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Abstract. Let L be a big invertible sheaf on a projective variety defined on a complete
valued field (such as the field C of complex numbers or a complete non-archimedean field),
equipped with two continuous metrics. By using the ideas in Arakelov geometry, we prove
that the distribution of the eigenvalues of the transition matrix between the L2 norms on
H0(X, nL) with respect to the two metriques converges (in law) as n goes to infinity to
a Borel probability measure on R. This result can be thought of as a generalization of the
existence of the energy at the equilibrium as a limit, or an extension of Berndtsson’s results
to the more general context of graded linear series and a more general class of line bundles.
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1. Introduction

Let K be a number field and X be an integral projective scheme defined over
K . Assume given an adelic line bundle L on X . Namely L is an invertible sheaf
on X equipped with a family (hv)v∈MK of metrics indexed by the set MK of all
places of K , where each hv is a continuous metric on the analytification of L with
respect to the place v. For each v ∈ MK and any integer n � 0, the metric hv
induces naturally a norm on Vn := H0(X, L⊗n), which is the sup norm when v is
non-archimedean, and is the L2 norm with respect to a Borel probability measure
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which is equivalent to the Lebesgue measure on each local coordinate chart when
v is archimedean. Thus the K -vector space Vn is equipped with an adelic structure
and becomes an adelic vector bundle on Spec K . Recall that the arithmetic Hilbert–
Samuel theorem [1] describes the asymptotic behaviour of the normalized Arakelov
degree of V n when n → +∞. Note that the Arakelov degree of a hermitian adelic
vector bundle on Spec K equals the sum of successive slopes of the adelic vector
bundle. In [10], a limit theorem has been established, asserting that the uniform
distribution of the suitably normalized successive slopes of V n converges in law
to some Borel probability measure on R. The method was based on a convexity
property of successive slopes of V n and the functoriality of Harder–Narasimhan
filtrations.

The current paper treats a local analogue of the above result. We focus on
the situation where the scheme is defined on a complete valued field. The metric
structure is given by two continuous metrics on the same invertible sheaf. The
purpose is to compare the sup norms or the L2 norms induced by these two metrics
on the linear series of the invertible sheaf (or its tensor powers). This problem has
been widely studied in the framework of complex hermitian geometry, notably in
[3,4,20].

Let X be a complex projective variety or alternatively, a projective variety
defined over a complete non-archimedean field, and let L be an invertible sheaf on
X . We assume that L is big, or in other words, that the volume of L , defined by

vol(L) := lim
n→+∞

rk(H0(X, nL))

nd/d! ,

is strictly positive, where the rank is computed with respect to the base field of X ,
and d is the Krull dimension of X . In [3], Berman and Boucksom studied in the
complex setting the Monge–Ampère energy functional of two continuous metrics
on L , ϕ and ψ . The equilibrium Monge–Ampère energy of the pair (ϕ, ψ) is an
invariant defined by

Eeq(ϕ, ψ) := 1

d + 1

d∑

j=0

∫

X (C)
(Pϕ − Pψ) c1(L , Pψ) j c1(L , Pϕ)d− j .

In the above formula Pφ denotes, for any continuous metric φ on L , the supremum
of all (possibly singular) plurisubharmonic continuous metrics bounded above by
φ. This invariant describes the asymptotic behaviour of the ratio of the volumes of
the unit balls in the linear systems H0(X, nL) (n � 1) with respect to the L2 norms
induced by the metrics ϕ andψ , respectively. More precisely, given any probability
measure μ on X (C), equivalent to Lebesgue measure in every local chart, we have
that (cf. [3, Théorème A])

lim
n→+∞

d!
nd+1 ln

vol(B2(nL , ϕ, μ))

vol(B2(nL , ψ,μ))
= Eeq(ϕ, ψ), (1)

where for any continuous metric φ on L , the expression B2(nL , φ, μ) denotes the
unit ball in H0(X, nL) with respect to the following L2 norm:

∀ s ∈ H0(X, nL), ‖s‖2
L2
φ,μ

:=
∫

X (C)
‖s‖2

nφ(x) μ(dx).
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All volumes are calculated with respect to some arbitrary Haar measure on
H0(X, nL).

The logarithm which appears in the left hand side of Eq. (1) is equal (up to
multiplication by a constant) to the mean of the logarithms of the eigenvalues of
the transition matrix between ϕn andψn . Here ϕn andψn are the L2 norms induced
by ϕ and ψ respectively on the space H0(X, nL).

In [4], Berndtsson studies the distribution of eigenvalues of this transition matrix
in the case where ϕ and ψ are Kähler metrics on an ample line bundle L . He
establishes the following fact by a detailed analysis of geodesics in the space of
Kähler metrics on L : if dn = dimVn and the numbers λ j are the logarithms of
the eigenvalues of the transition matrices between ϕn and ψn then the probability
measure

νn = d−1
n

∑

j

δλ j

converges as n tends to infinity to a measure on R which is defined using the
Monge-Ampère geodesic linking ϕ and ψ in HL , the space of Hermitian metrics
in L .

The log-ratio of the volumes appearing in (1) is an analogue of the degree
function in Arakelov geometry. Let E be a vector space of finite rank over a number
field K equipped with a family of norms ‖.‖v , where v runs over the set MK of
places of K , and ‖.‖v is a norm on E ⊗K Kv which is ultrametric when v is a
finite place and Euclidean or Hermitian when v is real or complex. Moreover, we
suppose that E contains a lattice E (ie. a maximal rank sub-OK -module, where OK

is the ring of algebraic integers in K ) such that for all but a finite number of places
v the norm ‖.‖v comes from the OK -module structure on E .

The data E = (E, (‖.‖v)v∈MK ) is called a Hermitian adelic bundle on K and
its Arakelov degree is defined to be the weighted sum

d̂eg(E) := −
∑

v∈MK

nv ln ‖s1 ∧ · · · ∧ sr‖v, (2)

where (s1, . . . , sr ) is a basis of E over K and the weight nv is the rank of Kv as
a vector space over Qv . The Arakelov degree is well-defined due to the product
formula

∀ a ∈ K ×,
∑

v∈MK

nv ln |a|v = 0.

We refer the reader to [5, Appendice A] and [13] for a detailed exposition of
this theory. In the context of complex geometry, we consider a finite dimensional
vector space V equipped with two Hermitian norms ϕ and ψ . We can write the
log-ratio of the volumes of the unit balls (with respect to ϕ and ψ respectively) as

ln
vol(B(V, ϕ))
vol(B(V, ψ)) = d̂eg(V, ϕ, ψ) := − ln ‖s1∧· · ·∧sr‖ϕ+ln ‖s1∧· · ·∧sr‖ψ, (3)
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where (s1, . . . , sr ) is a basis for V . This expression is independent of the choice of
basis by the elementary product formula

∀ a ∈ C
×, ln |a| − ln |a| = 0.

With this notation, Eq. (1) can be rewritten in the form

lim
n→+∞

d̂eg(H0(X, nL), L2
ϕ,μ, L2

ψ,μ)

nd+1/d! = Eeq(ϕ, ψ).

which is an analogue of the arithmetic Hilbert–Samuel theorem for Hermitian
invertible bundles on a projective arithmetic variety.

Given the results in [4] and the convergences proved in [10], it is natural to
wonder whether the eigenvalue distribution of the metric L2

ϕ,μ with respect to L2
ψ,μ

is well-behaved asymptotically in more general situations. Unlike the arithmetic
case, it does not seem possible to reformulate these spectra functorially, which is
a key step in the proof of the convergence results in [10]. This phenomenon arises
essentially because of the presence of a negative weight in formula (3), absent in
the arithmetic case. The interested reader will find counter-examples illustrating
this phenomenon in [11, remark 5.10 and §4, example 2].

In this article, we use a truncation method for studying the asymptotic behaviour
of eigenvalues of transition matrices between two metrics. Note that similar idea
appears also in the study of linear forms of logarithms (see [14, §4.1]) We consider
truncations of ψ by dilatations of ϕ, which enables us to prove the following result
(cf. theorem 5.2 infra):

Main theorem. Let k be the field of complex numbers or a complete non-archimed-
ean field, and let X be a projective k-variety of dimension d � 1. Let L be a big
invertible OX -module with two continuous metrics ϕ andψ . For any integer n � 1,
let ϕn and ψn be the sup norms on H0(X, nL) with respect to metrics ϕ and ψ
respectively. Moreover, let ϕ′

n andψ ′
n be hermitian norms on H0(X, nL) such that1

max(d(ϕn, ϕ
′
n), d(ψn, ψ

′
n)) = o(n). Let Zn be the map from {1, . . . , h0(X, nL)}

to R sending i to the logarithm of the i th eigenvalue (with multiplicity) of ψ ′
n

with respect to ϕ′
n, considered as a random variable on the set {1, . . . , h0(X, nL)}

with the uniform distribution. Then the sequence of random variables (Zn/n)n�1
converges in law to a probability distribution on R depending only on the pair
(ϕ, ψ).

We recall that by definition the sequence of random variables Zn/n con-
verges in law if for any continuous bounded function h defined on R the sequence
(E[h(Zn/n)])n�1 converges in R.

The Theorem 5.2 proved in Sect. 5 is a little bit stronger than this statement. It
is valid for any sub-graded linear system of subspaces Vn ⊂ H0(X, nL) satisfying
conditions (a)–(c) of Sect. 4.3. Moreover, it also applies to the functions μ̂i defined
in Sect. 2.3, and which are associated to pairs of (possibly non-hermitian) norms.

1 If η and η′ are two norms on a finite-dimensional complex vector space V , then d(η, η′)
is defined to be sup

0 �=s∈V
| ln ‖s‖η − ln ‖s‖η′ |. This is a distance on the set of norms on V .
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When these norms are in fact hermitian, these functions are equal to the logarithms
of the eigenvalues of the transition matrix (cf. Sect. 2.2). This asymptotic distribu-
tion is a fine geometric invariant which measures the degree of non-proportionality
of the metrics ϕ and ψ . It should be useful in the variational study of metrics on an
invertible sheaf.

The proof of the main theorem uses various techniques drawn from algebraic
and arithmetic geometry. In Sects. 2 and 3 we introduce a Harder–Narasimhan type
theory for finite dimensional vector spaces with two norms. This can be thought of
as a geometric reformulation of the eigenvalues of the transition matrix between
two Hermitian norms. This construction has the advantage of being valid for non-
Hermitian norms, which allows us to work directly with the sup norm. Moreover, it
is analogous to the Harder–Narasimhan filtration and polygon of a vector bundle on
a smooth projective curve. In particular, the truncation results (Propositions 2.8, 3.7)
are crucial for the proof of the main theorem. Another important ingredient is the
existence of the equilibrium energy as a limit, presented in Sect. 4. For a complete
complex graded system, this is a result of Berman and Boucksom [3] (where the
limit is described.) Here, we use the Okounkov filtered semi-groups point of view
developped in [7], analogous to that of Witt Nyström [20]. The combination of this
method with the Harder–Narasimhan formalism is extremely flexible and enables
us to prove the existence of the equilibrium energy as a limit in the very general
setting of a graded linear system on both complex and non-archimedean varieties
(cf. Theorem 4.5 and its Corollary 4.6). Finally, in Sect. 5 we prove a general version
of the main theorem (cf. Theorem 5.2 and Remark 5.3).

2. Slopes of a vector space equipped with two norms

In this section we develop the formalism of slopes and Harder–Narasimham filtra-
tions for finite dimensional complex vector spaces equipped with a pair of norms.

2.1. Slopes and the Harder–Narasimhan filtration

Let CH be the class of triplets V = (V, ϕ, ψ), where V is a finite dimensional
complex vector space and ϕ and ψ are two Hermitian norms on V . For any V =
(V, ϕ, ψ) ∈ CH , we let d̂eg(V ) be the real number defined by

− ln ‖s1 ∧ · · · ∧ sr‖ϕ + ln ‖s1 ∧ · · · ∧ sr‖ψ, (4)

where (s1, . . . , sr ) is a basis of V . Note that when V is the trivial vector space,
one has d̂eg(V ) = 0. If the V is non trivial then we let μ̂(V ) be the quotient
d̂eg(V )/ rk(V ), which we call the slope of V . Unless otherwise specified, for any
subspace W of V we will let W be the vector space W equipped with the induced
norms and V /W be the quotient space V/W equipped with the quotient norms.
The following relationship holds for any subspace W of V :

d̂eg(V ) = d̂eg(W )+ d̂eg(V /W ). (5)
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Proposition 2.1. Let V = (V, ϕ, ψ) be a non-trivial element of CH . There is a
unique subspace Vdes in V satisfying the following properties:

(1) for any subspace W ⊂ V we have that μ̂(W ) � μ̂(Vdes),
(2) if W is a subspace of V such that μ̂(W ) = μ̂(Vdes) then W ⊂ Vdes.

Proof. Let λ be the norm of the identity map from (V, ‖.‖ϕ) to (V, ‖.‖ψ). We will
prove that the set

Vdes = {x ∈ V : ‖x‖ψ = λ‖x‖ϕ}
satisfies the conditions of the proposition. We start by checking that Vdes is a non-
trivial subspace of V . By definition, Vdes contains at least one non-zero vector and
is stable under multiplication by a complex scalar. We need to check that Vdes is
stable under addition. Let x and y be two elements of Vdes. As the norms ϕ and ψ
are Hermitian, the parallelogram law states that

‖x + y‖2
ϕ + ‖x − y‖2

ϕ = 2
(
‖x‖2

ϕ + ‖y‖2
ϕ

)
,

‖x + y‖2
ψ + ‖x − y‖2

ψ = 2
(
‖x‖2

ψ + ‖y‖2
ψ

)
.

Since λ is the norm of the identity map from (V, ‖.‖ϕ) to (V, ‖.‖ψ) we have
that ‖x + y‖ψ � λ‖x + y‖ϕ and ‖x − y‖ψ � λ‖x − y‖ϕ . As x and y are vectors
in Vdes we have that ‖x‖ψ = λ‖x‖ϕ and ‖y‖ψ = λ‖y‖ϕ . It follows that

2λ2
(
‖x‖2

ϕ + ‖y‖2
ϕ

)
= 2

(
‖x‖2

ψ + ‖y‖2
ψ

)
= ‖x + y‖2

ψ + ‖x − y‖2
ψ

� λ2
(
‖x + y‖2

ϕ + ‖x − y‖2
ϕ

)
= 2λ2

(
‖x‖2

ϕ + ‖y‖2
ϕ

)
,

so ‖x + y‖ψ = λ‖x + y‖ϕ and it follows that x + y ∈ Vdes.
In particular, as the norms ‖.‖ψ and ‖.‖ϕ are proportional with ratio λ on Vdes

we have that μ̂(Vdes) = ln(λ). If W is a subspace of V then the identity map from
(	r W, ‖.‖ψ) to (	r W, ‖.‖ϕ) has norm � λr (by Hadamard’s inequality). This
inequality is an equality if and only if the norms ‖.‖ψ and ‖.‖ϕ are proportional
with ratio λ—or in other words, the space W is contained in Vdes. 
�

Let V be a non-trivial element of CH . Let μ̂max(V ) be the slope of Vdes, which
we call the maximal slope of V . We say that V is semi-stable if μ̂max(V ) = μ̂(V ),
or equivalently Vdes = V . The element V is semi-stable if and only if the two norms
on V are proportional.

For any V , non-trivial element of CH , we construct recursively a sequence of
subspaces of V of the form

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V (6)

such that Vi/Vi−1 = (V/Vi−1)des for any i ∈ {1, . . . , n} using the quotient norms
on V/Vi−1. Each of the subquotients Vi/Vi−1 is a semi-stable element of CH .
Moreover, if μi is the slope of Vi/Vi−1, then we have that:

μ1 > μ2 > · · · > μn . (7)

These numbers are called the intermediate slopes of V . The flag (6) is called the
Harder–Narasimhan filtration of V .



Distribution of logarithmic spectra

Definition 2.2. Let V be a non-zero element of CH with its Harder–Narasimhan
filtration and intermediate slopes as defined in (6) and (7). We let ZV be the random
variable with values in {μ1, . . . , μn} such that

P(ZV = μi ) = rk(Vi/Vi−1)

rk(V )

for any i ∈ {1, . . . , n}.

Remark 2.3. The above constructions are analogues of Harder–Narasimhan theory
for vector bundles on a regular projective curve or hermitian adelic bundles on a
number field. As in [10, §2.2.2], we can include the Harder–Narasimhan filtration
and the intermediate slopes in a decreasing R-filtration. However, contrary to the
geometric and arithmetic cases, this R-filtration is not functorial, as explained in [11,
remarque 5.10]. Moreover, the Harder–Narasimhan filtration is not necessarily the
only filtration whose sub-quotients are semi-stable with strictly decreasing slopes,
as can be seen using the counter-example in [11, §4 exemple 2].

Let V be an element of CH of rank r > 0. We let P̃V be the function on [0, r ]
whose graph is the upper boundary of the convex closure of the set of points of the
form (rk(W ), d̂eg(W )). This is a concave function which is affine on each interval
[i − 1, i] (i ∈ {1, . . . , r}). We call it the Harder–Narasimhan polygon of V . By
definition, P̃V (0) = 0 and P̃V (r) = d̂eg(V ). For any i ∈ {1, . . . , r}, we let μ̂i (V )
be the slope of the function P̃V on the interval [i −1, i], which we call the i th slope
of V . We also introduce a normalised version of the Harder–Narasimhan polygon,
defined by

PV (t) := 1

rk(V )
P̃V (t rk(V )), t ∈ [0, 1].

It follows from the relation P̃V (r) = d̂eg(V ) that

d̂eg(V ) = μ̂1(V )+ · · · + μ̂r (V ). (8)

Moreover, the distribution of the random variable ZV (cf. Definition 2.2) is given
by

1

r

r∑

i=1

δμ̂i (V )
,

where δa is a Dirac measure supported at a.
The normalised polygon PV , the random variable ZV and the slopes of V are

linked by the following simple formula.

PV (1) = E[ZV ] = μ̂(V ). (9)
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2.2. The link with eigenvalues.

The Harder–Narasimhan polygon and its intermediate slopes can be thought of as an
intrinsic interpretation of the eigenvalues and eigenspaces of the transition matrix
between two Hermitian norms. Indeed, given an element V = (V, ϕ, ψ) ∈ CH and
an orthonormal basis e = (ei )

r
i=1 for V with respect to ‖.‖ϕ we can construct a

Hermitian matrix

AV,e =

⎛

⎜⎜⎜⎝

〈e1, e1〉ψ 〈e1, e2〉ψ · · · 〈e1, er 〉ψ
〈e2, e1〉ψ 〈e2, e2〉ψ · · · 〈e1, er 〉ψ

...
...

. . .
...

〈er , e1〉ψ 〈er , e2〉ψ · · · 〈er , er 〉ψ

⎞

⎟⎟⎟⎠

If the intermediate slopes of V are μ1 > μ2 > · · · > μn then the eigenvalues of
AV,e are e2μ1 , . . . , e2μn . In fact, although the matrix AV ,e depends on the choice
of the orthonormal basis e, its eigenvalues (counting the multiplicities) do not
depend on this choice. Therefore, without loss of generality we may assume that
e is an orthogonal basis for the hermitian product 〈, 〉ψ . In this case the matrix
AV ,e is diagonal and its eigenvalues are (‖ei‖2

ψ)
r
i=1. Moreover, from the proof of

Proposition 2.1, we learn that Vdes coincides with the set of vectors x ∈ V such
that ‖x‖ψ equals the operator norm of Id : (V, ‖.‖ϕ) → (V, ‖.‖ψ) times ‖s‖ϕ .
Namely Vdes is the vector subspace generated by those ei ∈ e such that ‖ei‖ψ
is maximal. In particular, the largest eigenvalue of AV ,e identifies with e2μ1 . By

induction we obtain the correspondance between successive slopes of V and the
eigenvalues of AV ,e as stated above. Moreover, if for any i ∈ {1, . . . , n} we let

V (i) be the eigenspace associated to the eigenvalue e2μi of the endomorphism of
V given by the matrix AV,e in the basis e then the flag

0 � V (1)
� V (1) + V (2)

� · · · � V (1) + · · · + V (n) = V

is the Harder–Narasimhan filtration of V .
The fact that ϕ andψ are proportional on each of the subspaces V (i) implies that

there is a complete flag (which will be in general finer than the Harder–Narasimhan
filtration of V )

0 = V0 � V1 � · · · � Vr = V

such that d̂eg(V i/Vi−1) = μ̂i (V ). In particular, PV (i) = d̂eg(Vi ). This can be
thought of as a version of the Courant–Fischer theorem for symmetric or Hermitian
matrices.

2.3. Generalisation to arbitrary norms

The above constructions can be naturally generalised to spaces equipped with two
arbitrary norms. Let C be the class of finite-dimensional complex vector spaces
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equipped with two (not necessarily Hermitian) norms. For any non-trivial element
V = (V, ϕ, ψ) in C we let d̂eg(V ) be the number

ln
vol(B(V, ϕ))
vol(B(V, ψ)) ,

where B(V, ϕ) and B(V, ψ) are the unit balls with respect to the norms ϕ and ψ
respectively, and vol is a Haar measure on V . This definition is independent of the
choice of Haar measure vol. Moreover, when the norms ϕ and ψ are Hermitian, it
is equal to the number defined in (4). As in the Hermitian case, we let P̃V be the
concave function on [0, rk(V )] whose graph is the upper boundary of the convex
closure of the set of points of the form (rk(W ), d̂eg(W )), where W is a member of
the set of subspaces of V . For any i ∈ {1, . . . , rk(V )}, we let μ̂i (V ) be the slope
of the function P̃V on the interval [i − 1, i]. The equality (8) holds in this more
general context. We let ZV be a random variable whose law is an average of Dirac
masses at the intermediate slopes μ̂i (V ):

the law of ZV is
1

rk(V )

rk(V )∑

i=1

δμ̂i (V )
.

We can also introduce a normalised Harder–Narasimhan polygon:

PV (t) = 1

rk(V )
P̃V (t rk(V )), t ∈ [0, 1]. (10)

Equation (9) holds in this more general setting: we have that

PV (1) = E[ZV ] = μ̂(V ). (11)

The following result compares Harder–Narasimhan polygons.

Proposition 2.4. Let (V, ϕ, ψ) be an element of C. Ifψ ′ is another norm on V such
that2 ψ ′ � ψ then we have that P̃(V,ϕ,ψ ′) � P̃(V,ϕ,ψ) as functions on [0, rk(V )].
Proof. For any subspace W on V we have that B(W, ψ) ⊂ B(W, ψ ′) and it follows
that d̂eg(W, ϕ, ψ) ≥ d̂eg(W, ϕ, ψ ′). The point (rk(W ), d̂eg(W, ϕ, ψ ′)) is therefore
always below the graph of P̃(V,ϕ,ψ). It follows that P̃(V,ϕ,ψ ′) � P̃(V,ϕ,ψ). 
�
Remark 2.5. Similarly, if (V, ϕ, ψ) is an element of C and ϕ′ is another norm on V
such that ϕ′ � ϕ then we have that P̃(V,ϕ′,ψ) � P̃(V,ϕ,ψ) as functions on [0, rk(V )].

If V is a non-trivial finite dimensional complex vector space and ψ and ψ ′ are
two norms on V then we denote by d(ψ,ψ ′) the quantity

sup
0 �=x∈V

∣∣ ln ‖x‖ψ − ln ‖x‖ψ ′
∣∣.

2 In other words, for any x ∈ V we have that ‖x‖ψ ′ � ‖x‖ψ .



H. Chen, C. Maclean

Corollary 2.6. Let (V, ϕ, ψ) be a non-trivial element of C and let ϕ′ andψ ′ be two
norms on V . For any t ∈ [0, rk(V )] we have that

|P̃(V,ϕ,ψ)(t)− P̃(V,ϕ′,ψ ′)(t)| � (d(ϕ, ϕ′)+ d(ψ,ψ ′)) t.

Proof. We denote by ψ1 and ψ2 the norms on V such that

‖.‖ψ1 = e−d(ψ,ψ ′)‖.‖ψ and ‖.‖ψ2 = ed(ψ,ψ ′)‖.‖ψ.
We have that ψ1 � ψ ′ � ψ2. Moreover, for any t ∈ [0, 1] we have that

P̃(V,ϕ,ψ1)(t)= P̃(V,ϕ,ψ)(t)− d(ψ,ψ ′) t, P̃(V,ϕ,ψ1)(t)= P̃(V,ϕ,ψ)(t)+d(ψ,ψ ′) t.

By the above proposition we have that

|P̃(V,ϕ,ψ)(t)− P̃(V,ϕ,ψ ′)(t)| � d(ψ,ψ ′) t.

By the same argument we have that

|P̃(V,ϕ,ψ ′)(t)− P̃(V,ϕ′,ψ ′)(t)| � d(ϕ, ϕ′) t.

The sum of these two inequalities gives the required result. 
�

2.4. John norms

Whilst the elements of C do not generally satisfy (5), John’s ellipsoid technique
enables us to show that (5) holds up to an error term. Indeed, if V is a complex
vector space of rank r > 0 and φ is a norm on V then we can find a Hermitian
norm φJ which satisfies the following inequalities (cf. [19, p. 84]):

1√
r
‖.‖φJ � ‖.‖φ � ‖.‖φJ .

Proposition 2.7. Let V = (V, ϕ, ψ) be a non-trivial element of C. If

0 = V0 � V1 � · · · � Vn = V

is a flag of subspaces of V then we have that
∣∣∣∣d̂eg(V )−

n∑

i=1

d̂eg(V i/V i−1)

∣∣∣∣ � rk(V ) ln(rk(V )). (12)

Proof. Let r be the rank of V . Consider the object (V, r−1/2ϕJ , ψJ ), which is an
element of CH . The following equation holds by formula (5):

d̂eg(V, r−1/2ϕJ , ψJ ) =
n∑

i=1

d̂eg(Vi/Vi−1, r
−1/2ϕJ , ψJ ).

Moreover, since r−1/2ϕJ � ϕ and ψJ � ψ , we have that

d̂eg(Vi/Vi−1, ϕ, ψ) � d̂eg(Vi/Vi−1, r
−1/2ϕJ , ψJ ).
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It follows that

d̂eg(V, r−1/2ϕJ , ψJ ) �
n∑

i=1

d̂eg(Vi/Vi−1, ϕ, ψ). (13)

Moreover, it follows from the relations ϕ � ϕJ and ψ � r−1/2ψJ that

d̂eg(V, ϕ, ψ) � d̂eg(V, r−1/2ϕJ , ψJ )− r ln(r). (14)

It follows from the inequalities (13) and (14) that

d̂eg(V ) �
n∑

i=1

d̂eg(V i/V i−1)− r ln(r).

Applying the same argument to (V, ϕJ , r−1/2ψJ ) we can show that

d̂eg(V ) �
n∑

i=1

d̂eg(V i/V i−1)+ r ln(r).

This completes the proof of the proposition. 
�

2.5. Truncation

Let V be a finite-dimensional complex vector space. If ϕ is a norm on V and a is
a real number then we let ϕ(a) be the norm on V such that

∀ x ∈ V, ‖x‖ϕ(a) = ea‖x‖ϕ.
If ϕ and ψ are two norms on V then we denote by ϕ ∨ψ the norm on V such that

∀ x ∈ V, ‖x‖ϕ∨ψ = max(‖x‖ϕ, ‖x‖ψ).
Proposition 2.8. Let V = (V, ϕ, ψ) be a non-zero element of C and let a be a real
number. We have that

∣∣∣∣d̂eg(V, ϕ, ψ ∨ ϕ(a))−
rk(V )∑

i=1

max(μ̂i (V ), a)

∣∣∣∣�2 rk(V ) ln(rk(V ))+ rk(V )

2
ln(2).

Proof. Let r be the dimension of V . We will first prove the following equation.

r∑

i=1

max(μ̂i (V ), a) = sup
t∈[0,r ]

(
P̃V (t)− at

)
+ ar. (15)

As the function P̃V (t)− at is affine on each segment [i − 1, i] (i ∈ {1, . . . , r}) we
get that

sup
t∈[0,r ]

(
P̃V (t)− at

) = max
i∈{0,...,r}

( ∑

1� j�i

(
μ̂i (V )− a

)) =
r∑

i=1

max
(
μ̂i (V )− a, 0

)
.
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It follows that

sup
t∈[0,r ]

(
P̃V (t)− at

)+ar =
r∑

i=1

(
max

(
μ̂i (V )− a, 0

)+a
)
=

r∑

i=1

max(μ̂i (V ), a).

We start by proving the proposition in the special case where ϕ and ψ are
Hermitian. There is then a basis e = (ei )

r
i=1 which is orthonormal for ϕ and

orthogonal forψ . For any i ∈ {1, . . . , r} set λi = ‖ei‖ψ . Without loss of generality,
we may assume that λ1 � · · · � λr . We therefore have that μ̂i (V ) = ln(λi ) for
any i ∈ {1, . . . , r}. Let ψ ′ be the Hermitian norm on V such that

‖x1e1 + · · · + xr er‖2
ψ ′ =

r∑

i=1

x2
i max(λ2

i , e2a).

We then have that

|x1e1 + · · · + xr er‖2
ψ∨ϕ(a) = max

( r∑

i=1

x2
i λ

2
i ,

r∑

i=1

x2
i e2a

)
.

and it follows that

‖.‖ψ∨ϕ(a) � ‖.‖ψ ′ �
√

2‖.‖ψ∨ϕ(a).

It follows that

d̂eg(V, ϕ, ψ ∨ ϕ(a)) � d̂eg(V, ϕ, ψ ′) � r

2
log(2)+ d̂eg(V, ϕ, ψ ∨ ϕ(a)),

and hence
∣∣∣∣d̂eg(V, ϕ, ψ ∨ ϕ(a))−

r∑

i=1

max(μ̂i (V ), a)

∣∣∣∣ � r

2
log(2).

We now deal with the general case. We choose Hermitian norms ϕ1 and ψ1 such
that d(ϕ, ϕ1) � 1

2 log(r) and d(ψ,ψ1) � 1
2 log(r). Applying the above result to

(V, ϕ1, ψ1) we get that
∣∣∣∣ deg(V, ϕ1, ψ1 ∨ ϕ1(a))−

r∑

i=1

max(μ̂i (V, ϕ1, ψ1), a)

∣∣∣∣ � r

2
log(2).

Moreover, we have that

d(ψ ∨ ϕ(a), ψ1 ∨ ϕ1(a)) � max
(
d(ϕ, ϕ1), d(ψ,ψ1)

)

and hence

| deg(V, ϕ, ψ ∨ ϕ(a))− deg(V, ϕ1, ψ1 ∨ ϕ1(a))| � d(ϕ, ϕ1)r

+ max(d(ϕ, ϕ1), d(ψ,ψ1))r,

which is bounded above by r ln(r). Moreover, by 2.7 we get that
∣∣P̃V (t)− P̃(V,ϕ1,ψ1)(t)

∣∣ �
(
d(ϕ, ϕ1)+ d(ψ,ψ1)

)
t � t ln(r) � r ln(r),



Distribution of logarithmic spectra

and hence
∣∣∣∣ sup

t∈[0,r ]

(
P̃V (t)− at

)
− sup

t∈[0,r ]

(
P̃(V,ϕ1,ψ1)(t)− at

)∣∣∣∣ � r ln(r).

By (15) we get that

∣∣∣∣d̂eg(V, ϕ, ψ ∨ ϕ(a))−
r∑

i=1

max(μ̂i (V ), a)

∣∣∣∣ � 2r ln(r)+ r

2
log(2).


�

3. The non-Archimedean analogue

In this section, we develop an analogue for slopes for finite dimensional vector
spaces over a non-archimedean field k equipped with two ultrametric norms. Let k
be a field equipped with a complete non-archimedean absolute value function |.|.

3.1. Ultrametric norms

Let V be a k-vector space of dimension r equipped with a norm ‖.‖. As k is assumed
to be complete the topology on V is induced by any isomorphism kr → V . (We
refer the reader to [8, I.§2, no. 3] theorem 2 and the remark on page I.15 for a proof
of this fact). In particular, any subspace of V is closed (cf. loc. cit. corollary 1 of
theorem 2).

Let (V, ‖.‖) be a finite-dimensional ultra-normed vector space on k. A basis
e = (ei )

r
i=1 of V is said to be orthogonal if the following holds:

∀ (λ1, . . . , λr ) ∈ kr , ‖λ1e1 + · · · + λr er‖ = max
i∈{1,...,r} |λi | · ‖ei‖.

An ultra-normed vector space does not necessarily have an orthogonal basis, but
the following proposition shows that an asymptotic version of Gram-Schmidt’s
algorithm is still valid in this context.

Proposition 3.1. Let (V, ‖.‖) be a ultra-normed k-vector space of dimension r � 1.
Let

0 = V0 � V1 � V2 � · · · � Vr = V

be a full flag of subspaces of V . For any ε ∈ ]0, 1[ there is a basis e = (ei )
r
i=1

compatible with the flag3 such that

∀ (λ1, . . . , λr ) ∈ kr , ‖λ1e1 + · · · + λr er‖ � (1 − ε) max
i∈{1,...,r} |λi | · ‖ei‖. (16)

3 We say that a basis e is compatible with a full flag 0 = V0 � V1 � V2 � · · · � Vr = V
if for any i ∈ {1, . . . , r}, we have that card(Vi ∩ e) = i .
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Proof. We proceed by induction on r , the dimension of V . The case r = 1 is trivial.
Assume the proposition holds for all spaces of dimension < r for some r � 2.
Applying the induction hypothesis to Vr−1 and the flag 0 = V0 � V1 � · · · � Vr−1
we get a basis (e1, . . . , er−1) compatible with the flag such that

∀ (λ1, . . . , λr−1)∈kr−1, ‖λ1e1+ · · · +λr−1er−1‖�(1−ε) max
i∈{1,...,r−1} |λi | · ‖ei‖.

(17)

Let x be an element of V \ Vr−1 and let y be a point in Vr−1 such that

‖x − y‖ � (1 − ε)−1dist(x, Vr−1). (18)

(The distance between x and Vr−1 is strictly positive because Vr−1 is closed in
V .) We choose er = x − y. The basis e1, . . . , er is compatible with the flag
0 = V0 � V1 � · · · � Vr = V . Let (λ1, . . . , λr ) be an element of kr : we wish to
find a lower bound for the norm of z = λ1e1 + · · · + λr er . By (18) we have that

‖z‖ � |λr | · dist(x, Vr−1) � (1 − ε)|λr | · ‖er‖.
This provides our lower bound when ‖λr er‖ � ‖λ1e1 + · · · + λr−1er−1‖. If
‖λr er‖ < ‖λ1e1 + · · · + λr−1er−1‖ then we have ‖z‖ = ‖λ1e1 + · · · + λr−1er−1‖
because the norm is ultrametric. By the induction hypothesis (17) we have that
‖z‖ � (1 − ε)|λi | · ‖ei‖ for any i ∈ {1, . . . , r − 1}. This completes the proof of the
proposition. 
�
Remark 3.2. If k is locally compact then the above equation holds for ε = 0 since
the distance appearing in (18) is then attained.

In order to make the computations in Sect. 3.2 clearer, we use the notion of α-
orthogonality of a basis in an ultra-normed k-vector space of finite (see [18, §2.3]).
Note that this notion has also been used by Gaudron in the study of linear forms of
logarithms, see [14, §3.5].

Definition 3.3. Let V be an ultra-normed k-vector space of finite rank and α a real
number in ]0, 1]. We say that a basis e = (e1, . . . , er ) of V is α-orthogonal if for
any (λ1, . . . , λr ) ∈ kr we have that

‖λ1e1 + · · · + λr er‖ � αmax(|λ1| · ‖e1‖, . . . , |λr | · ‖er‖).
By definition, 1-orthogonality is the same thing as orthogonality.

For any ultra-normed finite dimensional k-vector space V we let V ∨ =
Homk(V, k)be its dual space with the operator norm. This is also a finite-dimensional
ultra-normed k-vector space.

Let (V1, ϕ1) and (V2, ϕ2) be two ultra-normed finite-dimensional k-vector
spaces. We can then identify V1 ⊗ V2 with Homk(V ∨

1 , V2) and equip it with the
operator norm. This ultrametric norm on V1 ⊗ V2, is called the tensor norm and is
denoted by ϕ1 ⊗ϕ2. We can construct a tensor norm for a tensor product of multiple
ultra-normed spaces recursively (cf. [13, remarque 3.8]).
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The following classical property of α-orthogonality for tensorial ultranormed
vector space will be useful in Sect. 3.2 for the Harder–Narasimhan formalism of
vector spaces equipped with two ultranorms. We refer the readers to [18, Corollary
10.2.10] for a proof.

Proposition 3.4. Let V and W be two finite dimensional ultra-normed k-vector
spaces and let α be a real number in ]0, 1]. If (si )

n
i=1 and (t j )

m
j=1 are α-orthogonal

bases of V and W respectively then (si ⊗ t j ) 1�i�n
1� j�m

is an α2-orthogonal basis of

V ⊗ W .

For any k-vector space V of finite dimension r equipped with an ultrametric
norm ‖.‖ we equip det(V ) = 	r (V )with the quotient norm induced by the canon-
ical map V ⊗r → 	r (V ). The ultrametric Hadamard inequality implies that for any
basis (e1, . . . , er ) of V we have that

‖e1 ∧ · · · ∧ er‖ � ‖e1 ⊗ · · · ⊗ er‖ =
r∏

i=1

‖ei‖. (19)

Equality holds when the basis (e1, . . . , er ) is orthogonal. If the basis isα-orthogonal
then we have that

‖e1 ∧ · · · ∧ er‖ � αr
r∏

i=1

‖ei‖. (20)

This follows from4 Proposition 3.4.

3.2. Arakelov degree and the Harder–Narasimhan polygon

Let Ck be the class of finite dimensional k-vector spaces equipped with two ultra-
metric norms. If V = (V, ‖.‖ϕ, ‖.‖ψ) is an element of Ck we let d̂eg(V ) be the
following number

− ln ‖s1 ∧ · · · ∧ sr‖ϕ + ln ‖s1 ∧ · · · ∧ sr‖ψ,
where (s1, . . . , sr ) is an arbitrary k-basis of V . This construction does not depend
on the choice of (s1, . . . , sr ) by the trivial product formula

∀ a ∈ k×, − ln |a| + ln |a| = 0.

If V is non-trivial we let μ̂(V ) be the quotient d̂eg(V )/ rk(V ). It follows from
Proposition 3.1, Hadamard’s inequality (19) and the inverse Hadamard inequality
(20) that for any flag of subspaces of V

0 = V0 � V1 � · · · � Vn = V

4 By induction, Proposition 3.4 implies that (eσ(1) ⊗ · · · ⊗ eσ(r))1�σ(1),...,σ (r)�r is an
αr -basis of V ⊗r . If ξ = ∑

σ aσ eσ(1) ⊗ · · · ⊗ eσ(r) is an element of V ⊗n whose image in

	r V is e1 ∧· · ·∧er then
∑
σ∈Sr

aσ (−1)sgn(σ ) = 1 where Sr is the r -th symmetric group.
There is at least one σ ∈ Sr such that |aσ | � 1. It follows that ‖ξ‖ � αr ∏r

i=1 ‖ei ‖.
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we have that

d̂eg(V ) =
n∑

i=1

d̂eg(Vi/Vi−1), (21)

using the subquotient norms.
We let P̃V be the function on [0, r ] whose graph is the concave upper bound of

the set of points in R
2 of the form (rk(W ), d̂eg(W )), where W runs over the set of

subspaces of V . This is a concave function which is affine on each piece [i − 1, i]
(i ∈ {1, . . . , r}). For any i ∈ {1, . . . , r} we let μ̂i (V ) be the slope of this function
on [i − 1, i]. We introduce a normalised version of P̃V by setting

∀ t ∈ [0, 1], PV (t) = 1

rk(V )
P̃V (t rk(V )).

Let ZV be a random variable whose probability law is given by

1

rk(V )

rk(V )∑

i=1

δμ̂i (V )
.

The following equality also holds in the non-archimedean case

μ̂(V ) = PV (1) = E[ZV ]. (22)

The results of Sect. 2.3—in particular Proposition 2.4 and Corollary 2.6—still
hold for members of Ck (and their proofs are similar). We now summarise these
properties:

Proposition 3.5. Let (V, ϕ, ψ)be an element of Ck . Letϕ′ andψ ′ be two ultrametric
norms on V .

(1) If ψ ′ � ψ then P̃(V,ϕ,ψ ′) � P̃(V,ϕ,ψ).
(2) If ϕ′ � ϕ then P̃(V,ϕ′,ψ) � P̃(V,ϕ′,ψ).
(3) In general we have that

∀ t ∈ [0, rk(V )], ∣∣P̃(V,ϕ,ψ)(t)− P̃(V,ϕ′,ψ ′)(t)
∣∣ �

(
d(ϕ, ϕ′)+ d(ψ,ψ ′)

)
t.

The following proposition can be seen as an ultrametric analogue of the Courant–
Fischer theorem.

Proposition 3.6. Let V = (V, ϕ, ψ) be an element of Ck of dimension r � 1. For
any i ∈ {1, . . . , r} we have that

P̃V (i) = sup
W⊂V

rk(W )=i

d̂eg(W ). (23)
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Proof. We prove by induction on r that for any α ∈ ]0, 1[ there is a basis in V
which is α-orthogonal for both ϕ and ψ . The case r = 1 is trivial. Suppose that
this statement has been proved for all elements of Ck of dimension< r . We choose
e1 ∈ V \ {0} such that

‖e1‖ψ
‖e1‖ϕ � ( 4

√
α)−1 inf

0 �=x∈V

‖x‖ψ
‖x‖ϕ . (24)

By Proposition 3.1 there is a subspace W ⊂ V of dimension r − 1 such that

∀ y ∈ W, ‖e1 + y‖ϕ � 4
√
αmax(‖e1‖ϕ, ‖y‖ϕ). (25)

By (24) and (25) we have that

∀ y ∈ W, ‖e1 + y‖ψ � 4
√
α · ‖e1 + y‖ϕ · ‖e1‖ψ

‖e1‖ϕ �
√
α · ‖e1‖ψ.

Moreover, asψ is ultrametric, if ‖y‖ψ > ‖e1‖ψ then ‖e1 + y‖ψ = ‖y‖ψ . It follows
that

‖e1 + y‖ψ �
√
αmax(‖e1‖ψ, ‖y‖ψ). (26)

By the induction hypothesis, there is a basis (e2, . . . , er ) of W which is
√
α-

orthogonal for both ϕ and ψ . Let us prove that (e1, . . . , er ) is α-orthogonal for
both ϕ and ψ . Let (λ1, . . . , λr ) be an element of kr with λ1 �= 0. By (25) we have
that

‖λ1e1 + · · · + λr er‖ϕ � 4
√
α · max(|λ1| · ‖e1‖ϕ, ‖λ2e2 + · · · + λr er‖ϕ)

� 4
√
α · max(|λ1| · ‖e1‖ϕ,√α · max(|λ2| · ‖e2‖ϕ, . . . , |λr | · ‖er‖ϕ))

� αmax(|λ1| · ‖e1‖ϕ, . . . , |λr | · ‖er‖ϕ),

where the second inequality comes from the fact that (e2, . . . , er ) is
√
α-orthogonal

for W for the norm ‖.‖ϕ . This inequality also holds when λ1 = 0 (here we use
directly the fact that (e2, . . . , er ) is an

√
α-orthogonal basis). Similarly, it follows

from (26) that (e1, . . . , er ) is an α-orthogonal basis for V with respect to ‖.‖ψ .
We now prove the proposition. We deal first with the case where there is a basis

(s1, . . . , sr ) which is orthogonal for both ϕ and ψ . For any i ∈ {1, . . . , r} let ai be
the logarithm of the ratio ‖si‖ψ/‖si‖ϕ . Without loss of generality we may assume
that a1 � a2 � · · · � ar . For any integer m ∈ {1, . . . , r} the vectors si1 ∧ · · · ∧ sim

(1 � i1 < · · · < im � r ) form a basis for 	m(V ) which is orthogonal for both ϕ
and ψ . For any m-dimensional subspace W ⊂ V , writing a non-zero element of
	m W as a sum of elements of the form si1 ∧ · · · ∧ sim enables us to prove that

d̂eg(W ) � a1 + · · · + am,

and equality is achieved when W is generated by the s1, . . . , sm .
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In the general case, the above proposition enables us to construct a sequence of
objects (V, ϕn, ψn) (n ∈ N) in Ck such that5

lim
n→+∞ d(ϕn, ϕ)+ d(ψn, ψ) = 0

and for any n there is a basis of V which is orthogonal for both ϕn and ψn . On the
one hand,

P̃(V,ϕn ,ψn)(i) = sup
W⊂V

rk(W )=i

d̂eg(W, ϕn, ψn),

and on the other, we have that
∣∣P̃(V,ϕn ,ψn)(t)− P̃(V,ϕ,ψ)(t)

∣∣ � (d(ϕn, ϕ)+ d(ψn, ψ))t,

and for any subspace W ⊂ V we have that
∣∣d̂eg(W, ϕn, ψn)− d̂eg(W, ϕ, ψ)

∣∣ � (d(ϕn, ϕ)+ d(ψn, ψ)) rk(W ).

As n → +∞ we obtain the desired result. 
�

3.3. Truncation

The results in Sect. 2.5 are still valid for elements of Ck . The proof is simpler because
we only consider ultrametric norms. Let V be a finite dimensional k-vector space
and let ϕ be an ultrametric norm on V . For any real number a let ϕ(a) be the norm
on V such that

∀ x ∈ V, ‖x‖ϕ(a) = ea‖x‖ϕ.
If ϕ and ψ are two ultrametric norms on V we let ϕ ∨ ψ be the norm on V such
that

∀ x ∈ V, ‖x‖ϕ∨ψ = max(‖x‖ϕ, ‖x‖ψ).
This is also an ultrametric norm on V .

Proposition 3.7. Let V = (V, ϕ, ψ) be a non-trivial element of Ck and let a be a
real number. We have that

d̂eg(V, ϕ, ψ ∨ ϕ(a)) =
rk(V )∑

i=1

max(μ̂i (V ), a)

5 As in the complex case, for any pair (η, η′) of ultrametric norms on V we set

d(η, η′) = sup
0 �=x∈V

∣∣∣ ln ‖x‖η − ln ‖x‖η′
∣∣∣.
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Proof. We start with the case where V has a basis (e1, . . . , er )which is orthogonal
for both ϕ and ψ . Without loss of generality, we have that

ln
‖ei‖ψ
‖ei‖ϕ = μ̂i (V ).

The basis (e1, . . . , er ) is also orthogonal for the norm ψ ∨ ϕ(a) and we have that

ln
‖ei‖ψ
‖ei‖ϕ = max(μ̂i (V ), a).

The result follows. In general, we can approximate (ϕ, ψ) by pairs of norms
((ϕn, ψn))n�1 such that for every n the vector space V has a basis orthogonal for
both ϕn and ψn (cf. the proof of Proposition 3.6). Passing to the limit n → +∞,
we get our result. 
�

4. Equilibrium energy

In this section we fix a field k, which is either C with the usual absolute value, or a
complete field equipped with a non-archimedean absolute value. If k = C then we
will denote by Ck the class C defined in Sect. 2.3.

4.1. Monomial bases and the Okounkov semi-group

In this subsection we recall the construction of the Okounkov semi-group of a
graded linear series. We refer the reader to [6,15–17] for more details.

Consider an integral projective scheme X of dimension d � 1 defined over
the field k. We assume that the scheme X has a regular rational point x : the local
ring OX,x is then a regular local ring of dimension d. We fix a regular sequence
(z1, . . . , zd) in its maximal ideal mx . The formal completion of OX,x with respect to
the maximal ideal mx is isomorphic to the algebra of formal series in the parameters
z1, . . . , zd (cf. [12, Proposition 10.16]).

If we choose a monomial ordering6 � on N
d we obtain a decreasing N

d -filtration
(called the Okounkov filtration) F on ÔX,x such that Fα(ÔX,x ) is the ideal gener-
ated by monomials of the form zβ such that β � α. This filtration is multiplicative:
we have that

Fα(ÔX,x )Fβ(ÔX,x ) ⊂ Fα+β(ÔX,x ).

The filtration F induces by grading an N
d -graded algebra gr(OX,x ) which is

isomorphic7 to k[z1, . . . , zd ]. In particular, for anyα ∈ N
d , grα(OX,x ) is a rank-one

vector space on k.

6 This is a total order � on N
d such that 0 � α for any α ∈ N

d and α � α′ implies
α + β � α′ + β for any α, α′ and β in N

d .
7 This follows from the fact that OX,x is dense in ÔX,x .
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If L is an inversible OX -module then on taking a local trivialisation in a neigh-
bourhood of x we can identify Lx with OX,x . The filtration F then induces a
decreasing N

d -filtration on H0(X, L) which is independent of the choice of trivi-
alisation. For any s ∈ H0(X, L) we denote by ord(s) the upper bound of the set of
α ∈ N

d such that s ∈ FαH0(X, L). We have that

∀ s, s′ ∈ H0(X, L), ord(s + s′) � min
(
ord(s), ord(s′)

)
.

Moreover, for any s ∈ H0(X, L) and any a ∈ k× we have that ord(s) = ord(as).
Let L be an invertible OX -module. We let V•(L) be the graded ring

⊕
n�0 H0

(X, nL) (with the additive notation for the tensor product of invertible sheaves). By
a graded linear system of L we mean a graded subalgebra of V•(L). Any graded
linear system V• of L can be identified, on choosing a local trivialisation of L around
x , with a graded subalgebra of the algebra of polynomials OX,x [T ]. The filtration
F induces a decreasing N

d -filtration on each homogeneous piece Vn . We denote
by gr(V•) the N

d+1-graded k-algebra induced by this filtration. This is an N
d+1-

graded subalgebra of gr(OX,x )[T ] ∼= k[z1, . . . , zd , T ]. In particular, the elements
(n, α) ∈ N

d+1 such that gr(n,α)(V•) �= {0} form a sub-semigroup of N
d+1 which we

denote by �(V•). For any n ∈ N we denote by �(Vn) the subset of N
d of elements

α such that (n, α) ∈ �(V•).

4.2. Monomial norms

As above, we consider an integral projective scheme X of dimension d � 1 over
Spec k. We fix a regular rational point x ∈ X (k) (it is assumed that such a point
exists), a system of parameters z = (z1, . . . , zd) at x and a monomial order on N

d .
Let L be an invertible OX -module and let V• be a graded linear system of L . We
assume that every k vector space Vn is equipped with two norms ϕn and ψn , which
are ultrametric if k is non-archimedean. We assume moreover that these norms are
submultiplicative—i.e. that for any (n,m) ∈ N

2 and any (sn, sm) ∈ Vn × Vm we
have that

‖sn ⊗ sm‖ϕn+m � ‖sn‖ϕn · ‖sm‖ϕm , ‖sn ⊗ sm‖ψn+m � ‖sn‖ψn · ‖sm‖ψm . (27)

In this subsection, we study the asymptotic behaviour of d̂eg(Vn, ϕn, ψn). As the
Harder–Narasimhan filtration is not functorial in Ck we cannot study this problem
directly using the method developped in [7]. We will avoid this problem by using
Okounkov filtrations. The norms ϕn and ψn induce quotient norms on each of the
sub-quotients grα(Vn) (α ∈ �(Vn)) which we denote by ϕαn and ψαn respectively.
By the results of previous sections, notably (12) and (21), we have that

∣∣∣∣d̂eg(Vn, ϕn, ψn)−
∑

α∈�(Vn)

d̂eg(grα(Vn), ϕ
α
n , ψ

α
n )

∣∣∣∣ � Ak(rk(Vn)),

where Ak(r) = r ln(r) if k = C and Ak(r) = 0 if k is non-archimedean. We deduce
that

lim
n→+∞

∣∣∣∣
μ̂(Vn, ϕn, ψn)

n
− 1

n#�(Vn)

∑

α∈�(Vn)

d̂eg(grα(Vn), ϕ
α
n , ψ

α
n )

∣∣∣∣ = 0. (28)
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We denote by (gr(Vn), ϕ̂n) and (gr(Vn), ψ̂n) the orthogonal direct sum of (grα(Vn),

ϕαn )α∈�(Vn) and (grα(Vn), ψ
α
n )α∈�(Vn) respectively. Then we have that

∑

α∈�(Vn)

d̂eg(grα(Vn), ϕn, ψn) = d̂eg(gr(Vn), ϕ̂n, ψ̂n).

As the semi-group �(V•) is a multiplicative basis for the algebra

k[�(V•)] ∼=
⊕

n�0

gr(Vn)

we can construct a new norm ηn on each space gr(Vn) as follows. For any γ ∈ �(V•)
we let sγ be the canonical image of γ ∈ �(V•) in the algebra k[�(V•)] and we equip

gr(Vn) =
⊕

α∈�(Vn)

ks(n,α)

with the norm ηn such that the vectors sn,α are orthogonal of norm 1. Using these
auxiliary norms we can write the degree d̂eg(gr(Vn), ϕ̂n, ψ̂n) as a difference

d̂eg(gr(Vn), ϕ̂n, ηn)− d̂eg(gr(Vn), ψ̂n, ηn),

or alternatively
∑

α∈�(Vn)

d̂eg(grα(Vn), ϕn, ηn)−
∑

α∈�(Vn)

d̂eg; (grα(Vn), ψn, ηn).

It is easy to see that the real valued functions (n, α) �→ d̂eg(grα(Vn), ϕn, ηn)

and (n, α) �→ d̂eg(grα(Vn), ϕn, ηn) defined on �(V•) are superadditive, so their
asymptotic behaviour can be studied using the methods developped in [7].

4.3. Limit theorem

In this subsection we fix an integer d � 1 and a sub-semigroup � in N
d+1. For any

integer n ∈ N we denote by �n the set {α ∈ N
d | (n, α) ∈ �}. We suppose that the

semi-group � verifies the following conditions (cf. [16, §2.1]):

(a) �0 = {0},
(b) there is a finite subset B in {1}×N

d such that � is contained in the sub-monoid
of N

d+1 generated by B,
(c) the group Z

d+1 is generated by �.

We let�(�) be the (closed) convex cone in R
d+1 generated by �. Under the above

conditions the projection of�∩({1}×R
d) into R

d is a convex body in R
d , denoted

�(�). Moreover, we have that

lim
n→+∞

#�n

nd
= vol(�(�)),

where vol(.) is Lesbesgue measure on R
d (cf. [16, proposition 2.1]).

We say that a function � : � → R is superadditive if �(γ + γ ′) � �(γ ) +
�(γ ′). In what follows, we study the asymptotic properties of super-additive func-
tions.



H. Chen, C. Maclean

Lemma 4.1. Let� be a superadditive function defined on� such that�(0, 0) = 0.

(1) For any real number t the set �t
� := {(n, α) ∈ � |�(n, α) � nt} is a sub-

semigroup of �.
(2) If t ∈ R is a real number such that

t < lim
n→+∞ sup

α∈�n

1

n
�(n, α),

then �t
� satisfies conditions (a)–(c) above.

Proof. (1) As � is superadditive, for any (n, α) and (m, β) in �t
� we have that

�(n + m, α + β) � �(n, α)+�(m, β) � nt + mt = (n + m)t,

and hence (n + m, α + β) ∈ �t
�.

(2) It is easy to check that (a) and (b) are satisfied by �t
�. We now prove (c). Let A

be a finite subset of � generating Z
d+1 as a group. By hypothesis, there exists

a ε > 0 and a γ = (m, β) ∈ � such that �(m, β) � (t + ε)m. It follows that
for any (n, α) ∈ �, we have that

�(km + n, kβ + α)

km + n
� �(n, α)+ k�(m, β)

km + n
� �(n, α)+ km(t + ε)

km + n
� t

for large enough k. There therefore exists a k0 � 1 such that kγ + ξ ∈ �t
� for

any ξ ∈ A and k � k0, so �t
� generates Z

d+1 as a group.

�

Remark 4.2. The superadditivity of � implies that

�
(
�
εt1+(1−ε)t2
�

)
⊃ ε�(�

t1
�)+ (1 − ε)�

(
�

t2
�

)
.

By the Brunn–Minkowski theorem, the function t �→ vol(�(�t
�))

1/d is concave
on ] − ∞, θ [ , where

θ = lim
n→+∞ sup

α∈�n

1

n
�(n, α),

so it is continuous on this interval. Moreover, as the set (dense in �(�))

{α/n : (n, α) ∈ �, n � 1}
is contained in

⋃
t∈R�(�

t
�), we get that

vol(�(�)) = lim
t→−∞ vol

(
�(�t

�)
)
.

The following result is a limit theorem for superadditive functions defined on
�. It is a natural generalisation of [7, Theorem 1.11]
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Theorem 4.3. Let � : � → R be a superadditive function such that

θ := lim
n→+∞ sup

α∈�n

1

n
�(n, α) < +∞. (29)

For any integer n � 1, we consider Zn = �(n, .) as a uniformly distributed random
variable on �n. The sequence of random variables

(
Zn/n

)
n�1 then converges in

law8 to a limit random variable Z whose law is given by

P(Z � t) = vol(�(�t
�))

vol(�(�))
, t �= θ.

Proof. By Remark 4.2 the function F defined on t ∈ R\{θ} by F(t) := vol(�(�t
�))

/vol(�(�)) is decreasing and continuous and lim
t→−∞ F(t) = 1. Moreover, condition

(29) implies that F(t) = 0 for large enough positive t and it follows that if we extend
the domain of definition of F to R by taking F(θ) to be the limit of F(t) as t tends
to θ from the left we get a (left continuous) probability function on R. For any
integer n � 1 and any real number t we have that

P(Zn � t) = #�t
�,n

#�n
,

where �t
�,n is the set of all α ∈ N

d such that (n, α) ∈ �t
�. By the previous lemma

we have that

lim
n→+∞ P(Zn � t) = F(t) (30)

for any t < θ . Moreover, if t > θ then �t
�,n is empty for any n � 1 and �(�t

�)

is also empty, so equation (30) also holds for t > θ . Finally, if the function F is
continuous at θ then since both t �→ P(Zn � t) and F are decreasing we also have
that lim

n→+∞ P(Zn � θ) = F(θ). The result follows. 
�
Remark 4.4. The limit law in the above theorem can also be characterised as the
pushforward of Lesbesgue measure on �(�) by a function determined by �. Let
G� : �(�) → R ∪ {−∞} be the map sending x to sup{t ∈ R : x ∈ �(�t

�)}. This
is a real concave function on9 �(�)◦. The function G� is therefore continuous
on �(�)◦. By definition, the limit law is equal to the pushforward of normalised
Lesbesgue measure on �(�) by G�. In particular, if h is a continuous bounded
function then we have that

lim
n→+∞

h(�(n, α)/n)

#�n
= 1

vol(�(�))

∫

�(�)◦
G�(x) vol(dx) (31)

8 We say that a sequence of random variables (Zn)n�1 converges in law to a random
variable Z if the law of Zn converges weakly to that of Z , i.e., for any continuous bounded
function h on R we have that lim

n→+∞ E[h(Zn)] = E[Z ], or equivalently, the probability

function of Zn converges to that of Z at any point x ∈ R such that P(Z = x) = 0.
9 The set

⋃
t∈R�(�

t
�) is convex and its volume is equal to vol(�(�)) so it contains

�(�)◦.
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This enables us to realise the random variable Z as the function G� defined on the
convex body �(�) equipped with normalised Lesbesgue measure.

In the rest of this section we apply these results to the situation described in
Sect. 4.2. We consider an integral projective scheme X of dimension d � 1 defined
on a field k and an invertible OX -module L . We also choose a regular rational point
(it is assumed that such a point exists) x ∈ X (k), a local system of parameters
(z1, . . . , zd) and a monomial order on N

d . Let V• be a graded linear system on
L whose Okounkov semi-group �(V•) satisfies10 conditions (a)-(c) of section 4.3.
For any n ∈ N let Vn be equipped with two norms ϕn and ψn which are assumed
to be ultrametric for non-archimedean k.

Theorem 4.5. Assume the norms ϕn and ψn satisfy the following conditions:

(1) the system of norms (ϕn, ψn)n∈N is submultiplicative (i.e. satisfies (27));
(2) we have that d(ϕn, ψn) = O(n) as n → +∞;
(3) there is a constant C > 0 such that11 infα∈�(Vn) ln ‖s(n,α)‖ϕ̂n � −Cn for any

n ∈ N, n � 1.

Then the sequence ( 1
n μ̂(Vn, ϕn, ψn))n�1 converges in R.

Proof. We introduce auxiliary monomial norms ηn as in Sect. 4.2. Let� : �(V•) →
R be the function that sends (n, α) ∈ �(V•) to d̂eg(grα(Vn), ϕn, ηn). This function
is superadditive and condition (3) implies that

lim
n→+∞ sup

α∈Vn

1

n
�(n, α) < +∞.

Let Z�,n = �(n, .) be a uniformly distributed random variable on �(Vn). By
Theorem 4.3 the sequence of random variables (Z�,n/n)n�1 converges in law to a
random variable Z� defined on�(�(V•)) (as in Remark 4.4). Similarly, conditions
(2) and (3) prove that (3) also holds for the norms ψ̂n . Denote by� : �(V•) → R the
function sending (n, α) ∈ �(V•) to d̂eg(grα(Vn), ψn, ηn) and by Z�,n = �(n, .)
the random variable on �(Vn) such that n ∈ N, n � 1. The sequence of random
variables (Z�,n/n)n�1 then converges in law to a random variable Z� defined
on �(�(V•)). Moreover, (2) implies that the function |Z� − Z� | is bounded on
�(�(V•))◦.

By Eq. (28) and the equality

d̂eg(grα(Vn), ϕn, ψn) = d̂eg(grα(Vn), ϕn, ηn)− d̂eg(grα(Vn), ψn, ηn),

10 Note that these three conditions are automatically satified whenever V• contains an ample
divisor, ie. Vn �= {0} for large enough n and there is an integer p � 1, an ample OX -module
A and a non-zero section s of pL − A, such that

Im
(
H0(X, n A)

·sn−→ H0(X, npL)
) ⊂ Vnp

for any n ∈ N, n � 1. We refer the reader to [16, lemma 2.12] for a proof.
11 See Sect. 4.2 for notation.
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it will be enough to prove that the sequence (E[Z�,n/n]−E[Z�,n/n])n�1 converges
in R. Condition (2) of the theorem implies that the functions 1

n |Z�,n−Z�,n| (n ∈ N)
are uniformly bounded. Let A > 0 be a constant such that

∀ n � 1, |Z�,n − Z�,n| � An.

As (Z�,n/n)n�1 and (Z�,n/n)n�1 converge in law to Z� and Z� respectively, for
any ε > 0 there is a T0 > 0 and a n0 ∈ N such that

∀ T � T0, ∀ n � n0, P(Z�,n � −nT ) < ε et P(Z�,n � −nT ) < ε.

It follows that
∣∣E[Z�,n/n] − E[Z�,n/n] − E[max(Z�,n/n,−T )] + E[max(Z�,n/n,−T )]∣∣

� 2εE[|Z�,n/n − Z�,n/n|] � 2εA (32)

whenever T � T0 and n � n0. Moreover, as the random variables Z�,n/n
and Z�,n/n are uniformly bounded above and the sequences (Z�,n/n)n�1 and
(Z�,n/n)n�1 converge in law it follows that

lim
n→+∞ E[max(Z�,n/n,−T )] − E[max(Z�,n/n,−T )]

= E[max(Z�,−T )− max(Z�,−T )].
Moreover, as the function |Z� − Z� | is bounded, the dominated convergence
theorem implies that

lim
T →+∞ E[max(Z�,−T )− max(Z�,−T )] = E[Z� − Z� ].

Equation (32) then implies that

lim sup
n→+∞

∣∣E[Z�,n/n] − E[Z�,n/n] − E[Z� − Z� ]∣∣ � 2εA.

As ε is arbitrary, we get that

lim
n→+∞

1

n
μ̂(Vn, ϕn, ψn) = E[Z� − Z� ].


�
Condition (3) in the above theorem holds whenever ϕn comes from a contin-

uous metric on the invertible OX -module L . This can be proved by considering
a monomial order � on N

d such that12 α1 + · · · + αd < β1 + · · · + βd implies
(α1, . . . , αd) < (β1, . . . , βd). Let X an be the analytic space associated to the k-
scheme X (in the Berkovich sense [2] if k is non-archimedean) and let Lan be the
pull-back of L to X an. Let C0

Xan be the sheaf of continuous real functions on X an.
A continuous metric on L is a morphism of set sheaves, ‖.‖, from Lan ⊗ C0

Xan to
C0

Xan which in every point x ∈ X an induces a norm ‖.‖(x) on the fibre Lan(x).

12 When α1 +· · ·+αd = β1 +· · ·+βd we may use the lexicographic order, for example.
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Given a continuous metric ϕ on X we can equip H0(X, L) with the supremum
norm ‖.‖ϕ,sup such that

∀ s ∈ H0(X, L), ‖s‖ϕ,sup := sup
x∈Xan

‖s‖ϕ(x).

For any integer n ∈ N the metric ϕ induces by passage to the tensor product
a continuous metric ϕ⊗n on nL . Let ϕn be the supremum norm on H0(X, nL)
induced by ϕ⊗n (or its restriction to Vn by abuse of language): the system of norms
(ϕn)n�0 then satisfies condition (3) of Theorem 4.5. This follows from Schwarz’s
(complex or non-archimedean) Lemma (cf. [9, pp. 205–206]). This gives us the
following corollary.

Corollary 4.6. Let X be a projective integral scheme defined over a field k and let
L be an invertible OX -module equipped with two continuous metrics ϕ and ψ . Let
V• be a graded linear system of L such that�(V•) satisfies conditions (a)–(c) above.
For any integer n ∈ N let ϕn and ψn be the supremum norms on Vn associated to
the metrics ϕ⊗n and ψ⊗n respectively. The sequence (μ̂(Vn, ϕn, ψn)/n)n�1 then
converges in R.

Proof. The system of norms (ϕn)n�0 is submultiplicative. If s and s′ are elements
of Vn and Vm respectively we have that

‖s ⊗ s′‖ϕn+m = sup
x∈Xan

‖s ⊗ s′‖ϕ⊗(n+m) (x)

�
(

sup
x∈Xan

‖s‖ϕ⊗n (x)
)

·
(

sup
x∈Xan

‖s′‖ϕ⊗m (x)
)

= ‖s‖ϕn · ‖s′‖ϕm .

Similarly, the system of norms (ψn)n�0 is also submultiplicative. Moreover, as the
topological space X an is compact, we have that

sup
x∈Xan

d(‖.‖ϕ(x), ‖.‖ψ(x)) < +∞.

and it follows that d(ϕn, ψn) = O(n) as n → +∞. Finally, as the norms ϕn

satisfy condition (3) of Theorem 4.5, the convergence of (μ̂(Vn, ϕn, ψn)/n)n�1 as
a consequence of this theorem. 
�
Remark 4.7. This result invites comparison with a result of Witt Nyström’s [20,
Theorem 1.4]. Both methods use the monomial basis to construct super or subaddi-
tive functions on the Okounkov semi-group. However, the method in [20] is based
on a comparison between the L2 metric and the L∞ metric, whereas we use the
Harder–Narasimhan formalism. This new approach is highly flexible and enables us
to prove our result in the very general setting of a submultiplicatively normed linear
system satisfying moderate conditions, in both the complex and non-archimedean
cases.

5. Asymptotic distributions of logarithmic sections

In this section we prove our main theorem.
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5.1. A convergence criterium

In this section we prove a convergence criterium. For any real number x the ex-
pression x+ denotes max(x, 0).

Proposition 5.1. Let (Zn)n�1 be a sequence of uniformly bounded random vari-
ables. Assume that for any t ∈ R the sequence (E[max(Zn, t)])n�1 converges in
R. The sequence of random variables (Zn)n�1 then converges in law.

Proof. Note that the condition of the proposition implies that, for any t ∈ R, the
sequence (E[(Zn − t)+])n�1 converges in R. In fact, one has

max(Zn, t) = (Zn − t)+ + t.

Let h be a compactly supported smooth function. We have that

E[h(Zn)] = −
∫

R

h(t) dP(Zn � t) =
∫

R

P(Zn � t)h′(t) dt,

where the second equality comes from integration by parts. For any a ∈ R we have
that

∫ +∞

a
P(Zn � t) dt = E[(Zn − a)+]

and it follows that

E[h(Zn)] = −
∫

R

h′(t) dE[(Zn − t)+] =
∫

R

h′′(t)E[(Zn − t)+] dt.

variables Zn are uniformly bounded the dominated convergence theorem implies
that the sequence (E[h(Zn)])n�1 converges in R. Let I (h) be its limit. The func-
tional I (.) is continuous with respect to the supremum norm on the space of com-
pactly supported smooth functions, so it can be extended by continuity to a positive
linear form on the space of continuous compactly supported functions, and hence
defines a Radon measure on R. As the random variable Zn are uniformly bounded
it follows that I (.) is a probability measure on R. The result follows. 
�

5.2. Asymptotic distribution of eigenvalues

In what follows we fix a valued field k which is either C with the usual absolute
value or a complete non-archimedean field. Let X be an integral projective scheme
of dimension d � 1 defined over k with a regular rational point. In this subsection
we prove the following theorem (cf. Sects. 2.3 and 3.2 for notations).

Theorem 5.2. Let L be an invertible OX -module and V• a graded linear subsystem
of L whose Okounkov semi-group satisfies conditions (a)–(c) of Sect. 4.3. Let ϕ and
ψ be two continuous metrics on L, and for any integer n � 0 let ϕn and ψn be
the supremum norms on Vn induced by the tensor product metrics ϕ⊗n and ψ⊗n

respectively. Then we have that
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(1) The sequence of random variables ( 1
n Z(Vn ,ϕn ,ψn))n�1 converges in law to a

probability measure on R.
(2) the sequence of polygons ( 1

n P(Vn ,ϕn ,ψn))n�1 converges uniformly to a concave
function on [0, 1];

Proof. For any n ∈ N, n � 1 we let Zn denote the random variable 1
n Z(Vn ,ϕn ,ψn).

We have that

|Zn| � sup
x∈Xan

d(‖.‖ϕ(x), ‖.‖ψ(x))

for any n � 1. The sequence of random variables (Zn)n�1 is therefore uniformly
bounded. By [10, proposition 1.2.9], the second statement follows from the first.

We now prove the first statement by using the convergence criterion given in 5.1
and the limit result proved in 4.6. For any real parameter a letϕ(a) be the continuous
metric on L such that

∀ x ∈ X an, ‖.‖ϕ(a)(x) = ea‖.‖ϕ(x).
Let ψ ∨ ϕ(a) be the metric on L such that

∀ x ∈ X an, ‖.‖ψ∨ϕ(a)(x) = max
(‖.‖ψ(x), ‖.‖ϕ(a)(x)

)
.

The supremum norm on Vn associated to the metric (ψ ∨ ϕ(a))⊗n is ψn ∨ ϕn(an)
(with the notations as in Sects. 2.5 or 3.3). Corollary 4.6 applied to ϕ and ψ ∨ϕ(a)
proves that the sequence (μ̂(Vn, ϕn, ψn∨ϕn(na))/n)n�1 converges in R. Moreover,
by Propositions 2.8 and 3.7 we have that

∣∣∣
1

n
μ̂(Vn, ϕn, ψn ∨ ϕn(na))− E[max(Zn, a)]

∣∣∣ � 1

n
A(rn),

where rn = rk(Vn) and

∀ r ∈ N, r � 1, A(r) := 2 ln(r)+ 1

2
ln(2).

As rn = O(nd) when n → +∞, we have that limn→+∞ A(rn)/n = 0. It follows
that the sequence (E[max(Zn, a)])n�1 converges. By Proposition 5.1, the result
follows. 
�
Remark 5.3. The above result still holds whenever we replace ϕn and ψn by norms
ϕ′

n and ψ ′
n such that

max(d(ϕn, ϕ
′
n), d(ψn, ψ

′
n)) = o(n), n → +∞,

and the limit laws are the same. If we let Z ′
n be the random variable 1

n Z(Vn ,ϕ′
n ,ψ

′
n)

then for any a ∈ R we have that
∣∣E[max(Zn, a)] − E[max(Z ′

n, a)]∣∣

� 1

n

∣∣μ̂(Vn, ϕn, ψn ∨ ϕn(an))− μ̂(Vn, ϕ
′
n, ψ

′
n ∨ ϕn(an))

∣∣ + 1

n
A(rn)

� 1

n
(d(ϕn, ϕ

′
n)+ d(ψn, ψ

′
n)+ A(rn)).
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Letting n → +∞ we get that

lim
n→+∞ E[max(Z ′

n, a)] = lim
n→+∞ E[max(Zn, a)].

In particular, this enables us to apply the theorem to L2 norms when k is the field
of complex numbers—see for example Lemma 3.2 of [3].

The convergence of the sequence of polyones in the above theorem implies,
in considering the convergence at the point 1, the following local analogue of the
arithmetic Hilbert–Samuel theorem.

Corollary 5.4. With the notation and the hypothese of the above theorem, the limite

lim
n→+∞

d̂eg(Vn, ϕn, ψn)

nd+1

exists in R.
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