive answer (see Theorem 2.6 and Corollary 2.7 infra).

Theorem 1.1 Let k be a field, R be an integral k-algebra of finite type and K be
the fraction field of R. Let K ′ be an extension of k which is contained in K . Then
there exists a finitely generated sub-k-algebra R′ of K ′ containing R ∩ K ′, such that
Frac(R′) = Frac(R ∩ K ′).

The method of proof consists of an induction argument with respect to the field exten-
sion K/k which permits to reduce the problem to the case where the extension K/k
is monogenerated. Similar method can be applied to the graded case (but with more
subtleties because of the grading structure), which leads to the following result and
gives an affirmative answer to the subfiniteness problem of graded linear series. It
shows that the subfiniteness of graded linear series is an absolute condition, which
does not depend on the choice of field extension with respect to which the graded
linear series is considered (see Theorem 3.7 and Corollary 4.9 infra).

Theorem 1.2 Let k be a field and K/k be a finitely generated field extension. Let V•
be a graded linear series of K/k which is of subfinite type. Then there exists a graded
linear series of finite type W• of K/k such that V• ⊂ W• and k(V•) = k(W•).

Recall that Hilbert’s fourteenth problem is reformulated in a geometric setting by
Zariski [29], see also [21] and the survey article [20]. Note that Theorem 1.1 can be
compared with the following result in [29, p. 157].

Theorem 1.3 (Zariski) Let k be a field, A an integrally closed k-algebra of finite type,
K ..= Frac(A), and K ′/k a subextension of K/k. There then exist an integrally closed
k-algebra B of finite type and an ideal I of B such that the fraction field of B is
k-isomorphic to the fraction field of A ∩ K ′ and that

A ∩ K ′ =
⋃

n∈N
(B : I n),

1 Let k be a field and k(x1, . . . , xn) be the field of rational functions of n variables. Hilbert’s fourteenth prob-
lem asked whether the intersection of a subfield of k(x1, . . . , xn) and the polynomial algebra k[x1, . . . , xn ]
is finitely generated over k (as a k-algebra).
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where (B : I n) ..= {x ∈ Frac(B) : x I n ⊂ B } denotes the ideal quotient.

Inspired by this result, we establish the following projective version of Zariski’s the-
orem and deduce an alternative proof for Theorem 1.2 (see Corollary 4.9 infra).

Theorem 1.4 Let K/K ′/k be field extensions of finite type and W• a graded linear
series of K/k that is generated over k by the homogeneous elements of degree 1. We
assume that W1 contains 1 ∈ K and that the projective spectrum P ..= Proj(W•)
is a normal scheme. Let X be any integral normal projective k-scheme whose field
of rational functions is k-isomorphic to k(W• ∩ K ′[T ]). Then there exists a Q-Weil
divisor D on X such that

Wn ∩ K ′ ⊂ H0(X , nD) ⊂ k(W• ∩ K ′[T ])

for every sufficiently positive n.

As an application of the above subfiniteness results, we establish a Fujita approxima-
tion theorem for general graded linear series of subfinite type (see Theorem 6.2 infra)
and an upper bound for the Hilbert–Samuel function of such graded linear series (see
Theorem 6.4 infra). More precisely, we obtain the following results.

Theorem 1.5 Let K/k be a finitely generated field extension. For any graded linear
series V• of K/k of subfinite type, whose Kodaira–Iitaka dimension d is nonnegative,
the limit

vol(V•) = lim
n∈N

Vn �={0}
n→+∞

dimk(Vn)

nd/d!

exists in (0,+∞). Moreover, vol(V•) is equal to the supremum of vol(W•), where W•
runs over the set of all graded linear series of finite type contained in V• having d as
the Kodaira–Iitaka dimension. Finally, there exists a function f : N → R+ such that

f (n) = vol(V•)
nd

d! + O(nd−1)

and that dimk(Vn) � f (n) for any n ∈ N.

In the case where K admits a Z
d -valuation over k with one-dimensional leaves, we

recover a previous result of Kaveh and Khovanskii [13, Corollary 3.11 (2)]. We also
apply the above results to the study of graded linear series in the arithmetic setting
(see Theorem 6.7 infra).

The article is organised as follows. In Sect. 2, we prove a weaker form of Hilbert’s
fourteenth problem; namely the subfiniteness result stated in Theorem 1.1. In Sect. 3,
we prove a graded analogue of Theorem 1.1 in the setting of graded linear series. In
Sect. 4 we consider the subfiniteness problem in the geometric setting as a projective
analogue of Zariski’s result and establish Theorem 1.4. Finally Sect. 5, we develop
various applications.
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Notation and conventions

1. The field of fractions of an integral domain A is denoted by Frac(A).
2. Let K/k be an extension of fields. We denote by tr.degk(K ) the transcendence

degree of K over k.
3. Let S be a scheme. For any i ∈ N, we denote by S(i) the set of points x of S such

that the local ring OS,x has i as its Krull dimension. If S is an integral scheme, we
denote by Rat(S) the field of rational functions on S.

4. Let k be a field and X be a projective normal scheme over Spec k. By a Weil divisor
(resp. Q-Weil divisor) on X , one means an element

D =
∑

V ∈X (1)

nV V

in Z
⊕X (1)

(resp. Q⊕X (1)
). The coefficient nV is referred to as the multiplicity of D

along V , and is denoted by multV (D). If all coefficients nV are nonnegative, we
say that D is effective, denoted by D � 0. If φ is a nonzero rational function on
X , we denote by (φ) the principal Weil divisor associated with φ, namely

(φ) ..=
∑

V ∈X (1)

ordV (φ)V .

The map ( ·) : Rat(X)× → Z
⊕X (1)

is a group homomorphism and induces a Q-
linear map from Rat(X)×⊗ZQ to Q

⊕X (1)
which we denote by ( ·)Q. If D is a

Q-Weil divisor on S, we define

H0(X , D) ..= {
φ ∈ Rat(S)× : D + (φ⊗1)Q � 0

} ∪ {0}

and
R(D)• ..=

⊕

n�0

H0(X , nD)T n.

Note that R(D)• is a graded sub-k-algebra of the polynomial algebra Rat(X)[T ].
5. Let K be a field. A discrete valuation of K means a valuation ν : K → Q∪{+∞}

such that ν(K ×) is a discrete (or, equivalently, cyclic) subgroup of (Q,+) (in
particular, ν(a) = +∞ if and only if a = 0). Given such a valuation ν, we denote
by Oν

..= { f ∈ K : ν( f ) � 0} its valuation ring,mν the maximal ideal of Oν and
κ(ν) ..= Oν/mν the residue field. If Oν is equal to K , we say that the valuation ν

is trivial (note that in this case ν(a) = 0 for any a ∈ K ×).
If K/k is a field extension, a discrete valuation of K over k means a discrete
valuation ν of K such that ν(a) = 0 for any a ∈ k×. In this case κ(ν) is an
extension of k and Oν is a k-algebra. Two discrete valuations ν1 and ν2 of K
over k are said to be equivalent if there exists an order-preserving isomorphism
ι : ν1(K ×) → ν2(K ×) such that ν2 = ι◦ν1.
Let K ′/k be a subextension of K/k and let ν be a discrete valuation of K over k
which is nontrivial. Then the restriction of ν to K ′ is a discrete valuation of K ′ over
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k. We define the ramification index of ν with respect to K ′ as the unique integer
e(K ′,ν) ∈ N satisfying

ν(K ′×) = e(K ′, ν)ν(K ×).

Note that e(K ′, ν) = 0 if and only if ν|K ′ is trivial.
6. Let k be a field and S be an integral separated k-scheme. Given a discrete valuation

ν of Rat(S) over k, we say that a point x of S is the centre of ν in S if

OS,x ⊂ Oν and mx = mν ∩ OS,x ,

where mx denotes the maximal ideal of OS,x . By the valuative criterion of sepa-
ration, if the centre of ν in S exists, then it is unique. In the case where the centre
of ν in S exists, we denote it by cS(ν). If S is proper over k, then by the valuative
criterion of properness every discrete valuation of Rat(S) over k has a centre in S.
A discrete valuation ν is trivial if and only if the centre of ν in S is the generic
point. Moreover, each regular point ξ ∈ S(1) ∪ S(0) defines a discrete valuation
ordξ : Rat(S) → Z ∪ {+∞} whose centre is ξ (see Item 3. for the notation of S(0)

and S(1)).
7. Let R• = ⊕

n∈N Rn be a graded ring. We denote by Proj(R•) the projective
spectrum of R•. If M• is a graded R•-module, we denote by M̃• the quasi-coherent
OProj(R•)-module associatedwith M• (see [9, Section II.2.5]). For anym ∈ N,we let
M(m)• be the N-graded R•-module such that M(m)n = Mn+m for any n ∈ N, and
let M�m be theN-graded sub-R•-module of M• such that (M�m)n = {0} if n < m
and (M�m)n = Mn if n � m. In particular, one has M(m)• = M�m(m)•. The

quasi-coherent sheaf R̃(m)• is denoted byOProj(R•)(m). Note that if R• is generated
as an R0-algebra by R1, then OProj(R•)(m) are invertible OProj(R•)-modules for all
m ∈ N, and one has canonical isomorphisms

OProj(R•)(m)⊗OProj(R•)
OProj(R•)(m

′) ∼= OProj(R•)(m + m′)

for all m, m′ ∈ N.
8. Let R• = ⊕

n∈N Rn be a graded ring. We say that R• is essentially integral if the
ideal R�1 of R• is not equal to zero and if the product of two nonzero homogeneous
elements of positive degree of R• is nonzero. Note that if R• is essentially integral
then the scheme Proj(R•) is integral (see [9, Proposition II.2.4.4]).

2 Aweak form of Hilbert’s fourteenth problem

Let k be a field, R be a finitely generated integral k-algebra and K be the field of frac-
tions of R. Clearly K is a finitely generated extension of k. Let K ′ be a subextension
of K/k, which is necessarily a finitely generated extension (see [2, Chapter V, Sec-
tion 14, n◦7, Corollary 3]). We consider the intersection R ∩ K ′ and ask the following
question which could be considered as a weaker form of Hilbert’s fourteenth problem:
does there exist a finitely generated sub-k-algebra R′ of K ′ containing R ∩ K ′ such
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that Frac(R′) = Frac(R ∩ K ′). In this section, we give an affirmative answer to this
question.

Definition 2.1 Let k be a field and A be a k-algebra. We say that A is of subfinite type
if it is a sub-k-algebra of a k-algebra of finite type.

Lemma 2.2 An injective homomorphism of rings A → B yields a dominant morphism
Spec B → Spec A.

Proof Let p be a minimal prime ideal of A and S ..= A\p. Since the homomorphism
of rings A → B is injective, so is the localised homomorphism Ap → S−1B. Hence
S−1B is nonzero. In particular, there exists a prime idealP of B such thatP∩ S = ∅,
or equivalently, P ∩ A ⊂ p. Since P ∩ A is a prime ideal of A and p is a minimal
prime ideal of A, one has P ∩ A = p. ��
Proposition 2.3 Let k be a field and A be a k-algebra of subfinite type. We assume
that A is an integral domain. Then there exists a k-algebra of finite type containing
A, which is also an integral domain.

Proof Let B be a k-algebra of finite type such that A ⊂ B. By Lemma 2.2, one can
find a prime ideal p of B such that p ∩ A = {0}. Therefore we can consider A as a
sub-k-algebra of B/p. Since B is a k-algebra of finite type, also is B/p. ��
Lemma 2.4 Let A be a k-algebra which is an integral domain, and K the field of
fractions of A. Let K ′/K be a finite extension of K generated by one element α and B ′
a sub-k-algebra of finite type of K ′ which contains A. Then there exists a sub-k-algebra
of finite type B of K which contains A.

Proof Let f ∈ K [T ] be the minimal polynomial of α over K , which we assume to be
monic. Let F1, . . . , Fn be polynomials in K [T ] such that B ′ = k[F1(α), . . . , Fn(α)].
Let S ⊂ K be the (finite) set of the coefficients of the polynomials f , F1, . . . , Fn . We
claim that A is contained in k[S]. In fact, suppose that an element u of A is written in
the form ϕ(F1(α), . . . , Fn(α)), where ϕ ∈ k[X1, . . . , Xn], then by Euclidean division
the polynomial ϕ(F1, . . . , Fn) ∈ k[S][T ] can be written as f g + h, where g and h are
polynomials in k[S][T ] with deg(h) < deg( f ). The decomposition ϕ(F1, . . . , Fn) =
f g + h is also the Euclidean division of ϕ(F1, . . . , Fn) by f in the polynomial ring
K [T ]. By definition, ϕ(F1, . . . , Fn) − u is divisible by f in K [T ]. Therefore, the
polynomial h is actually constant and equals u, which shows that u ∈ k[S]. ��
Lemma 2.5 Let A be a k-algebra which is an integral domain, and K the field of
fractions of A. Let K ′/K be a purely transcendental extension of transcendence degree
1 and B ′ a sub-k-algebra of finite type of K ′ which contains A. Then there exists a
sub-k-algebra of finite type B of K which contains A.

Proof Let α ∈ K ′ be a transcendental element over K such that K ′ = K (α). Assume
that B ′ = k[ϕ1(α), . . . , ϕn(α)], where each ϕi is a rational function of the form Fi/Gi ,
where Fi and Gi are polynomials of one variable with coefficients in K and Gi �= 0.
Let β be an element in the algebraic closure of the field K such that Gi (β) �= 0 in
K ′(β) for any i ∈ {1, . . . , n}. Then one has A ⊂ B̃ ..= k[ϕ1(β), . . . , ϕn(β)] ⊂ K (β).
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In fact, if an element u of A can be written as P(ϕ1(α), . . . , ϕn(α)), where P is
a polynomial with coefficients in k, then, since α is transcendental over K (β), by
considering α as the variable of rational functions and by specifying its value by β,
we obtain that u = P(ϕ1(β), . . . , ϕn(β)). Finally, by applying Lemma 2.4 to A ⊂ B̃
and the finite extension K (β)/K , we obtain that there exists a k-algebra of finite type
B ⊂ K such that A ⊂ B. ��
Theorem 2.6 Let k be a field and A be a k-algebra of subfinite type. We assume in
addition that A is an integral domain and we denote by K the field of fractions of A.
Then there exists a sub-k-algebra of finite type B of K such that A ⊂ B.

Proof By Proposition 2.3, there exists a k-algebra of finite type B ′ which is an integral
domain containing A. Let K ′ be the field of fractions of B ′, it is a finitely generated
extension of K . Therefore there exists a sequence of extensions

K = K0 � K1 � · · · � Kn = K ′

such that each extension Ki/Ki−1 is generated by one element, i ∈ {1, . . . , n}.
The extension Ki/Ki−1 is either generated by an algebraic element over Ki−1 or
is purely transcendental of transcendence degree 1. By induction we obtain that, for
any i ∈ {0, . . . , n − 1}, there exists a sub-k-algebra of finite type Bi of Ki such that
Bi ⊃ A. ��
Corollary 2.7 Let k be a field, R be an integral k-algebra of finite type and K be
the fraction field of R. Let K ′ be an extension of k which is contained in K . Then
there exists a finitely generated sub-k-algebra R′ of K ′ containing R ∩ K ′, such that
Frac(R′) = Frac(R ∩ K ′).

Proof By definition, R ∩ K ′ is an integral k-algebra of subfinite type. By Theorem 2.6,
there exists a sub-k-algebra of finite type R′ of Frac(R ∩ K ′) such that R ∩ K ′ ⊂ R′.
Clearly one has Frac(R′) = Frac(R ∩ K ′) since R ∩ K ′ ⊂ R′ ⊂ Frac(R ∩ K ′). ��

3 Graded linear series and subfiniteness

Let k be a field and K/k be a finitely generated field extension. Let

K [T ] =
⊕

n∈N
K T n

be the graded ring of polynomials of one variable with coefficients in K .

Definition 3.1 As a graded linear series of K/k we refer to a graded sub-k-algebra

V• =
⊕

n∈N
VnT n

of K [T ] such that V0 = k and that Vn is a finite dimensional k-vector subspace of K
for any n ∈ N�1.
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Let V• and V ′
• be two graded linear series of K/k. If Vn ⊂ V ′

n for any n ∈ N, we
say that V• is contained in V ′

• , or V• contains V ′
• , and denote it by V• ⊂ V ′

• .
Let V• be a graded linear series of K/k. If V• is finitely generated as a k-algebra,

we say that V• is of finite type. If V• is contained in a graded linear series of finite type,
we say that it is of subfinite type. Note that graded linear series of subfinite type are
also considered in [13] as algebra of almost integral type.

Let V• be a graded linear series of K/k. We denote by k(V•) the subextension of
K/k generated by elements of the form f /g, where f and g are nonzero elements of
K such that there exists n ∈ N�1 with f , g ∈ Vn . The field k(V•) is called the field of
rational functions of V•.

Lemma 3.2 Given any graded linear series V• of K/k, one has

k(Vn) = k(V•)

for every sufficiently large n ∈ N such that Vn �= {0}, where k(Vn) denotes the sub-
extension of K/k generated by the elements of the form f /g with { f , g} ⊂ Vn, g �= 0.

Proof First, we note that if � ∈ N�1 is an index such that V� contains a nonzero
element h, then k(Vm) ⊂ k(Vm+�n) for any m, n ∈ N�1. In fact, if { f , g} ⊂ Vm and
g �= 0, then

f

g
= f hn

ghn
and { f hn, ghn} ⊂ Vm+�n

for any n ∈ N�1.
By changing the grading of V•, we may assume without loss of generality that {n ∈

N : Vn �= {0}} generates Z as a Z-module. There exist integers {n1, . . . , nr } ⊂ N�1
and nonzero elements { f1, . . . , fr , g1, . . . , gr } ⊂ K such that { fi , gi } ⊂ Vni for any
i ∈ {1, . . . , r} and that

k(V•) = k( f1/g1, . . . , fr/gr ).

Set p ..= lcm(n1, . . . , nr ). By the above observation, we can assume { fi , gi } ⊂ Vp

for any i , and one has

k(V•) = k( f1/g1, . . . , fr/gr ) = k(Vp).

Moreover, by the hypothesis that {n ∈ N : Vn �= {0}} generates Z as a Z-module, we
can find a positive integer q such that p and q are coprime and that k(Vp) = k(Vq) =
k(V•).

To conclude the proof, it suffices to show that {pm +qn : m, n ∈ N} contains every
sufficiently large positive integer. Since p and q are coprime, we can fix x, y ∈ Z such
that px − qy = 1. Moreover, we can assume that both x and y are positive. For any r
with 0 � r < q and any n with n � (q − 1)y,

qn + r = pr x + q(n − r y) ∈ {pm + qn : m, n ∈ N}.

Hence {pm + qn : m, n ∈ N} contains every integer not less than q(q − 1)y. ��
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Remark 3.3 Let V• be a graded linear series of K/k and f be a nonzero element of K .
We denote by V•( f ) the graded linear series

⊕
n∈N f n VnT n, where f n Vn

..= { f ng :
g ∈ Vn}, called the twist of V• by f . Note that the twist does not change the field of
rational functions: one has k(V•( f )) = k(V•) for any f ∈ K \{0}.
Proposition 3.4 Let W• be a graded linear series of finite type of K/k. Let n0 be a
positive integer. There exist an integer r � 1 and a family ( fi T ni )r

i=1 of homogeneous
elements in W• such that the following conditions are fulfilled:

(i) for any i ∈ {1, . . . , r}, one has ni � n0;
(ii) for any integer n � n0, the vector space Wn is generated by elements of the form

f a1
1 · · · f ar

r , where a1, . . . , ar are natural numbers such that a1n1+· · ·+ar nr =
n.

Proof Suppose that W• is generated by W1T ⊕ · · · ⊕Wd T d. We claim that the graded
linear series

k ⊕
⊕

n�n0

WnT n

is generated by Wn0T n0 ⊕ · · · ⊕W2n0+d−2T 2n0+d−2. Let n be an integer such that
n � 2n0 + d − 2. Since W• is generated by W1T ⊕ · · · ⊕Wd T d, we obtain that

Wn =
∑

(a1,...,ad )∈Nd

a1+2a2+···+dad=n

W a1
1 · · · W ad

d .

Let (a1, . . . , ad) be an element in N
d such that a1 + 2a2 + · · · + dad = n. Since

n � 2n0 + d − 2, there exist an integer m � 1 and a family

{(
a(i)
1 , . . . , a(i)

d

) : i ∈ {1, . . . , m}}

of elements in N
d such that

a(1)
j + · · · + a(m)

j = aj for all j ∈ {1, . . . , d},
n0 � a(i)

1 + 2a(i)
2 + · · · + da(i)

d � n0 + d − 1 for all i ∈ {1, . . . , m − 1},

and

n0 � a(m)
1 + 2a(m)

2 + · · · + da(m)
d � 2n0 + d − 2.

Therefore

Wn =
∑

(bn0 ,...,b2n0+d−2)∈Nn0+d−1

n0bn0+···+(2n0+d−2)b2n0+d−2=n

W
bn0
n0 · · · W

b2n0+d−2

2n0+d−2,
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which concludes the claim (bj corresponds to the number of i ∈ {1, . . . , m} such that
a(i)
1 + 2a(i)

2 + · · · + da(i)
d = j). Finally it suffices to choose a family of homogeneous

elements in W• which forms a basis of Wn0T n0 ⊕ · · · ⊕W2n0+d−2T 2n0+d−2. ��
Lemma 3.5 Let K/k′/k be extensions of fields. We assume that the extension K/k is
finitely generated and the extension k′/k is finite. Let W ′

• be a graded linear series of
finite type of K/k′ and let

W• = k ⊕
⊕

n∈N�1

W ′
nT n.

Then W• is a graded linear series of finite type of K/k.

Proof Let ( fi T ni )r
i=1 be a system of generators of W ′

• . Let (θj )
m
j=1 be a basis of k′

over k. We claim that W• is generated by

(θj fi T
ni )(i, j)∈{1,...,r}×{1,...,m}. (3.1)

In fact, if ϕ is an element of W ′
n , then it can be written as

∑

a=(a1,...,ar )∈Nr

a1n1+···+ar nr =n

λa f a1
1 · · · f ar

r ,

where the coefficients λa belong to k′. Bywriting λa as a linear combination of (θj )
m
j=1,

we obtain that ϕ lies in the graded linear series of K/k generated by (3.1). ��
Definition 3.6 Let V• be a graded linear series of K/k. We assume that there exists
n ∈ N�1 such that Vn �= {0}. We define the Kodaira–Iitaka dimension of V• as the
transcendence degree of k(V•) over k. We refer the readers to [13, Section 3] and
[6, Section 2] for the definition of Kodaira–Iitaka dimension in the setting of graded
linear series of Cartier divisors or line bundles. If Vn = {0} for any n ∈ N�1, then by
convention the Kodaira–Iitaka dimension of V• is defined to be −∞.

Theorem 3.7 Let V• be a graded linear series of K/k. Assume that there exists a
graded linear series of finite type V ′

• of K/k which contains V•. Then there exists a
graded linear series of finite type W• of K/k such that V• ⊂ W• and k(V•) = k(W•).

Proof Step 1: reduction to the case where 1 ∈ V1 and k(V ′
1) = k(V ′

• ). Let

� ..= {n ∈ N�1 : Vn �= {0}}.

The assertion of the theorem is trivial when� = ∅. In the following, we assume that�
is not empty, and hence it is a subsemigroup ofN�1. Let a ∈ N�1 be a generator of the
subgroup of Z generated by �. As

⊕
n∈N V ′

anT an is a k-algebra of finite type (see for
example [9, Lemme II.2.1.6 (iv)]), by changing the grading we can reduce the problem
to the case where a = 1. In particular, there exists an m ∈ N�1 such that the vector
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spaces Vm and Vm+1 are both nonzero. We pick x ∈ Vm \{0} and y ∈ Vm+1\{0}. By
replacing V• by the graded linear series generated by V• and (y/x)T and replacing
V ′

• by the graded linear series generated by V ′
• and (y/x)T (this procedure does not

change the fields of rational functions), we reduce the problem to the case where
V1 �= {0}. Finally, by replacing V• by V•( f −1) and V ′

• by V ′
• ( f −1) (see Remark 3.3

for the notation), where f is a nonzero element of V1 (again this procedure does not
change the fields of fractions, see Remark 3.3), we reduce the problem to the case
where 1 ∈ V1. Moreover, by replacing V ′

• by the graded linear series generated by V ′
•

and α1T , . . . , αm T , where {α1, . . . , αm} is a system of generators of k(V ′
• ) over k, we

may assume that k(V ′
1) = k(V ′

• ).

Step 2: reduction to the simple extension case by induction.Asexplained in the previous
step, we can assume 1 ∈ V1 and k(V ′

1) = k(V ′
• ). Since k(V ′

• )/k(V•) is a finitely
generated extension of fields (where V1 is assumed to contain 1), there exist successive
extensions of fields

k(V•) = K0 � K1 � · · · � Kb = k(V ′
• )

such that each extension Ki/Ki−1 is generated by one element of V ′
1.

Assume that the theorem has been proved for the case where k(V ′
• )/k(V•) is gener-

ated by one element in V ′
1. Then by induction we can show that, for any i ∈ {0, . . . , b},

there exists a graded linear series of finite type W (i)
• , which contains V• and such that

k(W (i)
• ) = Ki . In fact, we can chooseW (r)

• = V ′
• . Assume thatwe have chosen a graded

linear series of finite type W (i+1)
• such that W (i+1)

• ⊃ V• and k(W (i+1)
• ) = Ki+1, where

i ∈ {0, . . . , b − 1}. Let V (i)
• be the graded linear series generated by V• and a finite

system of generators of Ki/k in V ′
1. The graded linear series V (i)

• contains V• and

Ki = k(V (i)
1 ). Without loss of generality we may assume that V (i)

• ⊂ W (i+1)
• and that

the extension Ki+1/Ki is generated by one element α in W (i+1)
1 , otherwise we just

replace W (i+1)
• by the graded linear series generated by W (i+1)

• , V (i)
1 and a generator of

the extension Ki+1/Ki in V ′
1. It is a graded linear series of finite type which contains

V• and has Ki+1 as its field of rational functions. If the theorem has been proved for
the simple extension case, then we obtain the existence of a graded linear series of
finite type W (i)

• such that V• ⊂ W• and k(W (i)
• ) = Ki .

Note that the graded linear series W• = W (0)
• satisfies the conditions V• ⊂ W•

and k(V•) = k(W•). Therefore, to prove the theorem it suffices to prove the particular
case where the extension k(V ′

• )/k(V•) is generated by one element in V ′
1. Similarly, to

prove the theorem under the supplementary condition that the extension k(V ′
• )/k(V•)

is algebraic, it suffices to prove the particular case where the extension k(V ′
• )/k(V•)

is generated by one element in V ′
1 which is algebraic over k(V•).

Step 3: algebraic extension case. In this step, we prove the theorem under the assump-
tion that the extension k(V ′

• )/k(V•) is algebraic. As explained in the previous two
steps, we may suppose without loss of generality that 1 ∈ V1, k(V ′

1) = k(V ′
• ) and the

extension k(V ′
• )/k(V•) is generated by one element α in V ′

1 which is algebraic over
k(V•).
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Let

G(X) ..= X δ + ξ1X δ−1 + · · · + ξδ ∈ k(V•)[X ]

be the minimal polynomial of α over k(V•). By Proposition 3.4, there exist an integer
r ∈ N�1 and homogeneous elements ( fi T ni )r

i=1 with ni � δ for any i ∈ {1, . . . , r},
which generate the graded linear series

k ⊕
⊕

n�δ

V ′
nT n.

Since 1 ∈ Vn ⊂ V ′
n for any n ∈ N�1, for any i ∈ {1, . . . , r}, one has fi ∈ k(V ′

• ).
Moreover, since the extension k(V ′

• )/k(V•) is generated by α (which is of degree δ

over k(V•)), there exist polynomials

Fi (X) ..= ηi,1X δ−1 + · · · + ηi,δ ∈ k(V•)[X ], i ∈ {1, . . . , r},

such that fi = Fi (α) for any i ∈ {1, . . . , r}. We introduce the following polynomials
in k(V•)[T , Y ]:

G̃(T , Y ) = Y δ + (ξ1T )Y δ−1 + · · · + ξδT δ,

F̃i (T , Y ) = (ηi,1T ni −δ+1)Y δ−1 + · · · + ηi,δT ni.

Note that one has G̃(T , T X) = G(X)T δ and F̃(T , T X) = Fi (X)T ni.
We let W• be the graded linear series generated by V1T ⊕ · · · ⊕Vδ−1T δ−1 and the

elements

ξ1T , . . . , ξδT δ, ηi,1T ni −δ+1, . . . , ηi,δT ni, i ∈ {1, . . . , r}.

It is a graded linear series of finite type of K/k such that k(W•) ⊂ k(V•). It remains
to prove that W• contains V•. Clearly Vn ⊂ Wn for n ∈ {1, . . . , δ − 1}. Let n ∈ N�δ

and ϕ be an element in Vn ⊂ V ′
n . By definition ϕ can be written in the form

∑

a=(a1,...,ar )∈Nr

a1n1+···+ar nr =n

λa f a1
1 · · · f ar

r =
∑

a=(a1,...,ar )∈Nr

a1n1+···+ar nr =n

λaF1(α)a1 · · · Fr (α)ar,

where λa ∈ k. We consider the element

F̃(T , Y ) =
∑

a=(a1,...,ar )∈Nr

a1n1+···+ar nr =n

λa F̃1(T , Y )a1 · · · F̃r (T , Y )ar ∈ k(V•)[T , Y ].

Viewed as a polynomial on Y with coefficients in k(V•)[T ], the coefficients of F̃(T , Y )

can be written as the values of certain polynomials on

ηi,1T ni −δ+1, . . . , ηi,δT ni, i ∈ {1, . . . , r}.
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Note that one has

F̃(T , T X) =
∑

a=(a1,...,ar )∈Nr

a1n1+·s+ar nr =n

λa F1(X)a1 · · · Fr (X)ar T n.

Therefore F̃(T , T α) − ϕT n = 0 in k(V ′
• )[T ]. Since G is the minimal polynomial

of α, a Euclidean division argument shows that ϕT n can be written as a polynomial
of ξ1T , . . . , ξδT δ, ηi,1T ni −δ+1, . . . , ηi,δT ni, i ∈ {1, . . . , r}, with coefficients in k.
The theorem is thus proved in the particular case where k(V ′

• )/k(V•) is an algebraic
extension.

Step 4: general case. In this step,weprove the theorem in the general case.As explained
in Steps 1 and 2, we may assume that 1 ∈ V1, k(V ′

1) = k(V ′
• ) and that the extension

k(V ′
• )/k(V•) is generated by one element α in V ′

1 which is transcendental over k(V•)
(the algebraic case has already been treated in Step 3).

Since V ′
• is of finite type, there exist an integer r � 1 and homogeneous elements

( fi T ni )r
i=1 which generate V ′

• as a k-algebra. As k(V ′
• )/k(V•) is generated by α, there

exist rational functions Pi/Qi , i ∈ {1, . . . , r}, where {Pi , Qi } ⊂ k(V•)[X ], Qi �= 0,
such that fi = Pi (α)/Qi (α).

Let θ be an element in the algebraic closure k of k, such that Qi (θ) �= 0 for any
i ∈ {1, . . . , r}. Let k̂ = k(θ) and K̂ = K (θ). Then K̂/K is a finite extension of
field, and K̂ /̂k is a purely transcendental extension generated by α. Let V̂• and V̂ ′

• be
the graded sub-̂k-algebra of K̂ [T ] generated by V• and V ′

• respectively. Then V̂ ′
• is

generated as a k̂-algebra by ( fi T ni )r
i=1. We let Ŵ• be the graded linear series of K̂ /̂k

generated by T and elements of the form (Pi (θ)/Qi (θ))T ni, where i ∈ {1, . . . , r}.
This is a graded linear series of finite type. Note that Pi (θ)/Qi (θ) ∈ k̂(V̂•) for any
i ∈ {1, . . . , r}. Therefore k̂(Ŵ•) ⊂ k̂(V̂•).

Let n ∈ N�1 and ϕ be an element of V̂n ⊂ V̂ ′
n . By definition ϕ can be written in the

form

ϕ =
∑

a=(a1,...,ar )∈Nr

a1n1+···+ar nr =n

λa f a1
1 · · · f ar

r ,

where the coefficients λa belong to k̂. As α is transcendental over k̂(V̂•), we obtain
that

ϕ =
∑

a=(a1,...,ar )∈Nr

a1n1+···+ar nr =n

λa

r∏

i=1

(
Pi (θ)

Qi (θ)

)ai

,

which shows that ϕ ∈ Wn . Therefore one has V̂• ⊂ Ŵ•, which implies that k̂(V̂•) =
k̂(Ŵ•) since we have already seen that k̂(Ŵ•) ⊂ k̂(V̂•).

Let

W ′
•
..= k ⊕

⊕

n∈N�1

ŴnT n.
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Since Ŵ• is a graded linear series of finite type of K̂ /̂k, by Lemma 3.5 we obtain that
W ′

• is a graded linear series of K̂/k of finite type. Moreover, one has V• ⊂ W ′
• and

k(W ′
•) ⊂ k̂(Ŵ•) = k̂(V̂•) is a finite extension of k(V•). Therefore, by the algebraic

extension case of the theorem proved in Step 3 we obtain the existence of a graded
linear series of finite type W• of K̂/k such that V• ⊂ W• and that k(V•) = k(W•).
Moreover, the equality k(V•) = k(W•) and the assumption 1 ∈ V1 ⊂ W1 imply that
W• is a graded linear series of k(V•)/k (and hence a graded linear series of K/k). ��

4 A subfinite version of Zariski’s theorem

4.1 Preliminaries

In this section, we collect several basic facts on the valuations and on the graded rings,
which we use to show Theorem 1.4.

4.1.1 Valuations

See Items 5 and 6 in the section of notation and conventions for definitions and basic
notation related to valuations and their centres.

Lemma 4.1 Let π : X → X ′ be a dominant morphism of integral separated k-sche-
mes, K ..= Rat(X), K ′ ..= Rat(X ′), and ν be a discrete valuation of K over k. If
the centre cX (ν) of ν in X exists, then π(cX (ν)) is the centre of ν|K ′ in X ′, namely
π(cX (ν)) = cX ′(ν|K ′).

Proof Since the morphism π is dominant, it induces an injective homomorphism of
fields Rat(X ′) → Rat(X), which allows to consider K ′ as a subfield of K . Recall that
the centre cX (ν) is the unique point x ∈ X satisfyingOX ,x ⊂ Oν andmx = mν ∩OX ,x

(see notation and conventions 6). Note that

Oν|K ′ = { f ∈ K ′ : ν( f ) � 0} = Oν ∩ K ′, and mν|K ′ = mν ∩ K ′.

Hence OX ′,π(cX (ν)) ⊂ Oν|K ′ and mπ(cX (ν)) ⊂ mν|K ′ , which implies

mπ(cX (ν)) = mv|K ′ ∩ OX ′,π(cX (ν))

since mπ(cX (ν)) is a maximal ideal. ��
Lemma 4.2 Let K/K ′ be a field extension of finite type. Then any discrete valuation ν′
of K ′ extends to at least one discrete valuation ν of K such that the following diagram
is commutative:

K ′× ν′
��

��

Q

K ×
ν

����������
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(see notation and conventions 5).

Proof By induction it suffices to treat the case where the extension K/K ′ is generated
by one element α. If α is transcendental over K ′, then K = K ′(α) is canonically
isomorphic to the field of rational functions in one variable. Therefore the valuation
ν : K → Q ∪ {+∞} such that

ν(a0 + a1α + · · · + anαn) = min{ν′(a0), . . . , ν′(an)}
for any a0 + a1X + · · · + an Xn ∈ K ′[X ] is a valuation extending ν′. The valuations
ν′ and ν have the same image and hence ν is discrete.

Assume that α is algebraic over K ′. Let K̂ ′ be the completion of K ′ with respect
to ν′, on which the valuation ν′ extends in a unique way. We choose an embedding of
K in the algebraic closure K̂ ′a of K̂ ′ and let L be the subfield of K̂ ′a generated by
K̂ ′ and K . Then L is a finite extension of K̂ ′, on which there is a unique valuation ω

extending ν′ such that

ω(x) ..= 1

[K : K̂ ′] ν′(NormL/K̂ ′(x)
)

for all x ∈ L.

Let ν be the restriction ofω on K . It is a valuation extending ν′. Moreover, it is discrete
since ν(K ×) ⊂ 1

[K : K̂ ′] ν′(K ′×). ��
Lemma 4.3 Let K/k be a field extension and let ν be any discrete valuation of K over
k. Let W• be a graded linear series of K/k of finite type and let ( fi T di )r

i=1 be a system
of generators of W• over k. Set

a ..= min

{
ν( f1)

d1
, . . . ,

ν( fr )

dr

}

.

Then Wn ⊂ {φ ∈ K : ν(φ) � na} for every n ∈ N.

Proof Any element in Wn can be written in the form

∑

d1n1+···+dr nr =n

α(n1,...,nr ) f n1
1 · · · f nr

r , α(n1,...,nr ) ∈ k.

Then

ν

( ∑

d1n1+···+dr nr =n

α(n1,...,nr ) f n1
1 · · · f nr

r

)

� min

{ r∑

i=1

niν( fi )

}

� an. ��

4.1.2 Graded rings

Let R• be a graded ring which is generated as R0-algebra by a finite family of elements
in R1 and let P ..= Proj(R•). For each homogeneous element a ∈ R�1, let

(R•)(a)
..=

{
f

a p
: p ∈ N, deg f = p deg a

}
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be the degree 0 component of the localisation R•[1/a], and let

DProj(R•)+(a) ..= Spec (R•)(a)

denote the affine open subscheme of Proj(R•) defined by the non-vanishing of a.

Set OP (n) ..= R̃(n)• (see notation and conventions 7). Given an s ∈ Rn , the local
sections

s/1 ∈ H0(DP+(a),OP (n)) = (R(n)•)(a)

for a ∈ R1 glue up to a global section αn(s) ∈ H0(P,OP (n)). The following lemmas
are well known.

Lemma 4.4 ([9, Proposition II.2.7.3]) Let M• be a finitely generated graded R•-
module. If M̃• = 0, then Mn = {0} for any sufficiently positive integer n.

Lemma 4.5 Let R• be a graded ring and P = Proj(R•). If R• is essentially integral
and is generated as an R0-algebra by finitely many homogeneous elements in R1, then
the canonical homomorphism

α• : R• → R(OP (1))• ..=
⊕

n∈N
H0(P,OP (n))

is injective and any element of R(OP (1))• is integral over R•.

Proof Suppose that R• is generated as an R0-algebra by

{a1, . . . , ar } ⊂ R1\{0},

where a1, . . . , ar are all non-zerodivisors in R�1 since R• is essentially integral (see
notation and conventions 8). Given any p ∈ P , one can find an ai such that ai /∈ p;
hence (DP+(ai ))i∈{1,...,r} covers P . Thus, a section in R(OP (1))• can naturally be
identified with an element in

r⋂

i=1

R•[1/ai ], (4.1)

where the intersection is taken in R•[1/(a1 . . . ar )]. In particular, α• is injective.
Given any homogeneous element u ∈ R(OP (1))•, one can find an e � 1 such that

ae
i u ∈ R• for every i by (4.1). Since a1, . . . , ar generate R�1, one obtains R�re u ⊂

R�re. Moreover, by induction,

R�re un ⊂ R�re un−1 ⊂ · · · ⊂ R�re u ⊂ R�re

for every n � 1. It implies that R•[u] ⊂ (1/a1)re R•; hence u is integral over R• (see
for example [16, Theorem 9.1]). ��
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Lemma 4.6 We keep the notation of Lemma 4.5. Suppose that R• is a Noetherian
integral domain and is generated as an R0-algebra by finitely many homogeneous
elements in R1.

(i) If R• is an N-1 ring, then there exists an n0 � 0 such that αn is isomorphic for
every n � n0.

(ii) If R• is an integrally closed domain, then αn is isomorphic for every n � 0.

Proof (i) Recall that an integral domain is called an N -1 ring if its integral closure in
its fraction field is a finite generated module over itself. Note that the graded rings R•
and R′

•
..= R(OP (1))• have the same homogeneous fraction field, which is the field of

rational functions of the scheme Proj(R•). In particular, any homogeneous element of
R′

• belongs to the homogeneous fraction field of R•, which is contained in the fraction
field of R•. By Lemma 4.5 we obtain that R′

• is contained in the integral closure of R•
and hence is a module of finite type over R• by the Noetherian and N -1 hypotheses.

We consider the exact sequence of OProj(R•)-modules

0 �� K̃er(α•) �� R̃•
α̃• �� R̃′

• �� ˜Coker(α•) �� 0.

Since α̃• is isomorphic by [9, Proposition II.2.7.11], we have K̃er(α•) = ˜Coker(α•) =
0. Hence, by Lemma 4.4, we conclude.

(ii) If R• is integrally closed, the above argument actually leads to R• = R′
• since R′

•
is contained in the integral closure of R•. ��

4.2 Proof of Theorem 1.4

Let X and X ′ be integral normal k-schemes with a fixed inclusion Rat(X ′) ⊂ Rat(X).
Each point ξ ∈ X (1) ∪ X (0) (respectively, ξ ′ ∈ X ′(1) ∪ X ′(0)) defines the discrete
valuation ordξ (respectively, ordξ ′ ) of Rat(X) (respectively, of Rat(X ′)) over k. We
define two sets of points on X and on X ′, respectively, as

AX/X ′ ..=
{

ξ ∈ X (1) : ordξ |Rat(X ′) is not equivalent to any
of ordξ ′ for ξ ′ ∈ X ′(1) ∪ X ′(0)

}

and

BX/X ′ ..=
{

ξ ′ ∈ X ′(1) : ordξ ′ is not equivalent to any
of ordξ |Rat(X ′) for ξ ∈ X (1)

}

.

Lemma 4.7 Let X and X ′ be integral normal k-schemes of finite type with a fixed
inclusion Rat(X ′) ⊂ Rat(X).

1. The sets AX/X ′ and BX/X ′ are both finite.
2. If the inclusion Rat(X ′) ⊂ Rat(X) is induced from a surjective and flat mor-

phism π : X → X ′, then both AX/X ′ and BX/X ′ are empty.
3. If X ′ is proper over k and the inclusion Rat(X ′) ⊂ Rat(X) is induced from a

proper birational morphism π : X → X ′, then BX/X ′ = ∅ and AX/X ′ is the set
of the exceptional divisors of π .
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Proof 2: Let ξ ∈ X (1). Then by [10, Proposition IV.6.1.1] we have

dimOX ′,π(ξ) = dimOX ,ξ − dimOπ−1(π(ξ)),ξ = 0 or 1.

Hence π(ξ) ∈ X ′(1) ∪ X ′(0) and ordξ |Rat(X ′) is equivalent to ordπ(ξ) by Lemma 4.1.

Let ξ ′ ∈ X ′(1). Given any irreducible component Z of π−1({ξ ′}), the generic point
ξ of Z is mapped to ξ ′ via π (see [10, Proposition IV.2.3.4]). Hence ordξ ′ is equivalent
to ordξ |K ′ .

1: The inclusion Rat(X ′) ⊂ Rat(X) yields a k-morphism π : U → X ′, where U
denotes a nonempty open subscheme of X . By the theorem of generic flatness [10,
Théorème IV.6.9.1], there exists a nonempty open subscheme U ′ ⊂ X ′ such that

π ..= π |π−1(U ′) : U ..= π−1(U ′) → U ′

is flat. Moreover, since π is an open morphism (see [10, Théorème IV.2.4.6]), we may
assume that π is surjective. By the assertion 1 above, AX/X ′ (respectively, BX/X ′ ) is
contained in the set consisting of the generic points of the irreducible components of
X \π−1(U ′) (respectively, X ′ \U ′).
3: By the valuative criterion of properness, there exists an open subscheme U ′ ⊂ X ′
such that codim(X ′ \U ′, X ′) � 2 and the identification Rat(X ′) = Rat(X) induces an
open immersionU ′ → X . HenceBX/X ′ = ∅ andAX/X ′ is contained in the exceptional
locus of π . If ξ is a generic point of an irreducible component of the exceptional locus
of π , then π(ξ) = cX ′(ordξ |Rat(X ′)) by Lemma 4.1 and dimOX ′!,π(ξ) is � 2. Hence
ξ ∈ AX/X ′ . ��
We restate Theorem 1.4 as follows.

Theorem 4.8 Let K/K ′/k be field extensions of finite type and W• a graded linear
series of K/k that is generated over k by the homogeneous elements of degree 1. We
assume that W1 contains 1 ∈ K and that the projective spectrum P ..= Proj(W•) is
a normal scheme. Let X be any integral normal projective k-scheme whose field of
rational functions is k-isomorphic to k(W• ∩ K ′[T ]).

1. There then exists a Q-Weil divisor D on X such that

Wn ∩ K ′ ⊂ H0(X , nD) ⊂ k(W• ∩ K ′[T ])

for every sufficiently positive n.
2. If AP/X = ∅, then there exists a Q-Weil divisor D on X such that

Wn ∩ K ′ = H0(X , nD) ⊂ k(W• ∩ K ′[T ])

for every sufficiently positive n.

Proof Without loss of generality, we may assume that K = k(W•) and K ′ = Rat(X).
In particular, K naturally identifies with the field of rational functions on P . First,
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we give a valuation-theoretic interpretation of the required statement. Let H be the
effective Cartier divisor on P defined by the image of 1 via W1 → H0(P,OP (1)).
By Lemma 4.6 (i), one has

Wn = {φ ∈ K : nH + (φ) � 0}
= {

φ ∈ K : ordξ (φ) � − nmultξ (H) for all ξ ∈ P(1)}

for every n � 0. Therefore,

Wn ∩ K ′ = {
φ ∈ K ′ : ordξ |K ′(φ) � − nmultξ (H) for all ξ ∈ P(1)} (4.2)

for n � 0.
Next, for each ξ ′ ∈ X (1), we define a nonnegative rational number aξ ′ as follows. If

ξ ′ /∈ BP/X , thenwe fix an arbitrary point ξ ∈ P(1) such that ordξ |Rat(X) is equivalent to
ordξ ′ . Let eξ denote the ramification index of ordξ with respect to K/K ′ (see notation
and conventions 5). We then set

aξ ′ ..= e−1
ξ multξ (H).

Otherwise, we fix an arbitrary discrete valuation νξ ′ of K extending ordξ ′ , whose
existence is assured by Lemma 4.2, and set

aξ ′ ..= −min{0, νξ ′( f1), . . . , νξ ′( fr )},

where { f1T , . . . , fr T } denotes a system of generators of W• as a k-algebra.We define

D ..=
∑

ξ ′∈X (1)

aξ ′ {ξ ′}.

By the finiteness ofBP/X proved in Lemma 4.7, D is well defined as aQ-Weil divisor
on X . Moreover, D is effective and we have Wn ∩ K ′ ⊂ H0(X , nD) for every n � 0
by (4.2) and Lemma 4.3.

Lastly, we consider the case where AP/X = ∅. Given a ξ ′ ∈ X (1), we define a
nonnegative rational number bξ ′ as follows. If ξ ′ /∈ BP/X , then we set

bξ ′ ..= min

{

e−1
ξ multξ (H) : ξ ∈ P(1), eξ �= 0, and ordξ |Rat(X) is

equivalent to ordξ ′

}

.

Otherwise, we fix a discrete valuation νξ ′ extending ordξ ′ , and set

bξ ′ ..= −min{0, νξ ′( f1), . . . , νξ ′( fr )}
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in the same way as above. If we set D′ ..= ∑
ξ ′∈X (1) bξ ′ {ξ ′}, then, since AP/X = ∅,

Wn ∩ K ′ = {
φ ∈ Rat(X) : ordξ ′(φ) � − nbξ ′ for all ξ ′ ∈ X (1)\BP/X

}

⊃ H0(X , nD′)

for every n � 0. The reverse inclusion follows from the same argument as above. ��
In the following, we give an alternative proof for Theorem 1.2 by using the projective
version of Zariski’s result (Theorem 1.4).

Corollary 4.9 Let K/k be a finitely generated field extension and K ′/k a subextension
of K/k. Let V• be a graded linear series of K ′/k. If V• is contained in a graded linear
series W• of K/k and of finite type over k, then V• is contained a graded linear series
W ′

• of K ′/k and of finite type over k.

Proof We divide the proof into three steps.

Step 1: In this step, wemake several reductions of the theorem. By the same arguments
as in Step 1 of Theorem 3.7, we can assume that V1 contains 1.

Claim 4.10 By enlarging K if necessary, we can assume that W• is generated by W1
over k.

Proof of Claim 4.10 Let f1T d1, . . . , fr T dr ∈ W�1 be homogeneous generators of W•
over k. Let T1, . . . , Tr be variables with deg Ti = 1 for every i . One can find a
homogeneous prime ideal p of W•[T1, . . . , Tr ] such that p contains

I ..= (
T d1
1 − f1T d1, . . . , T dr

r − fr T dr
)

and such that p ∩ V• = {0}. In fact, let

W ′
•
..= W•[T1, . . . , Tr ]/I

and let a be a homogeneous element of degree � 1. Since the morphism

Spec (W ′
•)(a) → Spec (V•)(a)

is dominant (Lemma 2.2), there exists a homogeneous prime ideal p ∈ Proj(W ′
•) such

that p ∩ V• = {0}. We set U• ..= W ′
•/p. Then U• is a graded linear series of k(U•)/k,

W• → U• is injective, and U• is generated by

U1 = W1 + W0T1 + · · · + W0Tr . �

In particular, we can assume that P ..= Proj(W•) is a projective scheme over k and

that OP (1) ..= W̃ (1)• is an invertible sheaf on P .

Step 2: Let u : P̂ → P be a normalisation and H the Cartier divisor defined by the
image of 1 via V1 → H0(P̂, u∗OP (1)). We choose a very ample divisor Ĥ such that
Ĥ − H is effective and such that R(Ĥ)• is generated by R(Ĥ)1T over R(Ĥ)0.

123



H. Chen, H. Ikoma

Note that the graded k-algebra

Ŵ• ..= k ⊕
⊕

n�1

H0(P̂, nĤ)T n

is a graded linear series of K/k and of finite type over k (Lemma 3.5) and that Proj(Ŵ•)
is isomorphic to P̂ over k.

Applying Theorem 1.4 to Ŵ• and K ′/k, we can find an integral normal projective
k-scheme X , an effectiveQ-divisor D on X , and an integer n0 � 1 such that Rat(X) ⊂
K ′ and such that

Vn ⊂ R(Ĥ)n ∩ K ′ ⊂ H0(X , nD)

for every n with n � n0.

Step 3: Let D̂ be a very ample divisor on X such that D̂ − D is effective and such that
R(D̂)• is finitely generated over k. Let W ′

• be the graded linear series generated by a
basis of

⊕

n<n0

VnT n

over k and by finite number of generators of R(D̂)• over k. Then W ′
n contains Vn for

every n � 0 and W ′
• is finitely generated over k. ��

As a consequence of Theorem 1.4, we can give an estimate of the following type for
graded linear series of subfinite type (see also [14, Corollary 2.1.38] and Theorem 6.2
infra).

Corollary 4.11 Let K/k be a finitely generated field extension and V• be a graded
linear series of K/k and of subfinite type. Let d be the Kodaira–Iitaka dimension
of V•. If d is nonnegative, then there exist an integral normal projective k-scheme
X and Q-Cartier divisors D, D′ on X such that the rational function field of X is
k-isomorphic to k(V•), that both D and D′ have Kodaira–Iitaka dimension d, and
that

H0(X , nD′) ⊂ Vn ⊂ H0(X , nD) ⊂ k(V•)

for every sufficiently positive n with Vn �= {0}.
Proof The existence of D results from the same arguments as in Corollary 4.9. Thus,
it suffices to show the existence of D′ having the prescribed properties. By changing
the grading of V•, wemay assume that {n ∈ N : Vn �= {0}} generatesZ as aZ-module.
Choose any sufficiently positive integer p0 such that k(Vp0) = k(V•) (see Lemma 3.2).
Let W• be the sub-k-algebra of V• generated by Vp0 , and set

W ′
•
..=

⊕

n∈N
Wp0n .
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Let P ..= Proj(W ′
•) and OP (1) ..= W̃ ′

•(1). By Lemma 4.6, W ′
n = H0(P,OP (n)) ⊂

Vp0n for every n � 1. Let ν : P̂ → P be a normalisation. Let p be any sufficiently
positive integer divisible by p0. Then one can find an ample divisor A on P̂ such that

H0(P̂, n A) = H0(P, ν∗(OP̂ (n A))
) ⊂ H0(P,OP (pn/p0)) ⊂ Vpn

for every positive integer n (see the proof of [4, Proposition 3.6]).
Repeating the same arguments, one can choose an integral normal projective k-

scheme X , two big Cartier divisors A, A′ on X , and two coprime positive integers
p, p′ such that

H0(X , n A) ⊂ Vpn and H0(X , n A′) ⊂ Vp′n

for any positive integer n. Moreover, one can choose an ample Q-Cartier divisor D′
on X and two coprime positive integers q, q ′ such that qq ′ D′ is integral, that q (resp.
q ′) is divisible by p (resp. p′), and that

H0(X , qnD′) ⊂ H0(X , (qn/p)A) ⊂ Vqn

and

H0(X , q ′nD′) ⊂ H0(X , (q ′n/p′)A) ⊂ Vq ′n

hold for every integer n ∈ N�1.
Since

H0(X , qnD′)⊗k H0(X , q ′n′ D′) → H0(X , (qn + q ′n′)D′)

is surjective for any sufficiently positive integers n, n′ (see for example [14,
Example 1.2.22], which is valid over fields of arbitrary characteristics), we have
H0(X , nD′) ⊂ Vn for every sufficiently positive n (recall the arguments in
Lemma 3.2). ��
Corollary 4.12 (Fujita [7, Appendix]) Let X be an integral normal projective k-scheme
and D an effective Cartier divisor on X. If the Kodaira–Iitaka dimension of D is 1,
then the section ring R(D)• is finitely generated.

Proof Let K ..= Rat(X) and let C be the smooth projective k-curve with rational
function field k-isomorphic to K ′ ..= k(R(D)•). The inclusion K ′ ⊂ K defines a
rational map X ��� C and, by taking a suitable blow-up μ : X̂ → X , one obtains a
flat morphism π : X̂ → C (the flatness follows from [11, Proposition III.9.7]). Note
that AX̂/C = BX̂/C = ∅. If we set

E ..=
∑

ξ ′∈C(1)

min
{

e−1
ξ multξ (μ

∗D) : ξ ∈ X̂ (1), ξ �→ ξ ′, eξ �= 0
}
ξ ′,
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then by Theorem 4.8,

H0(C, nE) = H0(X̂ , nμ∗D) = H0(X , nD)

for every n � 0. Hence the result is reduced to the classic case of curves. ��
Remark 4.13 • If X is a surface, Zariski [30] completely classified the cases where

R(D)• is finitely generated [30, Theorem 10.6 and Proposition 11.5]. Later, Fujita
[7] generalised the case where the Kodaira–Iitaka dimension is one to the form of
Theorem 4.12 by using the Iitaka fibrations.

• For a nef and big Cartier divisor D on X , R(D)• is finitely generated if and only
if D is semiample (see [14, Theorem 2.3.15]).

5 Nagata’s counterexamples

In this section, we show how our results apply to Nagata’s counterexamples. Let N
and r be positive integers such that N � r � 2 and let x ..= (x1, . . . , xN ) and
y ..= (y1, . . . , yN ) denote variables. Firstly, we consider the affine case as in [17–
19,22]. Set

W• ..= C[x, y] =
⊕

n∈N
C[x, y]n,

whereC[x, y]n denotes theC-vector space of the homogeneous polynomials of degree
n in (x1, . . . , xN , y1, . . . , yN ), and let

K ..= Frac(W•) = C(x, y)

be the fraction field of W•. Let

A = (ai, j )(i, j)∈{1,...,r}×{1,...,N }

be a matrix with coefficients in C, where r ∈ {2, . . . , N }. We assume that a1,1 =
· · · = a1,N = 1 and that the block

(ai, j )(i, j)∈{1,...,r}×{N−r+1,...,N }

is invertible. Let L1, . . . , Lr be a family of linear forms on C
N such that

⎛

⎜
⎝

L1(t1, . . . , tN )
...

Lr (t1, . . . , tN )

⎞

⎟
⎠ = A

⎛

⎜
⎝

t1
...

tN

⎞

⎟
⎠ .

Since A has r as its rank, the linear forms L1, . . . , Lr are linearly independent. We
introduce the following elements of W• which are all homogeneous of degree N . We
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set z0 ..= x1 · · · xN and for any i ∈ {1, . . . , r},

zi
..= z0 Li

(
y1
x1

, . . . ,
yN

xN

)

.

Let K ′ ..= C(z0, z1, . . . , zr ). One has

K = K ′(x1, . . . , xN−1, y1, . . . , yN−r )

since

xN = z0
x1 · · · xN−1

and, for any i ∈ {N − r + 1, . . . , N }, yi/xi can be written as a linear form in

y1
x1

, . . . ,
yN−r

xN−r
,

z1
z0

, . . . ,
zr

z0
.

We denote by Pr−1 the projective space Proj(C[z1, . . . , zr ]), and regard

ai
..= (a1,i : . . . :ar ,i )

as a point in Pr−1 for each i ∈ {1, . . . , N }. Note that

H0(Pr−1,OPr−1(d)) = C[z1, . . . , zr ]d

for any integer d � 0. Each Wn ∩ K ′ is nonzero if and only if N divides n, and each
element F ∈ WNn ∩ K ′ can be written in the form

z−m
0 f (z1, . . . , zr ),

where m is an integer and f ∈ H0(Pr−1,OPr−1(m + n)). In view of the following
lemma, we know that the fraction field of W• ∩ K ′ coincides with K ′ and that W• ∩ K ′
is contained in C[z0, z1/z0, . . . , zr/z0].
Lemma 5.1 ([22, Lemma 3(2)], [18, Lemma 2.45]) Let d � 1 be any integer. For each
f ∈ H0(Pr−1,OPr−1(d)) and for each i ∈ {1, 2, . . . , N }, we have

ord{xi =0}|K ′(z−m
0 f (z1, . . . , zr )) = ordai ( f (z1, . . . , zr )) − m.

Nagata [22, p. 772] has conjectured the following: if N � 10 and r = 3, then, for
generic N -points a1, . . . , aN ∈ P2, one will have

min(orda1( f ), . . . , ordaN ( f )) <
d√
N
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for every nonzero f ∈ H0(P2,OP2(d)). We set

S(d,m)
..= {

z−m
0 f (z1, z2, z3) ∈ W• ∩ K ′ : f ∈ H0(P2,OP2(d))

}

for each (d, m) ∈ N × Z, and set

δm
..= min

(
d

m
: S(d,m) �= {0}

)

for m � 1. If the conjecture is true, then one has δm >
√

N for every m and
limm→∞ δm = √

N , which implies that the semigroup

{(d, m) ∈ N×Z : S(d,m) �= {0}}

is not finitely generated. Hence

W• ∩ K ′ =
⊕

(d,m)∈N×Z

S(d,m)

is not of finite type over C.
Nagata proved in [22, Section 3] that, if N is the square of an integer which is � 4,

then the above conjecture is true. In particular, if N = 16, r = 3, and L1, L2, L3 are
generic, then W• ∩ K ′ is not of finite type over C. Later, Mukai proved by applying
Liouville’s theorem that, if N = 9, r = 3, and L1, L2, L3 are generic, then W• ∩ K ′
is not of finite type over C (see [18, Section 2.5]).

Next, we are going to consider a projective variant of Nagata’s counterexample.
Let T denote a variable for indicating the grading. We define a graded linear series of
K/C as

Ŵ• ..= C[T , xT , yT ] =
⊕

n∈N
C[x, y]�nT n,

where C[x, y]�n denotes the C-vector space of the polynomials of degree � n in
(x1, . . . , xN , y1, . . . , yN ). Note that, for each n, F(x, y) ∈ Ŵn ∩ K ′ if and only if
F(x, y) ∈ W�n ∩ K ′. Let P̃ ..= Proj(Ŵ•) � P

2N and

Qr+1
..= Proj

(
C[T N, z0T N, z1T N, . . . , zr T N ]) � P

r+1.

Let Hr
..= {T N = 0} and Dr

..= {z0T N = 0}. Note that H0(Qr+1, nHr + nN Dr ) is
the C-vector space generated by

{
z−m
0 f (z1, . . . , zr ) : f ∈ H0(Pr−1,OPr−1(m + n)), − n � m � nN

}
.

Corollary 5.2 We have ŴNn ∩ K ′ ⊂ H0(Qr+1, nHr + nN Dr ) for every n ∈ N.

Remark 5.3 The following observations were suggested by one of the referees.
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• It follows from Lemma 5.1 that AP̃/Qr+1
equals the set consisting of the generic

points of {xi = 0} for i ∈ {1, . . . , N } and that BP̃/Qr+1
consists of the generic

point of Dr . In particular, the Veronese subalgebra

⊕

n∈N
(ŴNn ∩ K ′)T Nn

cannot be expressed as a complete linear series on Qr+1. It remains an interesting
question to see if the sets AP̃/Qr+1

and BP̃/Qr+1
contain also the information on

the non-finite-generation property of the above graded linear series.
• If r = 2 and N � 2, then Ŵ• ∩ K ′[T ] is (finitely) generated by T , z0T N, z1T N,

z2T N, and

(a2,1z1 − z2) · · · (a2,N z1 − z2)

z0
T N (N−1).

Hence, in this case, the volume of Ŵ• ∩ K ′[T ] is equal to N−2(N − 1)−1 (see
Definition 6.1 infra). Although the explicit computation of the volume function
is in general a hard problem, it seems to us an intriguing question to obtain a
combinatoric formula for the volume of Ŵ• ∩ K ′[T ] in the general case.

• By Fujita’s approximation theorem in its graded linear series version (see [13,
Corollary 3.11 (2)] and [15, Theorem3.3 andRemark 3.4]), it is possible to approx-
imate the graded linear series Ŵ• ∩ K ′[T ] by a family of amply polarised projective
models of K ′.

Remark 5.4 In [17,19], Mukai considered the subfield

K ′′ ..= C(x1, . . . , xN , z1, . . . , zr )

and studied the finite generation of Ŵ• ∩ K ′′[T ]. In this case, we consider the weighted
projective space

Proj
(
C[T , x1T , . . . , xN T , z1T N, . . . , zr T N ]).

Let Ei (respectively, H ) be the hyperplane defined by xi T for i ∈ {1, 2, . . . , N }
(respectively, T ). One then has

Ŵ• ∩ K ′′[T ] ⊂ R(E1 + · · · + EN + H)•,

where R(E1+· · ·+EN +H)• denotes the total graded linear series of E1+· · ·+EN +H
(see notation and conventions 4).
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6 Applications

In this section, we apply the subfinite criterion (Theorem 1.2) to the study of Fujita
approximation for general subfinite graded linear series. Throughout the section, we
let k be a field and K/k be a finitely generated field extension.

Definition 6.1 Let V• be a graded linear series of K/k and d be its Kodaira–Iitaka
dimension (see Definition 3.6). If d �= −∞, we define the volume of V• as

vol(V•) ..= lim sup
n→+∞

dimk(Vn)

nd/d! .

A priori this invariant takes value in [0,+∞]. We will see below that, if in addition
the graded linear series V• is of subfinite type (see Definition 3.1), then its volume is
always a positive real number.

We say that a graded linear series V• satisfies the Fujita approximation property if

sup
W•⊂V•

W• of finite type
dim(W•)=dim(V•)

vol(W•) = vol(V•),

where W• runs over the set of all graded linear series of finite type which are contained
in V• and such that W• has the same Kodaira–Iitaka dimension as V•.

The purpose of the section is to establish the following approximation result.

Theorem 6.2 Any graded linear series V• of K/k which is of subfinite type and has
nonnegative Kodaira–Iitaka dimension d satisfies the Fujita approximation property.
Moreover, one has

vol(V•) = lim
n∈N(V•)
n→+∞

dimk(Vn)

nd/d! ∈ (0,+∞),

where N(V•) = {n ∈ N : Vn �= {0}}.
Proof Bychanging thegradingwemayassumewithout loss of generality thatVn �= {0}
for sufficiently positive integer n. Let K ′ be the homogeneous fraction field k(V•).
Note that K ′/k is a subextension of K/k and hence is finitely generated. Moreover,
by Theorem 1.2, we obtain that V• viewed as a graded linear series of K ′/k is of
subfinite type. Therefore, the assertions follow from [5, Theorem 1.1] (by definition
V• is birational if we consider it as a graded linear series of K ′). ��
Remark 6.3 In the case where the field K admits a valuation of one-dimensional leaves
in a totally ordered abelian group of finite type (this is the case notably when k
is an algebraically closed field), we recover a result of Kaveh and Khovanskii [13,
Corollary 3.11 (2)]. Note that the existence of a valuation of one-dimensional leaves on
V• implies that V• is geometrically integral since such a valuation induces by extension
of scalars a valuation of one-dimensional leaves on V•⊗k k′ for any extension of fields
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k′/k. In particular, for any pair of homogeneous elements x and y of V•⊗k k′, the
valuation of xy is equal to the sum of the valuations of x and y, which implies that
V•⊗k k′ is an integral domain.

By combining the results of [4] and the subfiniteness result (Theorem 1.2), we obtain
the following upper bound for the Hilbert–Samuel function of general graded linear
series of subfinite type.

Theorem 6.4 Let V• be a graded linear series of K/k and d its Kodaira–Iitaka dimen-
sion. There then exists a function f : N → R+ such that

f (n) = vol(V•)
nd

d! + O(nd−1), n → +∞,

and

dimk(Vn) � f (n) for all n ∈ N.

Remark 6.5 The result [5, Theorem 1.1] actually provides more geometric informa-
tion about the graded linear series of subfinite type. Let K/k be a finitely generated
transcendental field extension and let d be the transcendence degree of K/k. We fix a
flag

k = K0 ⊂ K1 ⊂ · · · ⊂ Kd = K

of subfields of K containing k such that each extension Ki/Ki−1 is transcendental
and has transcendence degree 1. Let A(K/k) be the set of all graded linear series of
subfinite type V• of K/k such that k(V•) = k. Then there has been constructed in [5]
a map � fromA(K/k) to the set of convex bodies in R

d which satisfies the following
conditions:

(a) If V• and V ′
• are two graded linear series inA(K/k) such that V• ⊂ V ′

• , then one
has �(V•) ⊂ �(V ′

• ).
(b) If V• and W• are two graded linear series in A(K/k), then

�(V• ·W•) ⊃ �(V•) + �(W•) ..= {x + y : x ∈ �(V•), y ∈ �(W•)},

where V• ·W• denotes the graded linear series whose n-th homogeneous compo-
nent is the k-vector space generated by { f g : f ∈ Vn, g ∈ Wn}.

(c) For any graded linear series V• in A(K/k), the volume of V• identifies with the
Lebesgue measure of �(V•) multiplied by d!.

This allows us to construct the arithmetic analogue of Newton–Okounkov bodies for
general arithmetic graded linear series of subfinite type, using the ideas of [1].

In what follows, we assume that k is a number field. We denote by Mk the set of all
places of k. For each v ∈ Mk , let | · |v be an absolute value on k which extends either
the usual absolute value or certain p-adic absolute value (so that |p|v = p−1) on Q.
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As adelic vector bundle on Spec k, we refer to the data V = (V , (‖·‖v)v∈Mk ) of
a finite dimensional vector space V over k and a family of norms ‖·‖v over V ⊗k kv

such that there exists a basis (ei )
r
i=1 of V over k and a finite subset S of Mk satisfying

the following condition:

‖λ1e1 + · · · + λr er‖v = max
i∈{1,...,r} |λi |v for all v ∈ Mk \ S and (λ1, . . . , λr ) ∈ kr

v.

Given an adelic vector bundle V on Spec k, for any nonzero element s ∈ V , we define
the Arakelov degree of s as

d̂eg(s) ..= −
∑

v∈Mk

[kv :Qv] ln ‖s‖v.

By the product formula

∑

v∈Mk

[kv :Qv] ln |a|v = 0 for all a ∈ k×,

we obtain that

d̂eg(as) = d̂eg(s) for all a ∈ k×.

Moreover, the Arakelov degree of V is defined as

−
∑

v∈Mk

ln ‖η‖v,det,

where η is a nonzero element of det(V ), and

‖η‖v,det = inf
{‖x1‖v · · · ‖xr‖v : η = x1∧ · · · ∧ xr

}
.

Again by the product formula we obtain that the definition does not depend on the
choice of η ∈ det(V )\{0}.

Let V be an adelic vector bundle of rank r on Spec k. For any t ∈ R, let

F t (V ) = Vectk({s ∈ V \{0} : d̂eg(s) � t }).

This is a decreasing R-filtration on V , called the R-filtration by minima. Note that for
any i ∈ {1, . . . , r}, the number

λi (V ) = sup{t ∈ R : rkk(F
t (V )) � i}

coincides with the minus logarithmic version of the i-th minima in the sense of Roy
and Thunder [26,27]. For any s ∈ V , we let

λ(s) ..= sup{t ∈ R : s ∈ F t (V )}.
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In the following, we let K/k be a finitely generated field extension of the number field
k. Let V• be a graded linear series of subfinite type of K/k. For each n ∈ N, we equip
Vn with a structure of adelic vector bundle (Vn, (‖·‖n,v)v∈Mk ) on Spec k so that, for
any v ∈ Mk ,

‖sn · sm‖v � ‖sn‖v · ‖sm‖v for all (n, m) ∈ N
2 and (sn, sm) ∈ Vn ×Vm . (6.1)

We assume in addition that

λmax(V •) ..= lim sup
n→+∞

λ1(V n)

n
< +∞.

This condition implies that V• has a nonnegative Kodaira–Iitaka dimension. For any
t ∈ R, let

V t
•

..=
⊕

n∈N
F nt (Vn).

It is a graded linear series of K/k. By definition one has V t
n = {0} if n ∈ N�1 and

t > λmax(V •).

Proposition 6.6 For any t < λmax(V •), one has k(V•) = k(V t
• ).

Proof Clearly one has k(V•) ⊃ k(V t
• ). It suffices to prove the converse inclusion. Let

n � 1 be an integer and f , g be nonzero elements in Vn . Since t < λmax(V•) there exist
m ∈ N�1 and s ∈ Vm such that λ(s) > mt . Thus for sufficiently positive integer � one
has λ(s� f ) > (�m + n)t and λ(s�g) > (�m + n)t . Therefore {s� f , s�g} ⊂ V t

�m+n ,
which implies f /g ∈ k(V t

• ). ��
The above proposition allows us to consider V t

• as a birational graded linear series of
k(V•)/k and to construct its Newton–Okounkov body as recalled in Remark 6.5. We
define the concave transform of V• as the function GV• on �(V•) sending x ∈ �(V•)
to

sup{t < λmax(V•) : x ∈ �(V t
• )}.

By the condition (b) in Remark 6.5, the function GV• is concave.
The following result generalises [1, Theorem 2.8] to the case of subfinite adelically

normed graded linear series.

Theorem 6.7 Let K/k be a finitely generated extension of a number field k, and V• =⊕
n∈N V n a graded linear series of subfinite type of K/k of Kodaira–Iitaka dimension

d � 0, equipped with structures of adelic vector bundles on Spec k, which satisfy
the submultiplicativity condition (6.1) and the condition λmax(V•) < +∞. Then the
sequence of measures

1

rkk(Vn)

rkk (Vn)∑

i=1

δλi (Vn)/n, n ∈ N(V•) = {m ∈ N : Vm �= {0}},
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converges weakly to a Boreal probability measure on R, which is the image of the
uniform measure

1

vol(�(V•))
1l�(V•)(x) dx

by the concave transform GV• .

Proof For any t < λmax(V •), the graded linear series V t
• has the same homogeneous

fraction field as V• (see Proposition 6.6). Hence we can construct a decreasing family
(�(V t

• ))t<λmax(V •) of convex bodies contained in �(V•), as described in Remark 6.5.

Moreover, if t1 and t2 are two real numbers which are < λmax(V•). Then, by the same
method as in [1, Section 1.3], we obtain the desired result. ��
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